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We present a novel projection-based model reduction framework for parametric linear time-invariant systems
that allows interpolating the transfer function at a given frequency point along parameter-dependent curves
as opposed to the standard approach where transfer function interpolation is achieved for a discrete set of
parameter and frequency samples. We accomplish this goal by using parameter-dependent projection spaces.
Our main result shows that for holomorphic system matrices, the corresponding interpolatory projection spaces
are also holomorphic. The coefficients of the power series representation of the projection spaces can be
computed iteratively using standard methods. We illustrate the analysis on three numerical examples.
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1 Introduction

For a parameter vector p ∈ P ⊆ R
ν
, consider the parametric

dynamical system in the state-space form

Σ(p)∶
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
E(p)ẋ(t; p) = A(p)x(t; p) +B(p)u(t),

y(t; p) = C(p)x(t; p),
x(0; p) = 0,

(1)

with matrix functions E,A∶P → R
N×N

, B∶P → R
N×m

,

and C∶P → R
ℓ×N

. We assume that E(p) is nonsingular for
every p ∈ P. In (1), we refer to x, u, and y as the states, in-
puts, and outputs, respectively. The parametric dynamical
systems of the form (1) arise in many applications rang-
ing from inverse problems to optimal control to uncertainty
quantification and the parameter vector p enters the model
in various ways, representing, for example, material prop-
erties, system geometry, and operating conditions; see, e.g.,
[7,13,20] and the references therein. Our standing assump-
tion is that N is large and hence simulating (1) for a given

input u and a given parameter p is expensive. Therefore,
as required in many prominent applications, the need to
repeat these simulations/computations for many parame-
ter values and input selections leads to a big computational
burden. This is what parametric model reduction (PMOR)
aims to resolve. The goal of PMOR is to replace the full-
order model (FOM) (1) by a reduced-order model (ROM) of
the form

Σ̂(p)∶
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Ê(p) ˙̂x(t; p) = Â(p)x̂(t; p) + B̂(p)u(t),

ŷ(t; p) = Ĉ(p)x̂(t; p),
x̂(0; p) = 0,

(2)

with Ê, Â∶P → R
n×n

, B̂∶P → R
n×m

, Ĉ∶P → R
n×ℓ

, and
n ≪ N such that the output ŷ(t; p) of the ROM approxi-
mates the output y(t; p) of the FOM with high fidelity over
a wide range of parameters and input selection. More pre-
cisely, we want the approximation error ∥y− ŷ∥ to be small
for any u ∈ L2(0,∞,R

m) and any parameter p ∈ P.
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1.1 Projection-based PMOR

There are plethora of methods to construct the ROM Σ̂(p),
we refer the reader to [2, 6, 7, 13, 20] for details. Common
to most of these approaches is that they can be realized via
a Petrov-Galerkin framework: Construct two MOR bases
V,W ∈ R

N×n
such that x(t, p) ≈ V x̂(t, p). Then, substitute

this approximation into (1) and enforce a Petrov-Galerkin
condition on the residual to obtain the reduced-order ma-
trices as

Ê(p) ∶= W
⊤
E(p)V, Â(p) ∶= W

⊤
A(p)V,

B̂(p) ∶= W
⊤
B(p), Ĉ(p) ∶= C(p)V. (3)

The task of model reduction is thus essentially equivalent
to determining n-dimensional subspaces V ∶= span(V ) and

W ∶= span(W ) of R
N

such that the ROM (2) obtained
via projection onto these spaces is a good approximation
of (1). Even though it is not the focus of this paper, we note
that there are data-driven approaches to PMOR in which
Σ̂(p) is constructed without access to the FOM dynamics
in (1) and with only access to input-output data; see, e.g.,
[3, 9, 11, 12, 15], and the references therein.
For the linear parametric dynamical systems (1) and (2)

we consider here, the concept of transfer function provides
a natural framework to analyze the MOR problem. Let
Y (s, p) and U(s, p) denote Laplace transforms of y(t, p)
and u(t, p). Then, by taking the Laplace transform of (1),
we obtain

Y (s, p) = H(s; p)U(s, p)
where

H(s; p) ∶= C(p) (sA(p) − A(p))−1 B(p) (4)

is the transfer function of Σ(p). Similarly, transfer function
of the ROM Σ̂(p) is given by

Ĥ(s; p) ∶= Ĉ(p) (sÊ(p) − Â(p))−1 B̂(p). (5)

In this paper, we will focus on interpolatory approaches to
construct Ĥ(s; p). Interpolatory MOR is one of the most
commonly employed frameworks toMOR and yield (locally)
optimal approximations in the H2-norm. We skip those
details here and refer the reader to [2]. The interpola-
tory framework we develop here deviates from the usual
approach in the literature as we explain next.

