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Abstract

Brain age is a widely used index for quantifying individuals’ brain health as deviation from a

normative brain aging trajectory. Higher than expected brain age is thought partially to reflect

above-average rate of brain aging. We explicitly tested this assumption in two large datasets and

found no association between cross-sectional brain age and steeper brain decline measured

longitudinally. Rather, brain age in adulthood was associated with early-life influences indexed by

birth weight and polygenic scores. The results call for nuanced interpretations of cross-sectional

indices of the aging brain and question their validity as markers of ongoing within-person changes of

the aging brain. Longitudinal imaging data should be preferred whenever the goal is to understand

individual change trajectories of brain and cognition in aging.
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Introduction

The concept of brain age is increasingly used to capture inter-individual differences in the integrity of

the aging brain1. The biological age of the brain is estimated typically by applying machine learning to

magnetic resonance imaging (MRI) data to predict chronological age. The difference between

predicted brain age and actual chronological age (brain age delta) reflects the deviation from the

expected norm and is often used to index brain health. Brain age delta has been related to brain,

mental, and cognitive health and proved valuable in predicting outcomes such as mortality1–3. To

different degrees, it is assumed that brain age delta reflects past and ongoing neurobiological aging

processes1,3–6. Hence, it is common to interpret positive brain age deltas as reflecting a steeper rate

of brain aging; often dubbed as accelerated aging1,4,6.

The assumption that brain age delta reflects an ongoing process of (faster or slower) neurobiological

aging implies that there should be a relationship between cross-sectional and longitudinal estimates

of brain age. Alternatively, deviation from the expected brain age could show lifelong stability and

capture earlier genetic and environmental influences3,7,8. These perspectives offer fundamentally

divergent interpretations of higher brain age (delta) in groups experiencing specific life events, brain

disorders, and other medical problems. Here we tested whether brain age is related to accelerated

brain aging, early-life factors, or a combination of both (Fig. 1a). If interindividual variations of brain

age reflect variations in rates of ongoing brain aging, cross-sectional brain age delta should be

positively associated with brain decline measured longitudinally. Here, we quantified individual brain

change as the annual rate of change of brain age delta (brain age deltalong). In addition, we also

assessed brain change with a composite score of brain change and change in the different raw brain

features. If early-life influences play a substantial role, one should observe a relationship between
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brain age and early factors - indexed here by birth weight and polygenic scores for brain age

(PGS-BA) given evidence of lifelong effects of genetic effect on age-related phenotypes9,10 (Fig. 1b).
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Results

Brain age prediction

Chronological age (Fig. 1c) was predicted based on regional and global features from structural

T1-weighted (T1w) MRI, including cortical thickness, area, volume, and gray-white matter contrast, as

well as subcortical volume and intensity imaging-derived phenotypes (|N| = 365). See list in

Supplementary Table 1, 2, and Fig. 1d for pairwise correlations with age. The model was trained on

38,682 participants (age range = 44.8 - 82.6 years) with a single MRI from the UK Biobank11 dataset

using gradient boosting as implemented in XGBoost (https://xgboost.readthedocs.io) and optimized

using 10-fold cross-validation and a randomized hyper-parameters search. The trained model (Fig.

1e) was then used to predict brain age for an independent test dataset of 1,372 participants with

two MRIs each (age range = 47.2 - 80.6 years, mean [SD] follow-up = 2.3 [0.1] years). The predictions

revealed a high correlation between chronological and brain age (r = 0.82) with mean absolute error

(MAE) = 3.31 years and root mean squared error (RMSE) = 4.14 years (Fig. 1f), comparable to other

brain age models using UK Biobank MRI data12. We used generalized additive models (GAM) to

correct for the brain-age bias, i.e., the underestimation of brain age in older individuals and vice

versa6. Brain age delta was calculated as the residual from the GAM fit. Brain age delta at baseline

and follow-up were strongly correlated (r = 0.81). To corroborate generalizability, we replicated our

results using a different machine learning algorithm – a LASSO-based approach12 - and an

independent longitudinal sample from the Lifebrain consortium13 with up to 11.2 years of follow-up

(3,292 unique participants, age range = 18.0 - 94.4 years). See Supplementary Fig. 1 and

