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Attempts at constraining theories of late time accelerated expansion often assume broad priors for the
parameters in their phenomenological description. Focusing on shift-symmetric scalar-tensor theories with
standard gravitational wave speed, we show how a more careful analysis of their dynamical evolution leads
to much narrower priors. In doing so, we propose a simple and accurate parametrization of these theories,
capturing the redshift dependence of the equation of state, wðzÞ, and the kinetic braiding parameter, αBðzÞ,
with only two parameters each, and derive their statistical distribution (also known as theoretical priors) that
fit the cosmology of the underlying model. We have considered two versions of the shift-symmetric model,
one where the energy density of dark energy is given solely by the scalar field and another where it also has
a contribution from the cosmological constant. By including current data, we show how theoretical priors
can be used to improve constraints by up to an order of magnitude. Moreover, we show that shift-symmetric
theories without a cosmological constant are observationally viable. We work up to quartic order in first
derivatives of the scalar in the action, and our results suggest this truncation is a good approximation to
more general shift-symmetric theories. This work establishes an actionable link between phenomenological
parametrizations and Lagrangian-based theories, the two main approaches to test cosmological gravity and
cosmic acceleration.
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I. INTRODUCTION

There is some hope that the evidence of accelerated
expansion [1–6] is an indication that new physics is at play
on cosmological scales. Thus, by characterizing the evo-
lution of the Universe in detail [7–11], it should be possible
to measure and constrain physical parameters that capture
this novel behavior. Typically, the new physics associated
with these parameters involves new fields, a notable

example of which is the scalar field, ϕ. Indeed, shortly
after the accelerated expansion was discovered, quintes-
sence—a scalar field whose dynamics is dominated by
its potential energy—was proposed [12–15] (see also
Refs. [16,17] for reviews). The impact of the scalar field
can be neatly encapsulated in terms of one free function, its
equation of state, wðaÞ, given by

wðaÞ≡ Pϕ

ρϕ
; ð1Þ

where a is the scale factor and Pϕ (ρϕ) are the pressure
(energy density) of the scalar field.
Quintessence is part of a much larger class of theories—

scalar-tensor gravity (see Refs. [18–21] for a review on
scalar-tensor theories of gravity)—which involves a host of
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possible couplings of the scalar field, both with itself and
the metric. The Horndeski family of models [22–24], which
leads to second-order equations of motion, can be further
generalized to what seems like an infinite tower of possible
theories [25,26]. In principle, it should be possible to
constrain such theories with observations, pinning down
the fundamental parameters that enter the action. However,
given the generality of the construction, the prospects are
daunting.
As shown in Refs. [27,28], it is possible to completely

characterize a broad class of scalar-tensor models on
cosmological scales in terms of a handful of time dependent
functions, αXðaÞ (as well as wðaÞ). In the case of Horndeski
gravity, X ∈ fM;K;B; Tg are each associated with a
particular physical feature of the underlying action [27].
A particular Horndeski model can be associated with a
choice of w and αX. In this way, the exercise of constraining
scalar-tensor gravity reduces to finding constraints on these
free functions. There have been a number of attempts at
constraining these functions, but current uncertainties are at
around the 10% to 50% level [29–40] (see also related
forecasts [41,42]).
The typical approach for models that use phenomeno-

logical functions such as wðaÞ and the αXðaÞ is to assume a
parametric form for their evolution and constrain its
parameters. The favored model for w is the Chevallier-
Polarski-Linder parametrization, expansion in terms of the
scale factor with coefficients w0 and wa [43,44]. There exist
a number of well-motivated parametrizations of αXðaÞ that
assume these functions scale in some way with the frac-
tional density parameter of dark energy (DE), ΩDE, or the
scale factor, a (see, e.g., Refs. [27,29,33,42,45–49]).
However, what is often overlooked by making such a
choice is that there are underlying physical models which
may limit the ranges (and behaviors) of these functions.
One way of putting this is that the underlying physical
model will impose quite strict physical priors on these
functions and these should be taken into account when
undertaking parameter constraints with cosmological data.
This situation is entirely analogous to what happens when
constraining inflationary models. While it is the norm to
find constraint on the spectral index, n, and the tensor to
scalar ratio, r, each class of inflationary models singles out
very specific (often one-dimensional) loci in the (n,r) plane
[50–54].
There have been a number of studies where the evolution

of the DE equation of state has been reconstructed non-
parametricaly (in redshift bins) using data [55–59] as well
as ones where the impact of theoretical priors on the
parameters of quintessence and more general scalar-tensor
theories was considered and used to introduce correlations
and minimize the number of these parameters [60–64].
Using a different and complementary approach, we have
tackled this problem of physical priors in the case of
thawing quintessence where, remarkably, we could

construct an analytic prior for wðaÞ [65]. By parametrizing
it as

w ¼ w0 þ wað1 − aÞ; ð2Þ

we found that if fw0; wagwere chosen to fit the observables,
those could be reproduced with the accuracy required by
next-generation surveys up to recombination. Furthermore,
the prior, P, was factorizable, P½w0; wa� ¼ P½wajw0�P½w0�,
and the shape of P was such that it was not collinear with
current constraints on fw0; wag and thus, if incorporated,
could reduce the uncertainties in w by up to an order of
magnitude.
Emboldened by what we have found in the case of

thawing quintessence, we now wish to generalize this
approach to more general scalar-tensor theories. From
the outset, it is a somewhat challenging task to construct
a multidimensional probability distribution function for w
and αX. We have therefore established a more modest goal
and focused on a subclass of theories that are shift
symmetric, i.e., theories which are invariant under a scalar
field transformation of the form

ϕ → ϕþ C; ð3Þ

where C is a constant. Such theories are, in a sense we will
make more precise below, well defined and natural. In this
case, the theory is completely determined by wðaÞ, αBðaÞ,
and αKðaÞ; however, it is well known that αKðaÞ is
unconstrained by observations [29], so we are seeking a
prior distribution function for wðaÞ and αBðaÞ. As we will
see, exploring this restricted set of scalar tensor models
already sheds light on the hurdles we need to tackle in the
general case. Note that, motivated by recent observations
[66–68] and associated theoretical bounds [69–72], in the
above, we have implicitly required that the speed of
gravitational waves is luminal.
In Sec. II, we outline the theoretical aspects of and

motivation for the shift-symmetric Horndeski model that
we focus on here. In Sec. III, we justify the choice of
physical priors we impose on the theory. In Sec. IV, we
describe the approximation schemewe use here and explain
how we evaluated the required accuracy. Further, in Sec. V,
we present the constructed prior functions on w and αB. In
Sec. VI, we combine these priors with a set of cosmological
data. Finally, in Sec. VII, we discuss our findings.