1.2 Interpolation problem to construct Σ̂(p)
The common approach to interpolatory PMOR chooses V

and W so that Ĥ(s, p) interpolates H(s, p) at some se-

lected right frequency samples {λi}Ns

i=1, left frequency sam-

ples {µi}Ns

i=1, parameter samples {πj}Np

j=1 along the right in-

terpolation (tangent) directions {ri}Ns

i=1 ∈ C
m

and left in-

terpolation (tangent) directions {ℓi}Ns

i=1 ∈ C
ℓ
; i.e.,

H(λi, πj)ri = Ĥ(λi, πj)ri and ℓ
⊤

i H(µi, πj) = ℓ
⊤

i Ĥ(µi, πj)
for i = 1, 2, . . . , Ns and j = 1, 2, . . . , Np. One can also en-
force interpolating the derivatives of H with respect to s

and p, and the discussion here directly extends. However,
for brevity, we only focus on simple interpolation in this pa-
per. We show in Theorem 2.1 how to construct V and W to
satisfy the interpolation conditions listed above. These are
discretized interpolation conditions in the sense that they
hold over a discrete set of sampling points.
In this paper, we consider a more general problem of in-

terpolating H(s, p) along parameter-dependent curves in the
frequency domain. More precisely, we are interested in solv-
ing the following problem.

Problem 1.1 Consider the dynamical system (1) with trans-
fer function H(s; p). For given functions λ∶P → C, µ∶P →

C, r∶P → C
m
, and ℓ∶P → C

ℓ
, construct a ROM with trans-

fer function Ĥ(s; p) that tangentially interpolates H at λ

along the right tangent directions r and at µ along the right
tangent directions ℓ for all parameters, i.e., Ĥ(s; p) satisfies

H(λ(p); p)r(p) = Ĥ(λ(p); p)r(p), and (6a)

ℓ(p)⊤H(λ(p); p) = ℓ(p)⊤Ĥ(λ(p); p), for all p ∈ P. (6b)

In general, we cannot expect to find constant matrices
V,W ∈ R

N×n
with small n such that (6) is satisfied for all

parameters p ∈ P. Instead, motivated by the lower-bound
for the Kolmogorov n-widths [23, Thm. 3], we propose to
construct parameter dependent model reduction bases V(p)
and W(p), exemplified by the matrix functions

V,W ∶P → R
N×n

.

Our analysis is inspired by the ideas presented in [24], which
studied the balanced truncation method for parametric sys-
tem.
Once the parameter dependent bases are chosen, the ROM

is constructed via projection onto the spaces given by V(p) ∶=
span(V (p)) and W(p) ∶= span(W (p)), i.e.,
Ê(p) ∶= W (p)⊤E(p)V (p), Â(p) ∶= W (p)⊤A(p)V (p),
B̂(p) ∶= W (p)⊤B(p), Ĉ(p) ∶= C(p)V (p).

(7)

Remark 1.1 Time- and state-dependent projection matri-
ces are currently heavily investigated in the efficient approx-
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imation of transport-dominated phenomena, where a non-
linear projection framework is used to overcome slowly de-
caying Kolmogorov n-widths, see, e.g., [8, 18, 21] and the
references therein.

After this introduction, we recall some preliminary re-
sults in Section 2. Our main contribution is presented in
Section 3 with additional computational details presented
in Section 4.

Notation Besides standard notation, we use multi-indices,
i.e., for j = (j1, . . . , jν) ∈ N

ν
0 and p = (p1, . . . , pν) we write

p
j
∶=

ν

∏
i=1

p
ji
i .

2 Preliminaries

2.1 Interpolation conditions

Interpolatory model reduction [2] constructs reduced-order
models whose transfer function interpolates the transfer
function of the original model at selected interpolation points.
For a fixed parameter π ∈ P, interpolation via projection
can be guaranteed as follows [2, 4].