Supplementary Table 3 for additional demographic information. All the code used to generate the

results  will be available at https://github.com/LCBC-UiO/VidalPineiro_BrainAge.
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Fig. 1. Theoretical expectations and study characteristics. a) Three hypothetical trajectories leading to higher brain age

delta. Higher brain age delta can be explained by a steeper rate of neurobiological aging (green), distinct events that led to

the accumulation of brain damage in the past (yellow), or early-life genetic and developmental factors (purple). The black

arrow represents normative values of brain age through the lifespan. b) Brain aging (green) vs. early-life (blue-purple)
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accounts of brain age in older age. For the brain aging notion, cross-sectional brain age (points) relates to the slope of brain

age as assessed by two or more observations across time (continuous line), reflecting ongoing differences in the rate of

aging (dashed line, green scale). For the early-life notion, cross-sectional brain age (points), relates to early environmental,

genetic, and/or developmental differences such as birth weight (blue-purple scale). c) Relative age distribution for the UK

Biobank test and training datasets. d) Age variance explained (r2) for each MRI feature in the training dataset. Features are

grouped by modality and ordered by the variance explained. e) Brain age model as estimated on the training (n = 38,682),

and f) test datasets (participants = 1,372; two observations each). In e) and f), lines represent the identity (grey), the linear

(green), and the GAM (orange) fits of chronological age to brain age. Confidence intervals represent standard errors (SE).

Note that plots show brain age prediction before age-bias correction. In d) gwc = gray-white matter contrast, (c) = cortical,

and (s) = subcortical.

Brain age does not strongly relate to the rate of brain aging

First, we tested whether cross-sectional brain age delta predicted brain age deltalong - i.e. annual rate

of change in brain age delta - using linear models controlling for age, sex, scanning site, and

estimated intracranial volume (eICV). We selected the centercept (brain age delta at mean

chronological age), instead of baseline brain age delta, to avoid statistical dependency between

indices. Cross-sectional and brain age deltalong were weakly, but negatively associated in the UK

Biobank (β = -0.016 [± 0.008] delta/year, t (p) = -2.0 (.04), r2 = 0.002, Fig. 2a). Cross-sectional and

brain age deltalong were unrelated using a LASSO regression approach (β = -0.003 [± 0.006] delta/year,

t (p) = -0.5 (.65), r2 = .001, Fig. 2b), and in the Lifebrain replication sample (β = -0.007 [± 0.01]

delta/year, t (p) = -0.6 (.53), r2 = 0.001, Fig. 2c). Post-hoc equivalence tests showed that positive

relationships with β > 0.010 delta/year would be rejected in all three analyses thus confirming a lack

of a meaningful relationship between cross-sectional and longitudinal brain age (Methods and

Supplementary Fig. 2). UK Biobank (gradient boosting) results remained not significant when brain

age delta was derived by timepoints 1 and 2 as two independent training sets (10-fold

cross-validation; uncorrected delta values), thus avoiding potential confounds with age-bias

correction (t (p) = 0.3 (.76)). Lifebrain results remained unaffected after including follow-up interval
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as an additional covariate or restricting the analysis to participants with long follow-up intervals (> 4

years) (n = 424). The relationship between cross-sectional and brain age deltalong was not significant

in both cases (β = -0.008 [± 0.01] year/delta, t (p) = -0.7 (.45); β = -0.008 [± 0.007] delta/year, t (p) =

-1.1 (.26)).

We additionally tested whether cross-sectional and longitudinal brain age delta (brain age deltalong)

were associated with a composite measure of longitudinal brain change or with change in any of the

structural MRI features. See Methods for details. Cross-sectional brain age delta was unrelated to a

principal component of change (β = -0.009 [± 0.01] year, t (p) = -0.7 (.46), r2 = 0.001). We did not find

a significant relationship when brain age delta was computed with neither a LASSO algorithm nor

using the Lifebrain sample (β = -0.02 [± 0.01] year, t (p) = -1.7 (0.09), r2 = 0.002; β = 0.007 [± 0.006]

year, t (p) = 1.3 (0.2), r2 = 0.001). In contrast, brain age deltalong was associated with a principal

component of change in the UK Biobank dataset as well as in both replication analyses (all tests p <

0.001). See Supplementary Fig. 3 for a visual representation. At a level of specific features,

cross-sectional brain age delta was significantly related to change - in the expected direction - of

features capturing lateral ventricle expansion and white matter hypointensities (p < 0.05 Bonferroni

corrected). Brain age deltalong related to change in 45 of the features pertaining to four different

modalities. The results were replicated both using the LASSO algorithm and the Lifebrain dataset

(Supplementary Fig. 4 and Supplementary Table 4).