II. SHIFT-SYMMETRIC SCALAR-TENSOR
GRAVITY

Consider as a starting point the Horndeski action [22–24],

S½gμν;ϕ�¼
Z

d4x
ffiffiffiffiffiffi
−g

p �X5
i¼2

1

8πGN
Li½gμν;ϕ�þLm½gμν;ψM�

�
;

ð4Þ
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where Lm captures the matter Lagrangian, with all matter
fieldsψM minimally coupled to gμν (in other words, we are in
the Jordan frame), and where

L2 ¼ G2ðϕ; XÞ; ð5Þ

L3 ¼ −G3ðϕ; XÞ□ϕ; ð6Þ

L4 ¼ G4ðϕ; XÞRþ G4Xðϕ; XÞ½ð□ϕÞ2 − ϕ;μνϕ
;μν�; ð7Þ

L5 ¼ G5ðϕ; XÞGμνϕ
;μν −

1

6
G5Xðϕ; XÞ½ð□ϕÞ3

þ 2ϕ;μ
νϕ;ν

αϕ;α
μ − 3ϕ;μνϕ

;μν□ϕ�: ð8Þ

Here, X ≡ − 1
2
∇μϕ∇μϕ; covariant derivatives on ϕ are

denoted by indices, so, e.g., ϕ;μ
ν ≡∇μ∇νϕ; and similarly

we use a shorthand for partial derivatives with respect to X,
e.g., G4X ¼ ∂G4=∂X. The Horndeski action describes the
most general Lorentz invariant, local action in four dimen-
sions, featuring a scalar field on top of the metric and having
at most second-order equations of motion on any back-
ground. Even if the final aim, beyond the scope of this paper,
is to investigate the impact of physical priors for this action in
full generality, in this paper, we focus on a simpler scenario:
shift-symmetricHorndeski theories. This subset of theories is
also known as “weakly broken Galileons” [73], since the
shift symmetry ensures that radiative corrections are para-
metrically suppressed around (quasi-)de Sitter backgrounds,
reminiscent of nonrenormalization theorems for Galileons
[74,75].1 By focusing on this subset of solutions, we are
therefore already implicitly ensuring that a theoretical prior
requiring the radiative stability of the theory is satisfied.2

As we are ultimately interested in investigating concrete
cosmological observables for shift-symmetric Horndeski
theories (and the effect theoretical priors have on them), we
need to choose a concrete parametrization of the (in
principle infinite) freedom inherent in the Gi functions.
As a concrete illustration, we therefore focus on the
following subset of theories,

G2 ¼ c01X þ c02
Λ4
2

X2; G3 ¼ −
1

Λ3
3

�
d01X þ d02

Λ4
2

X2

�
;

G4 ¼
1

2
M2

P; G5 ¼ 0; ð9Þ

belonging to the Kinetic Gravity Braiding (KGB) [77]
class. Here, the reduced Planck mass is M2

P ¼ 1=8πG, and
conventionally Λ4

2 ¼ M2
PH

2
0, Λ3

3 ¼ MPH2
0, ensuring all the

above interactions can give Oð1Þ contributions to the

cosmological background evolution today. The choice
for G4 and G5 is dictated by constraints on the speed of
gravitational waves [66–68,78,79]—see Refs. [69–72] and
references therein for why this implies the above restric-
tions on the Gi, at least as long as the cosmological
Horndeski theory is valid up to energy scales of Λ3

[80]. For G2;3, we keep the first two orders in X, where
the c01 and d01 terms capture the Galileon symmetric
contributions, while the c02 and d02 capture the lowest
order (in X) shift-symmetric corrections to this.3 This will
afford us with a fairly minimal, yet suitably rich test bed in
which to investigate the effect of theoretical priors on shift-
symmetric Horndeski theories. Note that, for simplicity, we
have excluded the (equally shift-symmetric) tadpole term
c10ϕ in our test case, Eq. (9).
The shift-symmetric model has been explored previously

in Refs. [81,82], where the authors put cosmological con-
straints on the parameters of themodel, defined inEq. (9) and
on theparameters of the shift-symmetric generalizationof the
cubic covariant Galileon model, respectively.
We will be considering a homogeneous and isotropic

cosmological Friedmann-Robertson-Walker (FRW) back-
ground solution, ds2 ¼ −dt2 þ a2ðtÞðdxÞ2, populated by
matter, radiation, and the dark energy scalar ϕ. The
Friedmann equations then are

H2 ¼ 1

3M2
P
ρtot; _H ¼ −

1

2M2
P
ðρtot þ ptotÞ; ð10Þ

where H ≡ _a=a as usual, ρtot ¼ ρm þ ρr þ ρϕ, and ptot ¼
pr þ pϕ (subscripts refer to matter, radiation, and dark
energy, respectively). For Eq. (9), ρDE and pDE then satisfy

ρϕ ¼ 1

2

�
c01 þ

3

2

c02
Λ4
2

_ϕ2

�
_ϕ2 −

3

Λ3
3

�
d01 þ

d02
Λ4
2

_ϕ2

�
H _ϕ3;

pϕ ¼ 1

2

�
c01 þ

1

2

c02
Λ4
2

_ϕ2

�
_ϕ2 þ 1

Λ3
3

�
d01 þ

d02
Λ4
2

_ϕ2

�
_ϕ2ϕ̈:

ð11Þ

Note that in the case where we include a cosmological
constant Λ, described in more detail below, the dark energy
density,ρDE, andpressure,PDE,will have a contribution from
Λ in addition to ϕ. However, in both cases, we take
wðaÞ ¼ Pϕ=ρϕ.
The background scalar equation of motion can be written

in terms of a conserved current [27] as

1Although, see Refs. [34,76] for examples of shift-symmetry
breaking theories that maintain this property.

2By this, we mean radiative stability of the Horndeski scalar
interactions considered here. We have nothing new to say about
the old cosmological constant problem.

3If higher-order terms in X=Λ4
2 are suppressed [while terms

such as ð□ϕÞn=Λ3n
3 are not], then this will fully capture the

leading-order terms as well as next-to-leading-order corrections
for a generic G2;3. If higher-order terms are not suppressed and
e.g., all powers of X=Λ4

2 equally contribute to G2;3, this is not the
case. A truncation like Eq. (9) is therefore not generically valid,
but instead, it should be viewed as a specific illustrative example
of a shift-symmetric Horndeski theory.
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_J þ 3HJ ¼ 0; ð12Þ

where

J ¼
�
c01 þ

c02
Λ4
2

_ϕ2

�
_ϕ −

3

Λ3
3

�
d01 þ

d02
Λ4
2

_ϕ2

�
H _ϕ2: ð13Þ

There are a few key points to note about the background
evolution. First of all, we have that Eq. (12) implies that
there is a tracker solution as J ∝ a−3 → 0 as a grows. This
greatly simplifies the dynamics and, as we will reiterate
further down, the priors we need to assume on the various
ingredients of this model. Second, we will consider two
versions of this theory. In the first version, the scalar field is
entirely responsible for the late time acceleration, and thus
there is no explicit cosmological constant, Λ (or a constant
term V0 in the scalar field potential); we will dub this the
Λ ¼ 0 self-accelerating version.4 The Λ ¼ 0 version is, in
some sense, the more interesting as it can be invoked as an
alternative to cosmological constant driven acceleration.
But we also have experience from other theories that self-
accelerating solutions are more tightly constrained and
potentially easier to rule out (for example, in the case of
Dvali-Gabadadze-Porrati gravity [83–86]). This means that
the dark energy density is solely given in terms of the
energy density associated to the scalar field: ΩDE ¼ Ωϕ.
A key aspect of self-accelerating solutions is that they

require “negative kinetic energy” G2 < 0, at least in the
class of theories under consideration [77]. For shift-sym-
metric Horndeski theories up to cubic term (kinetic gravity
braiding), the energy density can be written as [77]

ρϕ ¼ _ϕJ −G2 → −G2; ð14Þ

where the latest limit corresponds to the tracker solution.
BecauseG2 is even in _ϕ, ρϕ > 0 requires that at least one of
c01, c02 be negative [the tracker condition J ¼ 0 on Eq. (13)
might impose further constraints on the relative signs]. We
will find that generically c01 < 0, i.e., the “wrong” sign of
the standard kinetic term, Fig. 1. This means that
Minkowski space with _ϕ ¼ 0 is not a stable solution of
these models nor can we apply the usual battery of
consistency conditions that have been developed in the
standard vacuum (see the discussion in the next section).5

Another interesting feature of the self-accelerating sol-
utions is illustrated in Fig. 2. There, we can see that both
_ϕ2
0=Λ4

2 and ϕ̈0=Λ3
3 are smaller than unity. This is encour-

aging in that it provides a posteriori justification for our
ansatz, Eq. (9): the higher-order terms omitted in Eq. (9)
scale with higher powers of _ϕ2

0=Λ4
2 and ϕ̈0=Λ3

3. So, if these
higher powers are indeed suppressed, then omitting higher-
order terms in the first place is consistent. This is also
related to the above discussion of the sign of c01. If higher-
order terms with coefficients c0i and i > 1 are increasingly
suppressed, then obtaining a positive scalar energy density,
Eq. (14), with positive c01 becomes very challenging. Note,
however, that the suppression illustrated in Fig. 2 is rather
mild and can easily be compensated for by coefficients cij
and dij that are somewhat larger than unity. Figure 1 shows
that this is in fact the case for the lower-order interactions in
our ansatz, Eq. (9), so we emphasize that our findings here
are certainly not conclusive evidence that the higher-order
interactions omitted cannot yield Oð1Þ contributions to the
scalar energy density or the background and perturbative
evolutions in general.