Theorem 2.1 (Tangential interpolation) For a fixed pa-
rameter π ∈ P consider the FOM (1) with transfer function

H(s;π) and the ROM (2) with transfer function Ĥ(s;π)
constructed as in (3) using W,V ∈ R

n×r
. For interpola-

tion points λ0, µ0 ∈ C, assume that λ0E(π) − A(π) and
µ0E(π)−A(π) are nonsingular. Let r0 ∈ R

m
and ℓ0 ∈ R

m
.

1. If (λ0E(π) −A(π))−1B(π)r0 ∈ span(V ), then
H(λ0;π)r0 = Ĥ(λ0;π)r0.

2. If (ℓ⊤0 C(π)(µ0E(π) − A(π))−1)⊤ ∈ span(W ), then

ℓ
⊤

0 H(µ0;π) = ℓ
⊤

0 Ĥ(µ0;π).
It is easy to see (cf. [10]) that matrices satisfying the

conditions in Theorem 2.1 for driving frequencies λi, µi and
tangent directions ri, ℓi (i = 1, . . . , n) can be constructed
by solving the two Sylvester equations

A(π)V −E(π)V Λ +B(π)R = 0, (8a)

W
⊤
A(π) −M

⊤
W

⊤
E(π) + L

⊤
C(π) = 0, (8b)

for the unknowns V and W where

Λ ∶= diag(λ1, . . . , λn) M ∶= diag(µ1, . . . , µn), (9a)

R ∶= [r1 . . . rn] , L ∶= [ℓ1 . . . ℓn] . (9b)

If the driving frequencies and tangent directions are closed
under complex conjugation, then one can use real versions

of the matrices in (9). For fixed π ∈ P, the condition guar-
anteeing the existence and uniqueness of solutions to (8) is
well-known, see, e.g., [1, Cha. 6].

Lemma 2.1 For π ∈ P, the Sylvester equations (8) have a
unique solution if and only if λi, µi /∈ σ(E(π), A(π)), where

σ(E(π), A(π)) ∶= {s ∈ C ∣ rank(sE(π) −A(π)) < N}.
is the spectrum of the matrix pencil sE(π) −A(π).
2.2 Holomorphic functions

Our analysis requires that the matrix functions in (1) can
be expanded in a power series. If the parameter domain
is one-dimensional, this is then equivalent to the matrix
functions being holomorphic (resp. analytic). Since we do
not intend to restrict our analysis to a single parameter, we
recall the appropriate definitions and results for functions
of several parameters. For our presentation we follow [16]
and [24].
A function f ∶C

ν
⊇ P → C is called holomorphic in p =[pj] ∈ P if the complex derivative

f
′(p) = lim

h→0

f(p + hq) − f(p)
h

exists for any q ∈ C
ν
. It is said to be holomorphic in P,

if it is holomorphic in every p ∈ P. Many of the results
for the one-dimensional case extend to a higher dimensional
domain, such as the Cauchy integral formula. In particular,
if f is holomorphic, it can locally be represented via a power
series. For the analysis of its domain of convergence, we
need the following definition, taken from [16].

Definition 2.2 (Reinhardt domain) An open set Ω ⊆

C
ν
is called Reinhardt domain, if p = (p1, . . . , pν) ∈ Ω im-

plies (exp(ıθ1)p1, . . . , exp(ıθν)pν) ∈ Ω for all (θ1, . . . , θν) ∈
R

ν
, where ı denotes the imaginary unit.

Theorem 2.3 Let P ⊆ C
ν
be a connected Reinhardt do-

main containing 0 and suppose that f ∶P → C is holomor-
phic in P. Then there exist unique fi ∈ C for i ∈ N

ν
0 such

that
f(p) = ∑

i∈Nν
0

fip
i

for each p ∈ P. (10)

Note that for simplicity, we have presented Theorem 2.3
solely for the expansion point p̄ = 0. For practical appli-
cations, we may want to use a different expansion point or
rescale the parameter domain and the system matrices such
that 0 is included in P.
A question that arises immediately is whether there is an

holomorphic version of the implicit mapping theorem avail-
able. This is indeed the case. For our analysis, we use the
following extension of the implicit mapping theorem [24].
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Proposition 2.1 Consider a function F ∶C
ν
× C

n1×n2
→

C
n1×n2 and suppose there exists p0 ∈ C

P
and X0 ∈ C

n1×n2

such that F(p0, X0) = 0 and F is holomorphic around this
point. If

0 =
∂

∂h
F(p0, X0 + hD)∣

h=0

implies D = 0, then there exists an neighborhood P ⊂ C
ν

around p0 and a holomorphic function X∶P → C
n1×n2 such

that
F(p,X(p)) = 0

for all p ∈ P.