Finally, we estimated the rate of aging effects using a cross-sectional model by estimating the scaling

of the size of delta with age as defined in Smith and colleagues6. The scaling (𝜆) of brain age delta (δ)

throughout the datasets’ age range was 𝜆 = 0.14 and 0.09 for the UK Biobank and the Lifebrain

datasets. This corresponds to an increase in the spread of brain age delta of |δ|𝜆 = .38 and .37 years
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- when moving from youngest to oldest - in the UK Biobank and the Lifebrain datasets suggesting that

brain age delta only modestly reflects rate of aging effects.

Fig. 2. Relationship between cross-sectional and longitudinal brain age delta. a) Main analysis using the UK Biobank

dataset and boosting gradient (n = 1372) (p = .04, r2 = 0.002). b) Replication analyses using a different training algorithm

(LASSO; n = 1372) (p = .65, r2 = 0.001) and c) an independent dataset (Lifebrain; n = 1500) (p = 0.53, r2 = 0.001). XGB =

boosting gradient as implemented in XGBoost. Confidence intervals represent SE. Longitudinal brain age delta (brain age

deltalong) refers to the rate of change in delta between baseline and follow-up MRI measurements. Cross-sectional brain age

delta (brain age deltacross) refers to centercept brain age delta; i.e. at mean age.

Brain age delta is associated with early life influences and polygenic scores for brain age

Next, we tested if birth weight was associated with brain age delta or change in brain age delta.

Linear mixed models were used to fit time (from baseline; years), birth weight, and its interaction on

brain age delta, using age at baseline, sex, scanning site, and eICV as covariates. Birth weight was

significantly related to brain age delta (β = -0.70 [± 0.30] year/kg, t (p) = -2.3 (0.02), r2 = .009, Fig. 3a)

but not to delta change (β = 0.02 [± .09] year/kg, t (p) = 0.3 (.79)). Birth weights were limited to

normal variations at full-term (from 2.5 to 4.5 kg) (n = 770 unique individuals) but see

Supplementary Fig. 5 for results with varying cut-offs. The results were not affected by excluding
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individuals being part of multiple births (p = 0.02) and were replicated using the LASSO approach (β =

-0.79 [± .29] year/kg, t (p) = -2.8 (0.006), r2 = 0.009, Fig. 3b).

Finally, we tested whether polygenic scores for brain age delta (PGS-BA) related to brain age delta

and change in brain age delta (n = 1,339). PGS-BA was computed using a mixture-normal model

based on a genome-wide association study (GWAS) of the brain age delta phenotype in the UK

Biobank training dataset. To test the association, linear mixed models were used as above along with

the top 10 genetic principal components to account for population structure. PGS-BA was positively

associated with brain age delta (β = 0.54 [± 0.09] year, t (p) = 9.4 (< 0.001), r2 = 0.02, Fig. 3c) and

negatively associated with brain age delta change (β = -0.06 [± 0.03] year, t (p) = -2.4 (0.02)) in the

independent test dataset. Likewise, PGS-BA was associated with brain age delta derived from the

LASSO algorithm (β = 0.53 [± 0.09] year, t (p) = 10.4 (< 0.001), r2 = 0.02) but not to brain age delta

change (β = -0.001 [± .02] year, t (p) = 0.0 (1.0)). See Supplementary Fig. 6 for GWAS association

results. The association between PGS-BA and brain age delta remained significant when using as

covariates the top 10 genetic components derived from the full UK Biobank sample (p < .001 in both

analyses).