FIG. 1. Distributions of the parameters of the action for the
Λ ¼ 0 (green) and Λ ≠ 0 (blue) variants of the shift-symmetric
model, where we have fixed d01 ¼ −1. Λ ¼ 0 is the first version
of shift-symmetric theories we consider, where there is no explicit
cosmological constant, Λ, and the density of DE is given solely
by the scalar field ϕ; in the case of Λ ≠ 0, ΩDE has contributions
both from ϕ and Λ.

FIG. 2. Distributions of the parameters of _ϕ0
2=Λ2

2 and ϕ̈0=Λ3
3,

where ϕ0 is the amplitude of the scalar field today. The fact that
they are lower than 1 means that higher-order terms in our
expansion of the Lagrangian, Eq. (9), should be suppressed
unless large values of the coefficients fcij; dijg were chosen.
Therefore, this could be seen as a posteriori justification of our
ansatz, Eq. (9).

4We mean self-acceleration in the sense that the scalar field
provides accelerating expansion, i.e., wϕ < −1=3. Note that some
authors use the term self-acceleration to mean that only the
Jordan-frame scale factor is accelerating (while its Einstein-frame
counterpart is not) [75]. This cannot be the case in the theory at
hand, as both frames are equivalent.

5The theories under consideration have some other generic
properties: for instance, the equation of state is phantom wϕ < −1
in the tracker, approaching de Sitter wϕ → −1 from below as
ρm → 0 [77].
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The second variant that we will consider does include Λ;
we will dub it the Λ ≠ 0 version. In this case, the signs of
c01, c02 are less restricted by requiring the scalar field to
dominate the expansion, Eq. (14). If we were to restrict
ourselves to c01 > 0 (which we do not here), we would be
looking at what is conventionally dubbed the normal
branch. In the cubic Galileon limit (c02, d02 ¼ 0), Ωϕ >
0 requires c01 < 0, in agreement with Eq. (14). Normal-
branch Galileons (c01 > 0) are driven toward a trivial
tracker with _ϕ → 0, ρϕ → 0 unless shift symmetry is
broken [87]. We will not fix a sign of c02 to be able to
capture more general behavior in the Λ ≠ 0 case. Note that
the cosmological constant is allowed and does not break
shift symmetry. Here, the dark energy density is the sum of
the energy density associated to the scalar field and the
cosmological constant: ΩDE ¼ Ωϕ þ ΩΛ.
As we will focus on large scale observables, we are

particularly interested in linearized perturbations around
the cosmological background solution described above.
The freedom in the dynamics of such perturbations for a
general Horndeski theory, as specified in Eqs. (4)–(8), is
controlled by just four functions αX of time with
X ∈ fK;B;M; Tg. For the general form of these αX, see
Ref. [27]. In the shift-symmetric subset of theories we are
considering here, with G4X ¼ 0 ¼ G5X, we find that the
effective Planck mass seen by linear perturbations is simply
MP (and hence has no time dependence), while the speed of
gravitational waves cGW ¼ 1 by construction. We are
therefore left with only two nontrivial αX controlling linear
perturbations, namely

H2M2
PαK ¼ 2X½G2X þ 2XG2XX þ 6 _ϕHðG3X þ XG3XXÞ�;

H2M2
PαB ¼ 2X _ϕHG3X; ð15Þ

where all functions are evaluated at the background level.
Upon substituting Eq. (9) into Eq. (15), it is then straight-
forward to express these two αX in terms of the cij; dij in
Eq. (9) and the background degrees of freedom, a and ϕ.

III. ESTABLISHING PHYSICAL PRIORS

It has been well established that cosmological observ-
ables are insensitive to αK [29], a direct manifestation of the
fact that αK drops out in the quasistatic limit (which applies
to the vast majority of observable scales at late times) at
leading order [42]. The challenge, then, is to construct
physical priors for w and αB. There are a number of steps in
working toward this goal, the first one of which is to map
out the space of possible histories for the scalar field ϕ and
the metric gαβ. In fact, as we saw in the previous section, w
and αB are completely determined in terms of ϕðtÞ and aðtÞ,
so we will only have to focus on the evolution of the
background in these theories.
We then have a number of parameters which need to be

chosen. The standard cosmological parameters will be

included in the analysis, whether we work with the scalar
field action directly or we work with the parametrized form,
in terms of w and αB; therefore, we will not be especially
concerned with the choice of their priors; indeed, we will
consider a standard range such as Ωcdm ∈ ½0.15; 0.35� and
H0 ∈ ½60; 80� kms−1Mpc−1, which ensures our findings
will be compatible with current constraints of these
parameters, while not too broad to explore values that
are already ruled (e.g., H0 ¼ 0). We then have the param-
eters in the action which we have distilled down to
fc01; c02; d01; d02g and fΛ2:Λ3g. Two dimensionless
fcij; dijg can be absorbed into the Λi. In our concrete
implementation, however, we find it more practical to
follow a different (yet physically equivalent) prescription
and fix Λ4

2 ≡M2
PH

2
0 and Λ3

3 ≡MPH2
0, varying only the

coefficients fc01; c02; d02g. In order to decouple the effects
ofH0 on the coefficients and avoid possible inconsistencies
due to the way we choose to sample our parameters, we set
this normalization H0 to a fiducial value. We use the fact
that we can set d01 ¼ −1 due to the normalization of the
field [88].6 The physics of the model does not change
depending on which of the c0i (up to its sign) and d0i
parameters one chooses to fix, and hence our priors would
be unaffected by this choice.
And finally, we must also consider the initial conditions

of the scalar field, ϕi and _ϕi. As we have seen in the
previous section, shift-symmetric theories come endowed
with tracking behavior. This means that, irrespective of the
initial condition, the field will (quite rapidly) evolve toward
a universal solution which is uniquely determined in terms
of the coupling constants of the theory. And because the
theory is shift-symmetric, the result is completely inde-
pendent of ϕi. This means that the prior will also be
completely independent of ϕi and _ϕi.
With regard to fc01; c02; d02g, it makes sense to consider

uniform, uncorrelated priors over a fixed range; as with all
uniform priors, one needs to define hard limits to their
ranges. One may expect that naturalness criteria suggest
one should only vary these dimensionless constants within
a range of Oð1Þ (around 0). However, note that the shift-
symmetric nature of the theories at hand means that
radiative corrections to the c0i and d0i are parametrically
suppressed [73]; more specifically, these corrections scale
as fδcij; δdijg ∼ ðΛ3=Λ2Þ4 ∼ 10−40 [71,73]. So, consider-
ably wider prior ranges can be explored without running
into naturalness issues. We have explored different choices
for the ranges of these parameters and have found that, once
we allow them to vary within a range of Oð2Þ, the final
results are unchanged. We also check that the constraints
with data are consistent with these bounds, and indeed we