3 Rational interpolation along

parameter-dependent curves

In this section, we establish the main result that guarantees
existence of holomorphic functions V (p) and W (p) such
that the reduced model in (7) solves the new interpolation
problem defined in Problem 1.1.

Theorem 3.1 Consider the dynamical system (1) and as-
sume that E,A,B,C are holomorphic in the compact set
P ⊆ C

ν
. Assume that for i = 1, . . . , n the holomorphic func-

tions λi, µi∶P → C are such that

λi(p), µi(p) /∈ σ(E(p), A(p))
for all p ∈ P. If the tangent directions ri∶P → C

m
and

ℓi∶P → C
ℓ
are holomorphic, then there exists holomorphic

functions V,W ∶P → C
N×n

satisfying

A(p)V (p) −E(p)V (p)Λ(p) +B(p)R(p) = 0, (11)

W
⊤(p)A(p) −M

⊤(p)W⊤(p)E(p) + L
⊤(p)C(p) = 0 (12)

for all p ∈ P, where Λ(p), M(p), R(p), L(p) are defined as
in (9), but now with parametric dependence.

Proof: We show the assertion only for V . The proof for
W follows similarly. Define the holomorphic function

F ∶P × C
N×n

→ C
N×n

,

(p, V ) ↦ A(p)V −E(p)V Λ(p) +B(p)R(p).
Let p0 ∈ P. Then, using Lemma 2.1, there exists V0 ∈ C

N×n

satisfying the condition F(p0, V0) = 0. In addition, for any

Ṽ ∈ C
N×n

we obtain

∂

∂ε
F(p, V0 + εṼ ) = A(p)Ṽ − E(p)Ṽ Λ(p).

From Lemma 2.1 we conclude that ∂

∂ε
F(p, V0 + εṼ ) = 0 if

and only if Ṽ = 0. Thus, Proposition 2.1 implies that there

exists a neighborhood P ⊆ C
ν
around p0 and a holomorphic

function V ∶P ∩ P → C
N×n

satisfying F(p, V (p)) = 0. Let
P denote the maximal neighborhood such that the previ-
ous construction holds. It remains to show that P ∩ P = P.
Assume P∩P ≠ P and let π ∈ P\P . Repeating the construc-
tion, we obtain a neighborhood P̃ ⊆ C

ν
and holomorphic

function Ṽ ∶ P̃ ∩ P → C
N×n

satisfying F(p, Ṽ (p)) = 0. As-
sume first P ∩ P̃ ≠ ∅. Then there exists π̃ ∈ P ∩ P̃ . Due to
Lemma 2.1 and the assumptions we conclude V (π̃) = Ṽ (π̃).
From the holomorphic identity theorem [17, Thm. 1.2.14]
we infer V = Ṽ , a contradiction. If, on the other hand,
P ∩ P̃ = ∅, we can select further points in P until we ob-
tain an open covering of P. Since P is compact, we can
choose a finite covering and proceed as before. We con-
clude P ∩ P = P.

Corollary 3.2 Suppose that the assumptions enforced in
Theorem 3.1 are satisfied and construct a ROM as in (7).
Then the ROM satisfies the interpolation conditions (6) for
all p ∈ P, thus solving Problem 1.1.

Remark 3.3 Using [22, Prop. 3.24], Theorem 3.1 can be
extended to structured systems with a transfer function of

the form H(s; p) = C(p)(∑K

k=1 hk(s; p)Ak(p))−1B(p), which
includes, for instance, delay equations, fractional systems,
and viscoelastic dynamics.