Fig. 3. Relationship between cross-sectional brain age delta and birth weight. a) Main analysis using the UK Biobank

dataset and boosting gradient (n = 770) (p = 0.02, r2 = 0.009). b) Replication analyses using a different training algorithm
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(LASSO) (n = 770) (p = 0.005, r2 = 0.009). c) Relationship between polygenic scores for brain age delta and brain age delta (n

= 1,339) (p < 0.001, r2 = 0.02). XGB = boosting gradient as implemented in XGBoost. Confidence intervals represent SE.
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Discussion

Altogether, these findings do not support the claim that the individual variations in the

cross-sectional brain age metric captures across-subject differences in the ongoing rate of brain

aging. Rather, brain age seems to reflect early-life influences, and only to a very modest degree

reflects actual rate of brain change in middle and old adulthood. A lack of relationship between brain

age and rate of brain aging can potentially be explained by the effect of circumscribed events such as

isolated insults or detrimental lifestyles that occurred in the past resulting in higher, but not

accelerating, brain age. Yet, variations in brain age can equally reflect developmental and early-life

differences and show lifelong stability. Brain-age datasets and paradigms are generally ill-suited to

disentangling these sources of variation but are often interpreted in line with the former. This

assumes that variation in brain age largely results from the accumulation of damage and insults

during the lifespan, with similar starting points for everyone. An exception is Elliott and colleagues3,

who found that middle-aged individuals with higher brain age already exhibited poorer cognitive

function and brain health at age three years. This fits a robust corpus of literature showing effects of

lifelong, stable influences as indexed by childhood IQ14, genetics10, and neonatal characteristics8 on

brain and cognitive variation in old age.

Strictly speaking, brain age delta is a prediction error from a model that maximizes the prediction of

age in cross-sectional data. Prediction errors also reflect noise, attenuating any relation between

cross-sectional and longitudinal brain age. Given that deltalong is estimated as the difference between

two deltacross estimates, it will hence have higher noise than the cross-sectional estimates reducing

the power in identifying potential associations between longitudinal and cross-sectional delta; note

also the relatively short interscan interval in UK Biobank (≈2y). However, replication (of our null

results) in the Lifebrain sample with more observations and longer follow-up reduces the likelihood
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of noise as the main factor behind the lack of relationship. Furthermore, previous studies have found

that changes in brain age are partly heritable15 and relate to for instance cardiometabolic risk

factors16, suggesting that it captures biologically relevant signals, although with substantially different

origins from cross-sectional brain age. It has been argued that at a population level, brain age

captures modest rate of aging effects as brain age delta spreads with increasing age6. Here, we found

a similar degree of delta spreading in our brain age metrics. Likewise, our secondary analyses

suggested brain age related to change in few specific neuroimaging features, i.e. ventricular

expansion and white matter hypointensities, though not to any composite score. Thus, both results

are compatible and converge towards brain age as a real but relatively modest metric for capturing

ongoing brain change. The largest part of interindividual variation in brain age delta, instead, largely

originates before the sample lower bound (⪝ 18 and 45 years for the Lifebrain and UK Biobank

datasets). Other multivariate approaches might be better equipped for capturing the dynamics of the

aging brain. Using independent component analysis, a recent study found that - compared to a single

brain age score - distinct modes of multimodal brain variation better reflect both the genetic

make-up and ongoing aging effects, with a subset of modes showing significant spreading of delta

with age5.

The degree to which brain age reflects ongoing effects likely depends on the specific features,

modalities, and algorithms employed and is constrained by model properties such as prediction

accuracy and homoscedasticity. Yet, without longitudinal imaging, one should not interpret brain age

as accelerated aging. Our results align with theoretical claims and empirical observations that

covariance structures capturing differences between individuals do not necessarily generalize to

covariance structures within individuals17,18. Also, associations of brain age with other bodily markers

of aging or with cognitive decline have yielded mixed support for cross-sectional brain age as a

marker of individual differences in brain aging2,3,19. Strong relationships between cross-sectional and
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longitudinal brain age may thus be restricted to specific disease groups such as Alzheimer’s disease

patients19 where interindividual brain variation is dominated by the prevailing loss of brain structural

integrity.

The results further showed that birth weight, which reflects differences in genetic propensities and

prenatal environment20, explained a modest portion of the variance in brain age. Subtle variations in

birth weight are associated with brain structure early in life and present throughout the lifespan8.