6Fixing the sign of d0i bears no loss of generality: because L3

contains only odd powers of ϕ, changing the sign of d0i is
equivalent to flipping the sign in the initial _ϕ. In contrast,
normalizing the field to fix a coefficient in L2 restricts the
theory, cf. Eq, (11) in Ref. [87].
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find distributions that are well within the range of Oð2Þ.
This confirms that this is a wide enough range that our
results are not biased by the bounds we have chosen, while
at the same time, we exclude regions of space that are ruled
out by data. We use such an extended range in all our
subsequent results.
There is a further complication, however, which is that we

are interested in cosmologies which are reasonably close to
the one we observe, i.e., one in which Ωr þ Ωm þ ΩDE ¼ 1
(note that our definition ofΩDE differs between the caseswith
andwithoutΛ); one can loosen this statement and say that we
do not wantΩDE ≃ 0 orΩDE ≃ 1. This immediately imposes
additional restrictions on fc01; c02; d02g. In other words,
one can see such a restriction due to ΩDE as a deformed
slab cutting through fc01; c02; d02g, picking out a lower-
dimensional space. Projecting such a cut onto each
of the fc01; c02; d02g will naturally lead to nonuniform
one-dimensional priors.
One might think that an alternative approach is to solve

for one of the fc01; c02; d02g for a fixed range of ΩDE, and
indeed it is possible to do so using a well-established
shooting method. Unfortunately, the resulting combined
priors depend heavily on which of the constants one
chooses to solve for. One can understand this if one takes
two examples. In one case, one assumes a uniform prior for
fc02; d02g and solves for c01. The resulting distribution c01
will not, generally, be uniform. Alternatively, one might
consider a uniform prior for fc01; d02g and solves for c02.
Now, the prior on c01 will be uniform, while the prior on c02
will not be uniform. We illustrate this in Fig. 3. This is not
surprising as this approach effectively introduces a non-
linear correction to the measure which is highly dependent
on the constant one is solving for. Thus, we have opted to
use original approach—to sample all the parameters and
then project down the constraint slice (or slab).7

A comment is in order about imposing priors related to
the validity of the underlying theory itself. First, these come
in the form of stability priors. We have already alluded to
radiative stability above, and we will complement this by
requiring the absence of ghost and gradient instabilities for
our cosmological solution, using the implementation of
Ref. [89]. Note that these instabilities directly manifest
themselves in the effective (low-energy and classical)
theory we are considering, i.e., Eqs. (4)–(9).8 Second,
there are priors not directly linked to any easily recogniz-
able sickness in the low-energy theory but instead to
ensuring that this low-energy theory can be embedded in

a sensible UV completion. These bounds turn out to be
powerful, even if the UV completion is not known. In this
context, we will focus on so-called positivity bounds,
requiring that the underlying fundamental theory (and
hence the UV completion as well) is consistent with a
“standard” Wilsonian field theory description—one in
which Lorentz invariance, unitarity (well-defined proba-
bilities), analyticity (causality), and polynomial bounded-
ness (locality) are respected. These basic principles turn out
to be sufficient in order to derive a variety of additional
constraints on the low energy parameters of the theory, in
our case encoded in the cij and dij—see Refs. [90–108] for
constraints directly applicable to our present scalar-tensor
context. The simplest such bounds can be derived via
considering tree-level 2 → 2 scattering on a flat
(Minkowski) background. For general Horndeski theories,
the resulting bounds are presented in Ref. [101].
Specialized to Eq. (9), these reduce to

Ḡ2;XX ≥ 0 ⇒ c02 ≥ 0;

Ḡ2
3;X ≥ 0 ⇒ d201 ≥ 0; ð16Þ

where a bar denotes that the function is evaluated on a flat
background (hϕi ¼ 0) and constraints are subsequently
ported to cosmological backgrounds. While the second
bound is trivially satisfied, the first imposes a nontrivial
constraint. However, and crucial to the results of this paper,
these bounds will turn out to not be applicable here. This is
because we will find that, for our ansatz, Eq. (9), cosmo-
logical constraints push c01 to be overwhelmingly negative.
While this condition is consistent with obtaining healthy
solutions on cosmological backgrounds, around a flat
(Minkowski) space-time, it renders ϕ into a ghost. But
the existence of a well-defined and ghost-free Minkowski
solution is an essential ingredient for the derivation of the
above positivity bounds. So, at least for our specific ansatz,
Eq. (9), we will not be able to identify regions of parameter
space here, where observational constraints are satisfied
and where we can consistently apply the above positivity
bounds—for a more detailed discussion, see Ref. [109].

FIG. 3. Distributions of the parameters given different way of
sampling. In the case of tuning one parameter, one samples the
other two and chooses the value of the former that result in the
desired H0. In contrast, in the case of slicing, one varies the all
three parameters simultaneously and keeps only the sets that giveP

Ωi ¼ 1. As can be seen above, the tuning method is subject to
projection effects.

7Note that, by default, HI_CLASS adjusts one of the parameters
to fulfil the Friedman equation. In order to prevent this, you must
set OMEGA_SMG_DEBUG and unset OMEGA_SMG.

8A direct consequence of this is that instability-infested
regions of parameter space generically give very poor fits to
the data. In other words, had we not imposed these priors, the data
would still generically have excluded these regions of parameter
space.
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IV. APPROXIMATING THE TIME DEPENDENCE
OF w AND αB

We now proceed to determine the best way to para-
metrize the time dependence of w and αB. We recall that, in
the case of thawing quintessence, we found that w ¼ w0 þ
wað1 − aÞ was an excellent approximation to the equation
of state; this was not the case for tracking quintessence. On
the left panel of Fig. 4, we plot the two typical shapes of the
evolution of w for the shift-symmetric model that we
consider; although, on the face of it, the true curve and
the fit do not seem to agree particularly well, we find that
w ¼ w0 þ wað1 − aÞ approximates the evolution of equa-
tion of state well enough in a sense that will be clear soon.
A natural first choice for the time dependence of αB was

the commonly assumed scaling with fractional density of
DE, ΩDE; however, we found this parametrization to only
provide a good fit to a small fraction of the models we
calculated. We found similar results for a proportionality
with the scale factor, a. A Taylor expansion in terms of
either a or ΩDE worked better than a single constant factor;
however, in order to reach our desired error for a the
majority of models, it was necessary to include at least
seven coefficients in the expansion. We had similar success
with other parametrizations, such as the inverse power law,
binomial expansion, exponential power law, and others.
Finally, we note that in a simplified version of our model,
i.e., the cubic Galileon,9 its exact time dependence is
αB ∝ H−4. The tracker solution, J ¼ 0 in Eq. (13), provides
a solution for the scalar field evolution _ϕ ∝ H−1, which can
be substituted into Eq. (15) to get the expected result. It is
also possible to prove that this time dependence approx-
imately holds for a more general case, too, i.e., c02 ≠ 0 and
d02 ¼ 0. Therefore, we expect that a function of ðH0=HÞ4
should fit the evolution of αB in the shift-symmetric case.
We find the following function to fit the true models
extremely well,

αB ¼ α̂B

�
H0

H

�
4=m

; ð17Þ

where α̂B and m are constant parameters. On the right of
Fig. 4, we plot two typical representative αB and the lines
that fit to those given the function that we chose. As will be
discussed in more detail in Sec. V, this parametrization fits
incredibly well (to less than 1% error) more than 98% of the
large set of randomly generated models.
In the spirit of Ref. [65], we now want to find the set of

parameters fw0; wa; α̂B; mg that reproduce the Hubble rate
(H), the angular diameter distance (DA), and the growth
factor (f ¼ d ln δm=d ln a),

