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Abstract
The results on the initial boundary value problem for Einstein’s vacuum field
equation obtained in Friedrich and Nagy Commun. Math. Phys. 201 619–655
rely on an unusual gauge. One of the defining gauge source functions represents
the mean extrinsic curvature of the time-like leaves of a foliation that includes
the boundary and covers a neighbourhood of it. The others steer the develop-
ment of a frame field and coordinates on the leaves. In general their combined
action is needed to control in the context of the reduced field equations the evo-
lution of the leaves. In this article are derived the hyperbolic equations implicit
in that gauge. It is shown that the latter are independent of the Einstein equations
and well defined on arbitrary space-times. The analysis simplifies if boundary
conditions with constant mean extrinsic curvature are stipulated. It simplifies
further if the boundary is required to be totally geodesic.

Keywords: Einstein equations, initial boundary value problem, time-like hyper-
surfaces of prescribed mean extrinsic curvature

1. Introduction

In this article we consider a question that arises in the context of the initial boundary value
problem for Einstein’s vacuum field equation formulated in [7]. The setting is that of a smooth
Lorentz metric g on a manifold M with boundary S ∪ T where S and T are smooth hypersur-
faces of M which are space- and time-like respectively and intersect in the space-like surface
Σ = S ∩ T that represents the common boundary of S and of T . The manifold T is assumed to
be diffeomorphic to R

+
0 × Σ with {0} × Σ identified with Σ. The assumptions on S are usually
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chosen according to the desired application. For definiteness we assume it to be compact with
boundary Σ, though this is not needed for the following arguments. The set M\S is supposed
to be in the future of S and on one side of T so that all past directed non-extendible time-like
curves in M acquire an endpoint on S ∪ T. As in [6] a smooth space-time (M, g) with these
properties is referred to as an ST-space-time. The initial boundary value problem asks for the
existence and uniqueness of solutions to Einstein’s vacuum field equations Rμν = 0 that induce
suitably prescribed Cauchy data on S and boundary data on T . Such a solution will be called
an ST-vacuum solution.

The analysis of the standard Cauchy problem for Einstein’s equations is typically based
on coordinates xν that obey a wave gauge characterized by coordinate gauge source func-
tions Fμ = Fμ(xν) [4]. In this gauge, often referred to as ‘harmonic’ if Fμ = 0 and (somewhat
absurdly) as ‘generalized harmonic’ if Fμ �= 0, Einstein’s equations take the form of a system
of wave equations of second order, the reduced equations. If g is a solution to this system for
Cauchy data that satisfy the constraints and the gauge conditions on a space-like initial hyper-
surface, the reduced equations imply with the Bianchi identity a subsidiary system which allows
one to conclude that the coordinates satisfy the semi-linear system of wave equations

�gxμ = Fμ(xν). (1.1)

This ensures that g is in fact a solution to the Einstein equations. As pointed out in [4], the
concept of a gauge source function gives access to a huge class of useful gauge conditions.
If a solution admits coordinates that exist globally, they can be characterized, in principle, in
terms of gauge source functions. Since they combine by (1.1) information on the coordinates
as well as on the metric, the corresponding functions Fμ are usually not known a priori. A
successful use of the concept thus requires clever choices of the functions Fμ(xν) or suitable
generalizations thereof. Interesting examples of such applications can be found in [14] in a
purely analytical context and in [10, 12, 13] in numerical contexts.

The setting of [7] uses a formalism based on a frame ek that satisfies g(ei, e j) = gi j =
diag(1,−1,−1,−1). The additional gauge freedom introduced by it can in principle be dealt
with by prescribing six frame gauge source functions F jk = F[ jk](xμ) which can be given freely
[4]. If these are suitably implemented, the reduced equations will propagate the frame so that
it satisfies, similar to (1.1), the semi-linear wave equation

�ge j + g
(
∇μe j,∇μek

)
gklel = F j

kek. (1.2)

There exist useful gauge conditions of a geometric nature, however, for which the functions
Fμ and F jk are not known. A simple example is given by the Gauss gauge, defined by a time
function x0 so that e0 = gradg x0 is a time-like geodesic unit vector field, combined with an
orthonormal frame field that comprises e0 and is parallel propagated in the direction of e0. Such
a gauge, characterized by the conditions

e0 = ∂x0 , g(∇e0ei, e j) = 0, (1.3)

allows us to extract from equations (2.12)–(2.14) a hyperbolic system of reduced equations.
By (1.3) four frame coefficients and six connection coefficients are restricted to very special
values. As in the case where one sets Fμ = 0 and F jk = 0, no gauge source functions seem to
appear in the reduced equations. But being zero or one does not mean that they are not there.

The gauge defined by (1.3) differs from a gauge in terms of Fμ and F jk in important ways.
The gauge dependent quantities xμ and ek are subject to different propagation laws, which
makes a difference in their applicability to specific problems. While the conditions related to
Fμ and F jk are independent of each other, the two conditions in (1.3) are not. They may be
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read so that in a first step the second of these conditions is solved with initial data so that e0 is
orthogonal to the initial slice {x0 = 0} and then the coordinates are defined by the condition
〈e0, dxμ〉 = δμ0.

There exist combinations of the methods above or still quite different ways to remove the
gauge freedom that allow us to prescribe certain functions freely in the reduced equations.
Even if they are not related to the functions Fμ and F jk or to frame and connection coefficients
we will refer to such functions as gauge source functions because their presence in the reduced
equations implicitly controls the evolution of the gauge.