This association should be considered as proof-of-concept that the metric of brain age reflects the

distant past more than presently ongoing events in the morphological structure of the brain. This was

confirmed by the consistent association between PGS-BA and brain age delta but not with brain age

delta change. Since PGS-BA was computed based on cross-sectional brain age delta, this relationship

may not be surprising, but still suggests a different genetic foundation for longitudinal brain age.

These findings link with evidence that brain development is strongly influenced by genetic

architecture that, in interaction with environmental factors, lead to substantial, long-lasting effects

on brain structure. By contrast, aging mechanisms seem to be more related to limitations of

maintenance and repair functions and have a more stochastic nature21.

As time from birth increases, chronological age as a marker of individual development is reduced.

The results call for caution in interpreting brain-derived indices of aging based on cross-sectional MRI

data and underscores the need to rely on longitudinal data whenever the goal is to understand the

trajectories of brain and cognition in aging.
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Methods

Participants and Samples

The main sample was drawn from the UK Biobank neuroimaging branch

(https://www.ukbiobank.ac.uk/)11. 38,682 individuals had MRI available at a single time point and

were used as the training dataset. 1,372 individuals had longitudinal data and were used as the test

dataset. The present analyses were conducted under data application number 32,048. The Lifebrain

dataset13 included datasets from 5 different major European Lifespan cohorts: the Center for Lifespan

Changes in Brain and Cognition cohort (LCBC, Oslo)8, the Cambridge Center for Aging and

Neuroscience study (Cam-CAN)22,23, the Berlin Study of Aging-II (Base-II)24, the University of Barcelona

cohort (UB)25,26, and the BETULA project (Umeå)27. Furthermore, we included data from the

Australian Imaging Biomarkers and Lifestyle flagship study of ageing (AIBL)28. In addition to

cohort-specific inclusion and exclusion criteria, individuals aged < 18 years, or with evidence of mild

cognitive impairment, or Alzheimer’s Disease were excluded from the analyses. 1,792 individuals

with only one available scan were used for the Lifebrain training dataset. 1,500 individuals with

available follow-up of > 0.4 years were included in the test dataset. Individuals had between 2 and 8

available scans each. Sample demographics for the UK Biobank and the Lifebrain samples are

provided in Supplementary Table 3. See also Fig. 1c and Supplementary Fig. 1 for a visual

representation of the age distribution in the UK Biobank and the Lifebrain datasets. UK Biobank

(North West Multi-Center Research Ethics Commitee [MREC]; see also

https://www.ukbiobank.ac.uk/the-ethics-and-governance-council) and the different cohorts of the

Lifebrain replication dataset (Supplementary Table 5) have ethical approval from the respective

regional ethics committees. All participants provided informed consent.
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MRI acquisition and preprocessing

See https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf for details on the UK Biobank

T1-weighted (T1w) MRI acquisition. UK Biobank and Lifebrain MRI data were acquired with 3 and 10

different scanners, respectively. T1w MRI acquisition parameters for both the Lifebrain and the UK

Biobank are summarized in Supplementary Table 6.

We used summary regional and global metrics derived from T1w data. For UK Biobank we used the

imaging-derived phenotypes developed centrally by UK Biobank researchers11 and distributed via the

data showcase (http://biobank.ctsu.ox.ac.uk/crystal/index.cgi). See preprocessing details in

https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf. This procedure yielded 365

structural MRI features, partitioned in 68 features of cortical thickness, area, and gray-white matter

contrast, 66 features of cortical volume, 41 features of subcortical intensity, and 54 features of

subcortical volume. See the list of features in Supplementary Table 1 and 2. Lifebrain data were

processed on the Colossus processing cluster, University of Oslo. Similar to the UK Biobank pipeline,

we used the fully automated longitudinal FreeSurfer v.6.0. pipeline29 for cortical reconstruction and

subcortical segmentation of the structural T1w data (http://surfer.nmr.mgh.harvard.edu/fswiki)30–32

and used similar atlases for structural segmentation and feature extraction.