H2 ¼ 1

3M2
P

X
i

ρi; ð18Þ

DA ¼
Z

z

0

dz0

HðzÞ ; ð19Þ

f0 þ f2 þ
�
2þ

_H
H2

�
f −

3

2
Ωm

�
1þ α2B

2csN2

�
¼ 0; ð20Þ

where

csN2 ¼ ½ðαB − 2Þð _H −H2αB=2Þ þH _αB − ρm − pm�=H2;

computed from the Lagrangian with parameters
ðc01; c02; d01; d02Þ with the accuracy required by next-
generation surveys, i.e., 1% at z < 10 [7,8,10,110] and
0.3% at recombination for DA [5], for 99% of the models.
In order to find fw0; wa; α̂B; mg, we minimize

χ2 ¼
X
z

ðOðw0; wa; α̂B; mÞz −Oðc01; c02; d01; d02ÞzÞ2
σ2Oz

;

ð21Þ

where Oðw0; wa; α̂B; mÞz and Oðc01; c02; d01; d02Þz are the
observables at redshift z computed with the parametriza-
tions of w and αB and the ones calculated from the full
evolution of the field equations for a shift-symmetric model
given by the set of parameters fc01; c02; d01; d02g, respec-
tively. The variable σOz

weights each point so that we can
require different precision depending on the variable and
redshift. For instance, we set σOz

¼ 10−3 for all observables
at z < 10 and σDAðzrecÞ ¼ 10−4 at recombination for the
angular diameter distance. The software used to make these
fits is a modified version of RUFIAN [65] and can be found
at https://gitlab.com/dinatraykova/horndeski-priors.
Let us emphasise that, with this approach, we do not

choose the set fw0; wa; α̂B; mg that best fit the equation of

FIG. 4. The time evolution of w (left) and αB (right) for two
representative models and their approximate fits using the para-
metrizations we choose. Note that we have highlighted the αB ¼
2 line here and in the following plots, as evolutions that cross this
line (as shown here, αB typically increases monotonically in time)
display some singular behavior—see Appendix for a more
detailed discussion.

9The cubic Galileon model is equivalent to a special case of the
shift-symmetric we consider here with c02 ¼ d02 ¼ 0.

THEORETICAL PRIORS IN SCALAR-TENSOR COSMOLOGIES: … PHYS. REV. D 104, 083502 (2021)

083502-7

https://gitlab.com/dinatraykova/horndeski-priors
https://gitlab.com/dinatraykova/horndeski-priors


state and αB curves obtained from the Lagrangian, which
are not observable quantities. Instead, we minimize the
error in the background evolution H and DA and f for the
linear perturbations. In this sense, allowing fw0; wa; α̂B; mg
to differ from their best fit values with respect to the exact w
and αB, we find the set of parameters that minimize the
error on the observables. It is important to note that, in
comparison with quintessence, the equation of f, Eq. (20),
has the source term modified as

3

2
Ωm →

3

2
Ωm

�
1þ α2B

2csN2

�
; ð22Þ

which introducing an extra dependency on αB and thus
requiring a more precise fit to αB to get a good fit to the
observables than is necessary for w.
In Fig. 5,we show the distributions for thefw0; wa; α̂B; mg

set of parameters for the shift-symmetric model with and
without Λ recovered by minimizing the error on the
observables, as detailed here; correlations between these
variables will become apparent as we construct a complete
model for the priors in the next section.
In Fig. 6, we present a summary diagram of the method

explained in this section that allows us to derive the
approximate time dependent functions that describe the
shift-symmetric model, wðaÞ and αBðaÞ, and find the best
fit coefficients fw0; wa; α̂B; mg that better reproduce the
observable quantities obtained from the evolution of the
Lagrangian fc0i; d0ig.

FIG. 5. Probability distributions of the fw0; wa; α̂B; mg param-
eters obtained minimizing Eq. (21) as explained in Secs. IVand V.
The presence of a cosmological constant term in the theory
modifies the probability distributions of the parameters. Their
correlations can be seen in Fig. 9. Λ ¼ 0 is the case where
ΩDE ¼ Ωϕ, and Λ ≠ 0 is where ΩDE ¼ Ωϕ þ ΩΛ. Figure 1 shows
the different distributions of the fc01; c02; d02g parameters given
these two cases. For details on the vertical line at α̂B ¼ 2, we refer
the reader to Appendix.

FIG. 6. Diagram summarizing the method presented in Sec. IV that we use for determining the correct evolution functions of the
model, wðaÞ and αBðaÞ, and the set of coefficients fw0; wa; α̂B; mg that best fit the observables computed from the Lagrangian.
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V. RESULTS

We now have a robust process for determining
fw0; wa; α̂B; mg for each choice of the physical priors:
minimizing Eq. (21) allows us to find the set of parameters
that reproduce the observables H, DA, and f with the
accuracy needed by next-generation surveys. The next step
is to obtain the probability distribution that will be used
as theoretical priors for the shift-symmetric Horndeski
models. For that, we sample 30 000 random models with
parameters fc01; c02; d01; d02g and store their corresponding
observables at specific redshifts (100 points at z < 10 and at
zrec, in the case ofDA). After minimizing Eq. (21) for each of
this set of 30 000 observables, we end up having 30 000
fw0; wa; α̂B; mg that can be used to build our theoretical
priors. We obtain the observables quantities for each reali-
zation using HI_CLASS [89,111], an extension to the
Boltzmann code CLASS [112] that solves the cosmological
equations for a broad range of subsets of the Horndeski class
of theories.
Let us note that the choice of 30 000 samples and 100

points at z < 10 is just a matter of computational efficiency
and has no physical insights. We checked that after 30 000
samples the probability distributions had already converged
and increasing its size to 100 000 does not alter the results.
In addition, for each set of fw0; wa; α̂B; mg obtained
minimizing Eq. (21) with 100 points for each observable
below z ¼ 10 and DA at zrec, we saw that the new
observables satisfy the requirement of having an error
below 1% at z < 10 and below 0.3% for DAðzrecÞ for the
99% of the cases. This can be seen in Fig. 7.
The probability distributions for the parametrized shift-

symmetric Hordenski models can be seen in Fig. 5, which
shows mild correlations between different parameters. We
note that these correlations do not have the usual elliptical
shape that one expects for a multivariate Gaussian. Clearly,
there is a nonlinear correction that must be taken into
account in the next steps.

Ifwe are to construct theoretical priors that can be used in a
Markov chain Monte Carlo (MCMC), we need to find a
sufficiently good approximation of the probability distribu-
tion that allows us to recover the same distribution of the
parameters and the observables when sampling from it. We
do this in two steps. We first transform to a new set of
parameters,

X1 ¼ α̂B;

X2 ¼ mα̂1=6B ;

X3 ¼ w0m1=4;

X4 ¼ wam2; ð23Þ

which effectively Gaussianize the distributions (Fig. 8).
We find that a multivariate normal distribution fits the

distribution of fX1; X2; X3; X4g and that, once transformed
back to fw0; wa; α̂B; mg, it recovers the correlations
between the variables to a very good approximation; this
can be seen in Fig. 9. Of course, a crucial test is to see the
impact on the observables and whether one is able to
recover the correct distribution for those. We do so in
Fig. 10, where we compare the observables obtained by
integrating the field equations of motion to the ones

FIG. 7. Left panel: distribution of the maximum relative
deviation between the observables computed from the theory
[Oðc01; c02; d01; d02Þ] and the parametrization [Oðw0; wa; α̂B; mÞ]
at z < 10 for each fit. Right panel: distribution of the relative error
between the DAðzrecÞ computed from the theory and the para-
metrization for each fit.