4 Computational details

Even though we have established the theoretical framework
for constructing V (p) and W (p) to solve the new paramet-
ric interpolation problem, for a numerically efficient PMOR

framework we need to consider the computational aspects
in solving (11) and (12), and performing the projection (7).
For the brevity of presentation we restrict ourselves in

this section to standard state-space systems with E(p) ≡

IN . For a parameter-dependent E matrix, the construction
is similar, but the formulas are more involved.

4.1 Numerical construction of V (p) and W (p)
Assuming that holomorphic matrix functions, Theorem 2.3
ensures that we can decompose these matrices as

A(p) = ∑
i∈Nν

0

p
i
Ai, Λ(p) = ∑

i∈Nν
0

p
i
Λi, V (p) = ∑

i∈Nν
0

p
i
Vi

B(p) = ∑
i∈Nν

0

p
i
Bi, and R(p) = ∑

i∈Nν
0

p
i
Ri.

In many practical applications, the system matrices are
directly available in such a form with a finite number of
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terms. Then the Sylvester equation (11) becomes

0 = ∑
j∈Nν

0

∑
i∈Nν

0

(AiVj − VjΛi +BiRj)pi+j
= ∑

ρ∈Nν
0

∑
i+j=ρ

i,j∈N
ν
0

(AiVj − VjΛi +BiRj)pρ.
Using the holomorphic identity theorem [17, Thm. 1.2.14],
we conclude that for ρ ∈ N

ν
0 we have

0 = ∑
i+j=ρ

i,j∈N
ν
0

(AiVj − VjΛi +BiRj)
= A0Vρ − VρΛ0 + ∑

i+j=ρ
j≠ρ

AiVj − VjΛi + ∑
i+j=ρ

BiRj ,
(13)

which provides an iterative method to solve for the coeffi-
cients Vi. A similar strategy can be obtained for the coeffi-
cients for W , which we omit here to avoid redundancy.

Corollary 4.1 Under the assumptions of Theorem 3.1 the
Sylvester equation (13) is uniquely solvable for each ρ ∈ N

ν
0 .

Proof: This follows immediately from A0 = A(0),
Λ0 = Λ(0), and Lemma 2.1.

Note that if the coefficients of A, Λ, B, and R are real
(i.e., the interpolation frequencies and tangent directions
are closed under conjugation), then the Vj are real thus
yielding a real-valued matrix V (p) for each real parameter
p ∈ P.
In numerical computations, we cannot compute all the

coefficients Vi and thus have to truncate the power-series
expansion at an index based on a tolerance. In other words,
for a given tolerance τ , we truncate the power series expan-

sion when maxp∈P ∣pi∣∥Vi∥ ≤ τ , and similarly for W (p).
As a consequence, we cannot ensure exact interpolation
any longer. A similar issue arises in the usual interpola-
tory model reduction framework when the required sub-
space vectors in Theorem 2.1, namely

(λ0E(π)−A(π))−1B(π)r0, and (ℓ⊤0C(π)(µ0E(π) −A(π))−1)⊤,
are computed via iterative solves; see, e.g., [5]. We revisit
this issue in Section 6.

4.2 Constructing the reduced matrices

For simplicity, we only focus on Â(p) in (7); but the discus-
sion extends directly to other reduced order quantities.
We will work with the truncated quantities, i.e.,

A(p) = ∑
∥k∥≤ρa

p
k
Ak,

W (p) = ∑
∥j∥≤ρw

p
i
Wi, V (p) = ∑

∥i∥≤ρv

p
i
Vi.

(14)

For every new parameter vector π ∈ P, forming V (π) (and
W (π)) can be efficiently done using the truncated form as

in (14). However constructing Â(π) requires computing

Â(π) = W (π)⊤A(π)V (π), which involves two matrix mul-
tiplications in the original dimension N . We resolve this
issue using the truncated forms (14):

Â(π) = ∑
∥j∥≤ρw

∑
∥k∥≤ρa

∑
∥i∥≤ρv

(W⊤

j AkVi)πi+j+k
. (15)

Note that the reduced coefficientsW
⊤

j AkVi ∈ R
n
in (15) can

be precomputed (in the offline stage). Assuming ρa, ρv and

ρw are modest integers, storing all the coefficients W
⊤

j AkVi

and then forming the overall sum can be efficiently com-
puted in the online stage.

5 Numerical examples

We illustrate the theoretical analysis on three models.