Birth weight

We used birth weight (kg) from the UK Biobank (field #20022). Participants were asked to enter their

birth weight at the initial assessment visit, the first repeat assessment visit, or the first imaging visit.

In the case of multiple birth weight instances, we used the latest available input. n = 894 participants

from the test dataset had available data on birth weight. The main analysis was constrained to

normal variations in birth weight between 2.5 and 4.5 kg (n = 770)33 due to lower reliability of

extreme scores and to tentatively remove participants with severe medical complications associated

with prematurity.
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Genetic preprocessing

Detailed information on genotyping, imputation, and quality control was published by Bycroft and

colleagues34. For genetic analyses, we only included participants with both genotypes and MRI scans.

Following the recommendations from the UK Biobank website, we excluded individuals with failed

genotyping, that had abnormal heterozygosity status, or that withdrew their consents. We also

removed participants that were genetically related – up to the third degree – to at least another

participant as estimated by the kinship coefficients as implemented in PLINK35. For the genome-wide

association study (GWAS) we used 38,163 individuals from the training dataset. Polygenic risk scores

were computed using the test dataset consisting of 1,339 individuals with longitudinal MRI.

GWAS

We performed GWAS analysis on the training dataset and the brain age delta-semi-corrected

phenotype using the imputed UK Biobank genotypes. To control for subtle effects of population

stratification in the dataset, we computed the top 10 principal components (PCs) using the PLINK

command –pca on a decorrelated set of autosome single nucleotide polymorphisms (SNPs). The set

of SNPs (n=101,797) were generated by using the PLINK command, --maf 0.05, --hwe 1e-6,

--indep-pairwise 100 50 0.1. The –glm function from PLINK was used to perform GWAS on about 9

million autosomal SNPs, including age, sex, and the top 10 PCs as covariates. See Manhattan and

quantile-quantile (QQ) plots in Supplementary Fig. 6. Note that our results corroborated the same

association region reported in Jonsson and colleagues36 with a smaller sample.
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Polygenic scores (PGS)

The GWAS results for the training dataset were used to compute PGS (PGS-BA) in the independent

test dataset (n = 1,339 participants). We used the recently developed method PRS-CS37 to estimate

the posterior effect sizes of SNPs that were shown to have high quality in the HapMap data38. Rather

than estimating the polygenicity of brain age delta from our data, we assumed a highly polygenic

architecture for brain age delta by setting the parameter --phi=0.0139. The remaining parameters of

PRS-CS were set to the default values. PGS was based on 654,725 SNPs and was computed on the

independent test data using the --score function from PLINK. SNPs were aligned with HapMap 3 SNPs

(autosome only as provided by PRC-CS) and posterior effects were estimated. We also computed the

population structures PCs’ in the test dataset using the same procedure as in the training dataset.

Statistical analyses

All statistical analyses were run with R version 3.6.3 https://www.r-project.org/. We used the UK

Biobank as the main sample and the Lifebrain cohort for independent replication. The main

description refers to the UK Biobank pipeline, though Lifebrain replication followed identical steps

unless otherwise stated. For replication across machine learning pipelines, we used a LASSO

regression approach for age prediction, adapted from

https://james-cole.github.io/UKBiobank-Brain-Age/. See more details in Cole, 202012. The correlation

between LASSO-based and Gradient Boosting-based brain age deltas was .80.

Brain age prediction

We used machine learning to estimate each individuals’ brain age based on a set of regional and

global features extracted from T1w sequences. We estimated brain age using gradient tree boosting

(https://xgboost.readthedocs.io). We used participants with only one MRI scan for the training
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dataset (n = 36,682) and participants with longitudinal data as test dataset (n = 1,372). All variables

were scaled prior to any analyses using the training dataset metrics as reference.