FIG. 8. Approximate fit to the probability distribution of the
fX1; X2; X3; X4g for the Λ ¼ 0 model. In black, the contours
from the original set of parameters transformed by Eq. (23). In
green, those obtained from a multivariate Gaussian distribution.
As one can see, their differences are small and have little effect on
the original parameters fw0; wa; α̂B; mg (Fig. 9), the observables
(Fig. 10), and therefore on a MCMC.
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obtained by sampling from the distribution. Note that we
only show the distances at z ¼ 1 and at recombination, as
they have the largest differences, yet these are still small
and should have little impact on the posterior distributions
of the parameters when combined with data.
Using the Gaussianized distribution, we can construct an

analytic model and calculate the probability density in the
transformed parameter basis,

pðXjμ;ΣÞ ¼ 1

ð2πÞ2jΣj1=2 exp
�
−
1

2
ðX − μÞTΣ−1ðX − μÞ

�
;

ð24Þ
where μ is the vector of mean values and Σ is the covariance
matrix of our prior parameter distribution in the trans-
formed basis fX1; X2; X3; X4g. For the model without Λ,
we find

FIG. 9. Probability density distributions of the fw0; wa; α̂B; mg parameters for the Λ ¼ 0 (lower left) and Λ ≠ 0 (upper right) shift-
symmetric theories studied. We compare the exact distributions obtained fitting the observables with those obtained sampling from the
new Gaussianized space fX1; X2; X3X4g and transforming back using Eq. (23). The differences are small and do not affect the
observables significantly (Fig. 10). Here, we have highlighted the αB ¼ 2 line to separate the region where the evolutions can display
some singular behavior (see Appendix).
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μðΛ¼ 0Þ ¼ ð1.5346;1.4461;−1.1592;−0.8841Þ;

ΣðΛ¼ 0Þ ¼

0
BBB@

0.1475 −0.0916 0.0160 −0.0469
−0.0916 0.0776 −0.0087 0.0326

0.0160 −0.0087 0.0041 −0.0079
−0.0469 0.0326 −0.0079 0.0516

1
CCCA:

ð25Þ

For the case with Λ, we have

μðΛ ≠ 0Þ ¼ ð0.9545;1.4255;−1.1803;−0.7962Þ;

ΣðΛ ≠ 0Þ ¼

0
BBB@

0.2311 −0.0511 0.0136 −0.0415
−0.0511 0.0875 −0.0075 0.0218

0.0136 −0.0075 0.0035 −0.0017
−0.0415 0.0218 −0.0017 0.0589

1
CCCA:

ð26Þ

We use this to infer the a priori likelihood of a given
sample used in the combined analysis with data in Sec. VI.

FIG. 10. Distributions of the observables at z ¼ 1 and recombination obtained integrating the field equations of motion (black lines)
compared to those obtained using the parameters fw0; wa; α̂B; mg, recovered after sampling from the multivariate Gaussian distribution
(green lines) in the fX1; X2; X3; X4g space, with Eq. (23). As we advanced, the differences on the observables are small, which justifies
the Gaussian approximation we used and gives confidence to the theoretical priors we have built, Eqs. (24)–(26).
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We might want to compare our current results with those
of our previous work [65]. There, we found that the
phenomenology of different highly dimensional theories
is well described by the usual w0 − wa parametrization. In
that case, we went from having many parameters in the
Lagrangian to just 2, accurately accounting for their
cosmologies. In this paper, however, we start from a
Lagrangian with three parameters (after fixing d01 ¼ −1)
and end up with four parameters to describe its phenom-
enology. However, this phenomenological parametrization
is still advantageous; it does not require solving the field
equations, allows to clearly split the background and linear
perturbations effects, and shows that both w and αB are
simpler than one would a priori think. We expect this to
also be the case in other more general theories.

VI. COMPARISON WITH CURRENT DATA

Here, we present the constraints on αB and w from
current cosmological data and compare and combine these
with our theoretical priors. To do this, we use a combination
of cosmic microwave background (CMB), baryon acoustic
oscillations (BAOs), redshift space distortions (RSDs), and
Supernovae Type IA (SN Ia) data.
From Planck 2018 [5,113,114], we use the auto- and

cross-correlations of the temperature (T) and polarization
(E) fluctuations of the cosmic microwave background,
together with measurements of the lensing potential, i.e.,
the TT, TE, EEþ lowEþ lensing the likelihood from the
high-l temperature auto-correlation (TT), temperature and
polarisation cross-correlation (TE), and the polarisation
auto-correlation (EE) spectra (at l ≥ 30), the low-l
(2 ≤ l < 30)) TT and EE likelihoods and the lensing
likelihood (with temperature and polarisation lensing
reconstruction) in the multipole range l ¼ 8 − 400.
Additionally, we use the BAO and RSD measurements

from BOSS DR12 [6], as well as BAO from the 6dFGS
survey [115]. The BAOmeasurements are of theHubble rate,
H, and the angular diameter distance, DA, while RSD mea-
sures the growth rate of the Universe through fðzÞσ8ðzÞ. We
use the full covariance between the fðzÞσ8ðzÞmeasurements
at different redshifts and the BAOmeasurements ofHðzÞ and
DAðzÞ from BOSS. However, we do not consider the
correlation between the BOSS and 6dF measurements as
those cover different areas of the sky and thus any such
correlation would be negligible.
Finally, we also include the Pantheon SNe Ia sample

[116], which combines the Pan-STARRS1 Medium Deep
Survey with ones from the Sloan Digital Sky Survey, The
Supernova Legacy Survey, and various low-redshift and
Hubble Space Telescope samples, 1048 SNe Ia in total in
the redshift range 0.01 < z < 2.3. We also note that,
throughout, we assume that the cross-correlation between
the different datasets is negligible.
We built our prior likelihood in the Gaussianized basis

fX1; X2; X3; X4g, and in order to be consistent, we use the

same basis for the sampling in all cases, from which we then
convert the resulting distributions back to fw0; wa; α̂B; mg.
We sample through the parameter set fX1; X2; X3; X4g
together with the standard cosmological parameters in a
MCMCwithMONTEPYTHON [117,118] using theMetropolis-
Hastings algorithm [119,120]. We do not consider any prior
bounds on the standard cosmological parameters in the
MCMC run (apart from τ > 0.004) but just start from a
known good fit point from Planck for the set fΩcdm;0;Ωb;0;
H0; As; ns; τg. For the Xi, we set the following ranges:

X1 ∈ ð0; 10Þ; X3 ∈ ð−10; 0Þ; ð27Þ

X2 ∈ ð0; 15Þ; X4 ∈ ð−15; 30Þ: ð28Þ

In the case of ΩΛ ≠ 0, we also set ΩΛ ∈ ð0; 1Þ. Using the
Gelman-Rubin convergence criterion [121], we require
R − 1 < 0.02. The contour plots were produced using
GETDIST [122].
In order to obtain the combined constraints from data and

the theoretical priors, we implemented Eqs. (24)–(26) in
MONTEPYTHON as a new likelihood module.10 In the
analysis with data only, we assume uniform priors on
the fX1; X2; X3; X4g parameters.
We present the results in Fig. 11, where in the bottom half

of the trianglewe show the contours for theΛ ¼ 0 case of the
shift-symmetric model and on the top half we have the case
with additionalΛ. On this plot, we show the parameters data
constraints (gray solid line, filled contours) overlaid with the
distributions of the priors (in green for Λ ¼ 0 and blue for
Λ ≠ 0). In addition, we show the combined constraints
(dashed line) from both the data and the priors. In this figure,
note that we only show the Λ ¼ 0 1D distributions since the
Λ ≠ 0 data-only constraints aremuch broader than any of the
others, making it difficult to read.
If we focus only on the bottom left corner of Fig. 11

(Λ ¼ 0), we note that, although the data and the priors
appear to be equally as constraining for α̂B, w0, and wa, the
contours are misaligned and only overlap away from their
respective centers (i.e., regions of high probability).
Nevertheless, they are statistically consistent, and combin-
ing the two results in tighter bounds on these parameters.
Further, data alone do not provide a very strong bound on
m, which makes including the prior likelihood crucial in
constraining the time evolution of αB. Looking at the
combined constraints (dashed line), one may expect that the
contours should lie in between the data and priors alone.
However, for highly dimensional problems with different
parameters correlated, it is possible that some of the data
and prior contours overlap only at a corner of their
distributions. In such case the two- and one-dimensional
projections of the distributions from the combined analysis
can appear to be shifted from the expected position. In the

10Available at https://github.com/dinatraykova/shift_priors.
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case of w0, this effect can be seen quite clearly, where
the combined histogram appears to be to the right of both
the data and priors alone. This is not surprising looking at
the two-dimensional contours of w0 and the other three

parameters, where we see that the data and priors contours
overlap only at their edges, which could result in such a
shift in the one-dimensional projections of one or more
parameter.