5.1 A toy example

Consider a simple example for which the dimension of the
parameter set is ν = 1 (and the parameter enters only in
the vector B). The matrices are as follows

A(p) ≡ −diag(1, 1, 2), C(p) ≡ [2 1 1] ,
B(p) = [p 1 − p 1]⊤ , E(p) ≡ I3.

(16)

Hence, it follows that

A0 = −diag(1, 1, 2), C1 = [1 1 2] , Ai, Ci = 0 ∀i ≥ 1

B0 = [0 1 1]⊤ , B1 = [1 −1 1]⊤ , Bi = 0 ∀i ≥ 2.

Originally, note that N = 3 and that we choose n = 2 as the
reduction order. Choose interpolation points and tangent
directions that are independent of the parameter, e.g.,

λ1 = 1, λ2 = 3, µ1 = 2, µ2 = 4, (17)

and also r = ℓ = [1; 1]. Choose the following:

Λ0 = [1 0
0 3

] , M0 = [2 0
0 4

] , Λi = 0, Mi = 0 ∀i ≥ 1

R0 = L
⊤

0 = [1 1] , Ri = L
⊤

i = 0,∀i ≥ 1.

For ρ = 0, it follows that the equation (13) simplifies to
A0V0 − V0Λ0 +B0R0 = 0. Similarly, based also on (13), V1

satisfies the following Sylvester equation

A0V1 − V1Λ0 + A1V0 − V0Λ1 + B1R0 +B0R1 = 0, (18)
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which simplifies to A0V1−V1Λ0+B1R0 = 0. Hence, explic-
itly compute the first two Taylor coefficients

V0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

1

2

1

4

1

3

1

5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, V1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

2

1

4

−
1

2
−

1

4

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (19)

and Vi = 0,∀i ≥ 2. Next, compute matrix W
⊤

= W
⊤

0 ∈

C
2×3

by solving W
T
0 A0 −M0W

T
0 + L0C0 = 0, as

W
⊤
= [ 2

3

1

3

1

4

2

5

1

5

1

6

] , (20)

and put together the following reduced realization that does
indeed depend on the parameter p as follows

Ê
(1)(p) = W

⊤
EV (p) = [ p

6
+

1

4

p

12
+

2

15

p

10
+

7

45

p

20
+

1

12

] ,
Â

(1)(p) = W
⊤
A(p)V (p) = [ −

p

6
−

1

3
−

p

12
−

11

60

−
p

10
−

19

90
−

p

20
−

7

60

] ,
B̂

(1)(p) = W
⊤
B(p) = [ p

3
+

7

12

p

5
+

11

30

] , (21)

Ĉ
(1)(p) = C(p)V (p) = [ p

2
+

5

6

p

4
+

9

20
] .

We note that the system in (21) interpolates the original
one in (16) at the selected frequencies for every value of
the parameter p. We also note that the system in (21) is
equivalent to a minimal realization of (16) for p ∈ {0, 1}.
5.2 Another toy example

Consider the following example:

A(p) = ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−2 p 0
−p −1 0
0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , C(p) = [1 0 1] ,
B(p) = [1 0 1]⊤ , E(p) = I3.

(22)

Hence, it follows that:

A0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−2 0 0
0 −1 0
0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , A1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 0
−1 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
and Ai = 0 for all i ≥ 2. Then, we have also that

B
⊤

0 = C0 = [1 0 1] , and B
⊤

i = Ci = 0,∀i ≥ 1.

For this case, consider two right interpolation points as:

Λ(p) = [0.1 0
0 5

] = Λ0, and Λi = 0, ∀i ≥ 1.

Note that in this case we use W
⊤(p) = V

⊤(p). The right
directions are all ones and the Sylvester equations in (13)
simplify to the following collection:

A0V0 − V0Λ0 +B0R0 = 0,

A0Vi − ViΛ0 +A1Vi−1 = 0, ∀i ≥ 1.
(23)

Hence, one can iteratively compute Vi for any positive value
of i. We do that for all values of i until ∥Vi∥ < τ , for a
tolerance value of τ = 10

−5
. This corresponds to a number

of 26 Taylor coefficients that need to be computed. Finally,
as described in Section 4.2, we put together the reduced-
order matrices and evaluate the approximation errors for a
2D grid consisting in values p ∈ [0, 1], and s ∈ [10−2, 101].
The results are presented in Figure 1.