The model was optimized in the training set using a 10-fold cross-validation randomized

hyper-parameters search (50 iterations). The hyper-parameters explored were number of estimators

[100, 600, 50], learning rate (0.01, 0.05, 0.1, 0.15, 0.2), maximum depth [2, 8, 1], gamma

regularisation parameter [0.5, 1.5, 0.5], and min child weight [1, 4, 1]. The remaining parameters

were left to default. The optimal parameters were: number of estimators = 500, learning rate = 0.1,

maximum depth = 5, gamma = 1, and min child weight = 4 predicting r2 = 0.68 variance in

chronological age with mean absolute error (MAE) = 3.41 and root mean squared error (RMSE) =

4.29. See visual representation in Fig. 1f.

Next, we recomputed the machine learning model using the entire training dataset and the optimal

hyper-parameters and used it to predict brain age for the test dataset (Fig. 1e). These metrics are

similar or better than other brain age models using UK Biobank MRI data12,40 and the cross-validation

diagnostics. We used GAM to correct for the brain-age bias estimation6; r = -0.54 for the test dataset.

Note that we used GAM fittings as estimated in the training dataset so delta values in the test

dataset are not centered to 0. Brain age delta was estimated as the GAM residual. The correlation

between brain age delta corrected based on the training vs. the test fit was r > 0.99. Also,

GAM-based bias correction led to similar brain age delta estimations to linear and quadratic-based

corrections (r > 0.99). The diagnostics for LASSO-based model were as follows: variance explained

(r2)= 0.83 / 0.83; MAE = 3.36 / 3.28; RMSE = 4.21 / 4.04; age-bias = -.56 / -.52 for the training and

predicted datasets. See representation of the brain age prediction in Supplementary Fig. 7.
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Higher level analysis

Relationship between cross-sectional and longitudinal brain age. For each participant, we computed

the mean brain age delta across the two MRI time points and the yearly rate of change (brain age

deltalong). We selected mean, instead of baseline brain age delta, to avoid statistical dependency

between both indices41,42. Brain age deltalong was fitted by mean brain age delta using a linear

regression model, which accounted for age, sex, site, and eICV. We used mean eICV across both time

points.

Relationship between brain age delta and change in brain features. For each participant, we

computed the yearly rate of change in all the raw neuroimaging features and tested whether change

was significantly different from 0 (one-sample t-test, p < 0.05, Bonferroni-corrected) (Supplementary

Fig. 4, Supplementary Table 4). Features with significant change over time were fed into a principal

component analysis (uncentered). The first component, explaining ≃20% of the variance both in the

UK Biobank and the Lifebrain datasets, was selected for further analysis. Although it did not

qualitatively affect the results, we removed two and three extreme outliers from the UK Biobank and

Lifebrain datasets (score > 10). See Supplementary Table 4 for component weights. Finally, we tested

whether cross-sectional and brain age deltalong predicted brain change as quantified both by the first

component analysis and change in each of the raw neuroimaging features (p < 0.05,

Bonferroni-corrected) using the same models described above.

Spreading of brain age delta with age. Further, we estimated the degree to which brain age delta

reflects rate of aging using a cross-sectional model proposed by Smith6 which estimates the scaling

of brain age delta through the datasets’ age range. The scaling is estimated by λ in δ = δ0(1 +λY0)

where δ is brain age delta, Y0 is a linear mapping of chronological age into the range 0:1, and |δ0|

relates to brain age delta distribution in the youngest participants. The spread of brain age delta

throughout the datasets’ age range can then be expressed as |δ0|λ (years).
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Relationship between brain age PGS and cross-sectional and longitudinal brain age. This association

was tested using linear mixed models with time from baseline (years), PGS-BA, and its interaction on

brain age delta. Age at baseline, sex, site, eICV, and the 10 first principal components for population

structure were used as covariates. The principal components of population structure were added to

minimize false positives associated with any form of relatedness within the sample. Effects of birth

weight on brain age. Linear mixed models were used to fit time, birth weight, and its interaction on

brain age delta, using age at baseline, sex, site, and eICV as covariates. We explored the consistency

of the results by modifying the birth weight limits in a grid-like fashion [0.5, 2.7, 0.025] and [4.2, 6.5,

0.025] for minimum and maximum birth weight (Supplementary Fig. 5). Self-reported birth weight is

a reliable estimate of actual birth weight. However, extreme values are either misestimated or reflect

profound gestational abnormalities43,44.