FIG. 11. Comparison between data and the prior distributions for the two shift-symmetric variants we have considered, Λ ¼ 0 (lower
left corner) and Λ ≠ 0 (upper right). The gray filled contours show the distributions of the parameters when constrained with “data”
alone; the green and blue filled contours show our “priors” for the Λ ¼ 0 and Λ ≠ 0 cases, respectively; and the purple dashed contours
are from the combined analysis. Note that the prior likelihood is built in the Gaussianized fXig basis, as discussed in Secs. Vand VI and
takes into account the underlying physical properties of the model (not to be confused with the flat uncorrelated priors we put on the
parameters in the data runs). We have only plotted the one-dimensional probability distribution functions for the case Λ ¼ 0 for clarity,
and again we have marked the line where αB ¼ 2 (see Appendix). This plot demonstrates how combining data with theoretical priors can
result in much tighter constraints on some of the parameters of the model.
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In the top right corner of Fig. 11, we show the contours
for the case where we include a contribution of Λ to the DE
density (Λ ≠ 0). In this case, we find that, while data alone
(gray solid contours) constrain the α̂B and m parameters
well, the distributions of w0 and wa are very wide,
compared to the priors (blue solid contours), and the
combined constraints are almost fully driven by our priors.
We note that these distributions cover almost the full range
that we have set for these parameters in the data run. The
distributions of ΩΛ are shown in Fig. 12 from the sampling
with data (gray line) and the ones recovered when deriving
the priors (green line). This plot shows that the data prefer
the majority of the DE density contribution to come from
Λ, as it is consistent with ΩΛ ∼ 0.7. This leaves only a very
small portion of ΩDE to come from the scalar field ϕ. Our
definition of wðaÞ, Eq. (11), includes only the contribution
of the scalar field, so we can expect that in a case where ΩΛ
dominates the DE density, it would not be possible to get a
strong constraint on the equation of state parameters of the
field, w0 and wa.
To emphasize the benefit of including theoretical priors

into the likelihood analysis in constraining these models,
in Table I, we present the parameter ranges for the
fw0; wa; α̂B; mg set from the likelihood analysis with uni-
form priors and with theoretical priors. In the Λ ¼ 0 case,
we find that for m there is a significant improvement in the
error after including our theoretical priors, compared to the
constraints with data using uniform uncorrelated priors
(from�1.6 to�0.4). For the other three parameters, ranges
from the data run with uncorrelated priors and our derived
correlated ones are comparable, but combining them still
results in slight improvement of the errors. In the case of
Λ ≠ 0, we see that there is a similar improvement on the

constraint of m as we find in the Λ ¼ 0 case (from �1.4 to
�0.4). However, as we saw from the contours in Fig. 11,
w0 andwa cannot be constrained with data using the uniform
priors on the parameter set due data preferring ΩΛ to be the
dominant contribution to the DE density. The addition of the
theoretical priors in this case is, therefore, crucial as the only
way to fully constrain the parameter space.

VII. CONCLUSION

In this paper, we have taken a further step toward
constructing a set of physical priors for Horndeski theories
of gravity. Building on the experience of constructing such
a prior for thawing quintessence, we have focussed on a
physically well-motivated subset of Horndeski gravity:
shift-symmetric theories with standard speed of gravita-
tional waves. While these theories are less general than the
full Horndeski space of theories, they are more general than
the much-studied Galileon scalar-tensor theories.
Working with shift-symmetric theories has allowed us to

explore a situation in which one needs more than just the
equation of state, w, to fully characterize its behavior on
cosmological scales. For such theories, one needs to also
include an accurate model for the “braiding” parameter, αB.
We have done so, constructing a prior distribution function,
P, for four constant parameters defined in Eqs. (2) and (17).
Remarkably, and very much like in the case of thawing
quintessence, we have come up with a simple analytical
form for P which can be easily deployed in future
cosmological parameter analysis.
We have learned a number of lessons from focusing on

shift-symmetric theories which give us a sense of the
challenge of tackling more general Horndeski theories.

FIG. 12. Probability distributions of ΩΛ from the analysis with
data alone (gray solid line), our priors (green solid line). Let us
note that ΩΛ ∼ 0.7 in the data run implies that data seem to prefer
a universe mainly filled with a cosmological constant and only a
small contribution of the scalar field to DE.

TABLE I. Best fit and confidence limits of w0 and wa for the
dataset CMB+BAO+RSD+SN, the theoretical priors, and the
combined analysis for the shift-symmetric models both with and
without Λ (Λ ¼ 0 and Λ ≠ 0). Note that we have not written the
means and errors for w0 and wa from the data run in the Λ ≠ 0
case, as data are not constraining on these; the errors are
determined by the ranges we have set, and the mean values
are consistent with ΛCDM. This is related to the fact that, in this
work, w is defined as the scalar field equation of state and that
data seem to prefer a negligible contribution of the scalar field to
the DE density with the majority coming from Λ (Fig. 12).

α̂B m w0 wa

(Λ ¼ 0Þ
Data 0.3� 0.3 3.8� 1.6 −1.0� 0.06 0.1� 0.2
Prior 1.5� 0.4 1.4� 0.4 −1.08� 0.06 −0.6� 0.4
Combined 0.6� 0.3 2.4� 0.4 −0.97� 0.03 −0.11� 0.06

ðΛ ≠ 0Þ
Data 0.5� 0.4 2.6� 1.4 � � � � � �
Prior 1.0� 0.5 1.5� 0.4 −1.08� 0.07 −0.5� 0.4
Combined 0.8� 0.4 1.7� 0.4 −1.05� 0.06 −0.3� 0.2
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For a start, the theories we have looked at here are endowed
with a tracking behavior which eliminates the need to pin
down a prior for initial conditions. This will not be true in
general for full Horndeski theories.
We have had to face the problem of sampling over a

multidimensional space of parameters (in this case
fc01; c02; d01; d02g) which is subjected to some form of
constraint. The way one implements the constraint can
greatly affect the prior distribution function. For example,
explicitly solving the constraint can bias the resulting prior,
depending on which of the parameters one is solving for.
We have argued that one should sample over all parameters
and exclude points which lie outside the constraint sub-
region. This is, nevertheless, a computationally costly
approach to the problem which will become far more
severe the more general the theory one is looking at.
With an appropriate algorithm for sampling over

fc01; c02; d01; d02g, we have proposed a functional form
for the phenomenological parameters, w and αB. We have
found that the usual form for w is still remarkably effective,
while, building on our knowledge of Galileons, we have
come up with a suitably simple form for αB, if we choose
the parameters by minimizing the error on the observables
(a crucial aspect of this approach). The latter insight is
useful and points to the fact that, in general, the αX
parameters may have a simple functional form in the more
general theory. This means that a reanalysis of current
cosmological data may lead to far tighter constraints than
have until now been found.
An important step has been to find nonlinear trans-

formations that, to some extent, “Gaussianize” the distri-
butions of our parameters. Such a transformation has been
remarkably effective, allowing us to determine, rather more
easily than one would naively expect, an analytic expres-
sion for the prior. Again, one would expect this approach to
be useful when looking at more general theories.
An interesting aspect of the theories we have focused on