10-2 10-1 100 101
0

0.2

0.4

0.6

0.8

1

10-6

10-4

10-2

Figure 1: Approximation errors on a 2D grid (s, p).
5.3 A more involved numerical example

We analyze the dynamical system originally proposed in [19]
and later modified in [9,15] to add a parameter dependence.
The dynamics are characterized by the following equations:

Σ(p)∶
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ(t; p) = A(p)x(t; p) +B(p)u(t),
y(t; p) = C(p)x(t; p),
x(0; p) = 0

(24)

where p ∈ P = [0, 1] and A∶P → R
1006×1006

A(p) = diag (T1(p), T2, T3, T4) , with

T1(p) = [ −1 p + 100
−100− p −1

] , T2 = [ −1 200
−200 −1

] ,
T3 = [ −1 400

−400 −1
] , T4 = −diag (1, 2, . . . , 1000) .

Additionally, the constant vectors B and C are given by

B = C
T
= [10e6; e1000],

where ek denotes the k-dimensional vector of ones.
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Next, we choose 40 logarithmically-spaced interpolation
points λ1, . . . , λ40 in the interval [10−1, 103]ı (we are us-
ing a one-sided interpolation scheme). Additionally, let

the tolerance value be τ = 10
−7
. It follows that we need

to compute the first 11 Taylor coefficients of V (p), i.e.,
V1, V2, . . . , V10, since V11 < τ . As in the previous exam-
ple, use W (p) = V⊤(p) as left projection matrix, and fol-
low the formulas presented in Section 4.2, to compute the
corresponding reduced-order matrices.
First we fix the frequency parameter as s = λ20 = 8.8862ı

and vary p in between 0 and 1 (50 linearly-spaced points).
We depict the approximation errors for different values of
p in Figure 2. We note that the interpolation errors due to
the truncation of the power series are small, in the interval(10−9, 10−6), in accordance with the tolerance τ = 10

−7
.

0 0.2 0.4 0.6 0.8 1

10-8

10-7

Figure 2: Approximation errors for s = λ20 and varying p

in [0, 1].
For the next experiment, we fix the p parameter, i.e.,

choose p = 0.5 and vary the frequency parameter s in the in-
terval [10−1, 103]ı (200 logarithmically-spaced points). We
depict the magnitudes of the two transfer functions (original
and reduced) evaluated for different values of s in Figure 3,
illustrating that FOM response is indeed well matched.

10-1 100 101 102 103
100

101

102

Original
Reduced

Figure 3: The two transfer functions for p = 0.5 and s in[10−1, 103]ı.
Finally, we construct a 2D grid consisting in pairs of pa-

rameters (s, p) evaluated on the Cartesian product of the
two previously-mentioned discrete sets. Then, for all the
200× 50 = 10

4
pairs, we compute the approximation error.

The results are presented in Figure 4.

10-1 100 101 102 103
0

0.2

0.4

0.6

0.8

1

10-7

10-6

10-5

10-4

Figure 4: Approximation errors on a 2D grid (s, p).

6 Conclusions and future work

We have presented a theoretical framework that allows to
construct a ROM whose transfer function interpolates the
transfer function of the original high-dimensional system at
parameter-dependent interpolation frequencies along some
parameter-dependent directions. The associated paramet-
ric projection spaces are proven to have a holomorphic de-
pendency on the parameter and the coefficients of its power
series can be computed iteratively using standard methods.
There are many natural avenues to investigate further.

For example, interpolation of the higher-order derivatives
is a natural next step. In this paper, we did not consider
an optimality measure for choosing the projection spaces.
One might consider combining our framework with the re-
cent work on optimal parametric model reduction in a joint
H2 ⊗ L2 measure [14]. Even though we have considered
here the projection-based approaches, data-driven methods
have been also considered for parametric systems [15]. In-
terpreting our reduced model in that framework could pro-
vide further hints for data-driven modeling.
As we stated in Section 4.1, when the power series expan-

sions are truncated, we can no longer guarantee exact inter-
polation. We will investigate in a future work how the per-
turbation results from interpolatory model reduction with
inexact solves [5] can be used to quantify the interpolation
error due to the truncation.
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