Equivalence tests. Post-hoc equivalence tests were carried to test for the absence of a relationship

between cross-sectional and brain age deltalong
45. Specifically, we used inferiority tests, to test

whether a null hypothesis of an effect as least as large as Δ (in years/delta) could be rejected. We

re-run the three main models assessing a relationship between cross-sectional and longitudinal brain

age delta (UK Biobank trained with boosting gradient, UK Biobank trained with LASSO, and Lifebrain

trained with boosting gradient) varying the right-hand-side test (Δ) [-0.02, 0.05, 0.001] (p < 0.05,

one-tailed) (Supplementary Fig. 2).

Assumptions were checked for the main statistical tests using plot diagnostics. Variance explained for

single terms refers to unique variance (UVE), which is defined as the difference in explained variance

between the full model and the model without the term of interest. For linear mixed models, UVE

was estimated as implemented in the MuMIn r-package.
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Lifebrain-specific steps

Features. The Lifebrain cohort included |N| = 372 features. It included 8 new features compared to

the UK Biobank dataset, whereas one feature was excluded (new features: left and right temporal

pole area volume and thickness, cerebral white matter volume, cortex volume; excluded feature:

ventricle choroid). See age-variance explained in each feature in Supplementary Table 1 and 2 as

estimated with GAMs. Quality control. Prior to any analysis, we tentatively removed observations for

which > 5% of the features fell above or below 5 SD from the sample mean. The application of this

arbitrary high threshold led to the removal of 10 observations. We considered these MRI data to be

extreme outliers and likely to be artifactual and/or contaminated by important sources of noise. Also,

before brain prediction, we tentatively removed variance associated with the different scanners using

generalized additive mixed models (GAMM) and controlling for age as a smooth factor and a

subject-identifier as random intercept. This correction was performed due to differences in age

distribution by scanner and lack of across scanner calibration. Hyperparameter search and model

diagnostics. The optimal parameters for the Lifebrain replication sample were: number of estimators

= 600, learning rate = 0.05, maximum depth = 4, gamma = 1.5, and min child weight = 1. Using

cross-validation, the model predicted r2 = 0.92 of the age-variance with MAE = 4.75 and RMSE = 6.31.

Brain age was underestimated in older age (bias r = -0.33). Model prediction. The age-variance

explained by brain age was r = 0.90 with MAE = 4.68 and RMSE = 6.06. Brain age was

underestimated in older age (bias r = -0.25) (Supplementary Fig. 7). Higher level-analysis. For each

individual, mean brain age delta was considered as the grand-mean brain age delta across the

different MRI time points. To compute brain age deltalong we set for each participant a linear

regression model with observations equal to the number of time points that fitted brain age delta by

time since the initial visit. Slope indexed change in brain age delta/year. The relationship between

mean and brain age deltalong was tested using linear mixed models controlling for age, sex, and eICV

as fixed effects, and using a site identifier as a random intercept. Likewise, linear mixed models were

used to test the relationship between brain age delta and change in brain features. Note that eICV
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was identical across timepoints as a result of being estimated through the longitudinal FreeSurfer

pipeline. We could not obtain the required information on genetics and birth weight to replicate the

analyses supporting the early-life account.
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Data availability

The raw data were gathered from the UK Biobank, the Lifebrain cohort, and the AIBL. Raw data

requests are specific to each cohort. UK Biobank and AIBL data are available upon application to UK

Biobank and at https://aibl.csiro.au upon corresponding approvals. For the Lifebrain cohorts,

requests for raw MRI data should be submitted to the corresponding principal investigator. See

contact details in Supplementary Table 5. Note that MRI data availability for some individuals may be

restricted as participants did not consent to share publicly their data. Different restrictions and

sample agreements might be required.
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Code availability

Statistical analyses in this manuscript will be available at

https://github.com/LCBC-UiO/VidalPineiro_BrainAge. All analyses were performed in R 3.6.3. The

scripts were run on the Colossus processing cluster, University of Oslo. UK Biobanks’ data acquisition,

MRI preprocessing, and feature generation pipelines are freely available

(https://www.fmrib.ox.ac.uk/ukbiobank). For the Lifebrain cohorts, the image acquisition details are

summarized in Supplementary Table 6. MRI preprocessing and feature generation scripts were

performed with the freely available FreeSurfer software (https://surfer.nmr.mgh.harvard.edu/). For

bash-sourcing scripts, please contact the corresponding author.
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