—shift-symmmetric theories—is that they are, in some
sense, viable and complete. In other words, including terms
∝ X2 in G2, G3 gives viable generalizations of the cubic
Galileon (Fig. 11), even with Λ ¼ 0. In this model,
_ϕ2=Λ4

2 ≲ 0.2 (Fig. 2), suggesting that higher-order correc-
tions are subdominant and can be neglected.
An important aspect, which from our understanding has

been somewhat unexplored, is that c01 < 0 is more generic
than just for the covariant Galileon. This is important, since
this regime disconnects these theories from the Minkowski
solution and constraints derived for that solution. Note that
there may be other solutions where, for example, higher
orders in Xn contribute. In that situation, the constraints on
c01 may be markedly different.
Note that, while we have considered and taken into

account a number of theoretical priors and observational
constraints throughout this paper, these are of course not
complete, and one may wish to add additional priors/

constraints to this analysis in the future. One such example
to highlight is constraints from dark energy–gravitational
wave interactions, specifically related to dark energy
(gradient) instabilities that can be induced by gravitational
wave sources such as massive binaries [123]. Requiring the
absence of these instabilities in general can be used to
significantly tighten cosmological parameter constraints
[38]. In the specific shift-symmetric context of the theories
considered here, avoiding such instabilities amounts to
requiring jαBj≲ 10−2. This effectively renders the cubic
Horndeski interactions we have considered into an after-
thought for cosmology. We will leave a more detailed
investigation of this and other additional priors in the
context of shift-symmetric theories for future research.
Finally, our brief comparison with current data shows that

this theory is a viable, self-accelerating model of the
Universe; the physical priors are consistent with the cos-
mological constraints. This is somewhat promising given the
dearth of theoretically viable models of self-acceleration
which are currently compatible with cosmological data. A
thorough analysis of shift-symmetric cosmologies, along the
lines of what has been undertaken in Ref. [124], will allow us
to assess if such shift-symmetric gravity is a credible
contender for the late time acceleration of the Universe.
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APPENDIX: DISCONTINUITIES FOR MODELS
CROSSING αB = 2

In the main text, we briefly alluded to potential issues
associated with crossing αB ¼ 2. As shown in Fig. 4, αB
generically starts strongly suppressed at high redshifts and
then grows towards redshift zero, typically reaching Oð1Þ
values. For a small, yet significant, subset of the models
discussed in this paper (see, e.g., the distributions shown in
Fig. 5), αB eventually grows to be larger than 2. This is
important, because crossing the αB ¼ 2 point is associated
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with a number of discontinuities. This was first noted in
Ref. [27] and discussed in Refs. [131,132]. As a result,
evolutions crossing this point have being conservatively
excluded in some of the subsequent analyses—see, e.g.,
Refs. [33,35,38]. On the other hand, this could be only a
gauge discontinuity, as advocated in Ref. [132], that can be
safely removed. So, in this Appendix, we quickly summa-
rize the issues associated with crossing this point and how
we treat models that do so in this paper.

1. Discontinuity in the number of propagating
degrees of freedom

Horndeski scalar-tensormodels of dark energygenerically
propagate two scalar degrees of freedom: one directly
associated to dark energy and one associated to matter.
Following the approach outlined in Refs. [27,131,133]
and for concreteness modeling matter as a minimally
coupled canonical scalar field ψM with Lagrangian L ¼
− 1

2
∂μψM∂μψM − VðψMÞ, working on a cosmological back-

ground and in unitary gauge, we find these two independent
degrees of freedom can be associated with δψM and Φ (i.e.,
the scalar metric perturbation of the ii component of the
metric). While crossing αB ¼ 2 in the evolution, the follow-
ing constraint relating these two degrees of freedomemerges,

ψ 0
MδψM ¼ 2M2

PΦ0; ðA1Þ
where we have assumed that there is no cosmological
running of the Planck mass, as is the case for the models
considered in this paper. This relation shows that one
propagating degree of freedom is eliminated at this point,
so only one dynamical degree of freedom remains here. This
is alarming, since the number of propagating degrees of
freedom therefore changes as we evolve through αB ¼ 2:
there are two on either side, but only one remains on the
divide itself. This may be an artifact of using perturbation
theory, but in any case indicates a potential ill-defined-ness in
the evolution across αB ¼ 2. Giving a definitive answer may
require a nonperturbative analysis, which allows us to follow
the dynamics of the real degree of freedom (and not an
approximated version of it) and may allow us to exclude the
dangerous situation of being in a strongly coupled regime.

2. Discontinuity in the evolution equations

For general αB, one can straightforwardly derive the
(coupled) evolution equations for δψM and Φ. Using these
and taking the limit as αB → 2, one recovers the constraint,
Eq. (A1), from the equation of motion for δψM and can then
use this constraint to solve for δψM, arriving at a single
second-order evolution equation for Φ. This reads

Φ00 þ
�
2Hþ 2a2VψM

ψ 0
M

�
Φ0 þ k2Φ ¼ 0; ðA2Þ

where we have again assumed that there is no cosmological
running of the Planck mass and will also assume that the

speed of gravitational waves is precisely the speed of light
in what follows—both assumptions are met for the models
considered in this paper, and violating them would com-
plicate the expressions shown here, although not the
qualitative conclusions of this Appendix. Now, suppose
we instead first set αB ¼ 2 in the full quadratic action and
then derive the residual evolution equation for the remain-
ing degree of freedom. Again, we recover the constraint,
Eq. (A1), this time from a Lagrange multiplier in the
quadratic action. However, the evolution equation for Φ
now instead reads

Φ00 þ
�
2Hþ 2a2VψM

ψ 0
M

�
Φ0 þ k2Φ

−
Φ
2

�
ð6þ α̂KÞH2 þ φ02

M2
P

�
¼ 0: ðA3Þ

This is identical to Eq. (A2), except for the addition of the
last term. While the last term is suppressed with respect to
the second to last in the subhorizon limit, this nevertheless
again hints at evolutions crossing the αB ¼ 2 point being ill
defined, since there does not seem to be a uniquely defined

FIG. 13. We show the relative deviation of the CMB temper-
ature-temperature (top panel) and the matter (bottom panel)
power spectra with respect to a fiducial model for different
values of αBða ¼ 1Þ (the corresponding color for each value is
shown on the color bar). We chose to pick models with both
αB < 2 and αB > 2, to see if some kind of discontinuity could be
detected. We notice that the spectra seem continuous and smooth
at this point.
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evolution across this point. However, carrying out the
analogous calculation in Newtonian gauge gives the same
equations up to terms proportional to α0B, which also vanish
in this limit. This suggests that the above-mentioned
discontinuity in the evolution equations might be a gauge
artifact [132].
Summarizing, both these issues are alarming and should

be investigated in more detail. However, a definitive answer
can be given only after further investigation, and this is
beyond the scope of this paper. Despite the above issues, it
is important to notice—as shown in Fig. 13—that the CMB
and matter spectra do not show any discontinuity when

crossing αB ¼ 2. This shows that it is possible to solve this
system in such a way that they do not show any observable
discontinuity at αB ¼ 2. This corresponds to the second case
considered above, Eq. (A3). In addition, given that the
majority of the models considered and consistent with
current observational constraints never cross αB ¼ 2, a hard
bound at this point should not affect our results qualitatively.
While these observations do not resolve the above issues as
such, they are nevertheless encouraging and suggest that
they may be resolved without invalidating other parts of the
analysis. For this reason, here, we put these issues to one side
and do evolve across αB ¼ 2 in this way.
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