The analysis of the initial boundary value problem in [7] rests on an unusual gauge and
is characterized by unusual gauge source functions f and FA, A = 1, 2. Here f corresponds
to a function of the connection coefficients that controls in a neighbourhood of the boundary
T = T0 the evolution of a family of time-like hypersurfaces Tc, 0 � c < ε, which define a
smooth space-time foliation that extends into the interior of the solution space-time. The two
functions FA, A = 1, 2, correspond to connection coefficients that control together with the
geometric requirement (2.1) and its consequence (2.8) the evolution of a time-like vector field
e0 tangential to the hypersurfaces Tc. In the end the space-time coordinates xμ turn out to
be dragged along with e0, so that the first of conditions (1.3) is satisfied, but that is not the
way the coordinate x3 is constructed. Some connection coefficients acquire symmetries by the
requirement that the frame vector field e3 is orthogonal to the hypersurfaces Tc. Given f and
FA the remaining connection coefficients are then controlled by the field equations.

With the fields f , FA singled out as gauge source functions there can be extracted from the
Einstein equations, in the representation used in [7], a hyperbolic system of reduced equations
that allows one to formulate with suitably prescribed data a well-posed initial boundary value
problem. The choice of these functions is motivated by the fact that in the given setting the
Einstein equations do not supply evolution equations for f and FA. Its final justification follows
from the existence of a hyperbolic subsidiary system which implies that the reduced system
preserves the constraints and gauge conditions and that the latter do what they have been chosen
for.

This leads to a well-posedness result, local in time, for the initial boundary value problem
for Einstein’s field equations and one could leave it at that. In this article we would like to show,
however, that there are explicit equations, analogous to (1.1), that reveal the relation between
the gauge source functions f and FA, the gauged structures, and the metric. Such equations
will show that the desired gauge can be established under general assumptions and without
any particular equation imposed on g. They give, in particular, additional confirmation that the
gauge conditions do not impose restrictions on the solutions. Moreover, the knowledge of these
equations could help us to find gauge source functions that extend the life time of the gauge
and give control on the long term behaviour or other desired features of the solutions.

On the solution space-time the restriction of f to Tc represents the mean extrinsic curvature
induced on this hypersurface and thus encodes an implicitly evolution law for Tc. This is in
general not independent of the functions FA. The mean extrinsic curvature χ of the boundary
T constitutes in the setting of [7] a boundary datum which can be prescribed freely. Thus f
should be smooth and coincide with χ on T but can be chosen rather arbitrary elsewhere. In the
special case where the boundary data are given so that χ = χ∗ = const. on T , one can choose
f = χ∗ on the foliation. As pointed out in [7], this leads to a considerable simplification. If χ
is point-dependent, however, f must be point-dependent and the part of the gauge controlled
by FA comes into play. This problem is much more involved and has not been analysed so far.

The situation is reminiscent of the problem of constructing standard Cauchy data for
Einstein’s field equations with point-dependent mean extrinsic curvature. For a long time it
was customary to construct Cauchy data with constant mean extrinsic curvature (CMC). The
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main reason was that this led to technical simplifications but it had even been assumed occa-
sionally that asymptotically flat solutions always admit such slices [2]. The analysis of the
Einstein evolution equations, however, does not require such an assumption on the initial data.
In 1982 Brill showed that there exist asymptotically flat solutions to Einstein’s field equations
which do not admit a Cauchy hypersurface with vanishing mean extrinsic curvature [2] and
in 1988 Bartnik showed that there exist cosmological space-times which do not admit CMC
Cauchy slices [1]. Neglecting data with point-dependent mean extrinsic curvature may thus
exclude large classes of important space-times. Only recently have been obtained results on
such data of some generality [9, 11].

Similarly, we shall miss out on large classes of space-times developing from initial and
boundary data if the mean extrinsic curvature on the boundary is required to be constant. A
point dependence of χ could induce the boundary T to shrink or bulge or oscillate. The nature
and origin of the difficulties arising in the case of a point-dependent mean extrinsic curvature
on the time-like boundary are, however, quite different from those arising in the construction
of standard Cauchy data on space-like slices.

To explain the way the well posed initial boundary value problem is set up in [7], some
considerations of [7] will be recalled in section 2. In section 3 are discussed various aspects of
the special case of CMC χ = χ∗. This will in particular shed additional light on the result of
Fournodavlos and Smulevici [3], who studied the case of boundaries that are totally geodesic.
In the section 4 we finally consider the case of a point-dependent datumχ. It is shown in which
sense the functions f and FA are related to an implicit quasi-linear, symmetric hyperbolic
system that fixes the gauge.

In the context of the initial boundary value problem long term evolution projects are beset
with all the difficulties known from the standard Cauchy problem. There are issues, however,
that are specific to this problem. If a solution (M, g) to Einstein’s equation is given, a manifold
of the form T = R

+
0 × Σ can be smoothly embedded as a time-like hypersurface but it can

also just be immersed so that the pull-back of g still defines a smooth Lorentzian metric on T
but the image shows self-intersections. The ambient space-time then still induces on T smooth
vacuum data of the type considered below. We can thus imagine situations where T is smoothly
embedded close to its initial boundary Σ but then, as the space-time evolves, opposite sides
of T start to move towards each other and threaten to touch and intersect. The point is that
the data on T alone may not allow one to decide whether they are induced by an embedding
or an immersion and even if they are induced by an embedding they may represent situations
where discrete points of T are mapped to points in M lying quite close to each other. If one is
ambitious enough to analyse such situations the gauge problem may need reconsiderations. In
the following we shall not be ambitious and only consider the initial boundary value problem
local in time.

2. The setting

In the following we consider four-dimensional ST-space-times (M, g) with boundary S ∪ T
and edge Σ = S ∩ T as described in the introduction. Our goal is to construct solutions to
Einstein’s vacuum field equation Rμν[g] = 0 that arise from suitably prescribed initial data on
S and boundary data on T. On the domain of dependence of the initial hypersurface S they
are uniquely determined by the standard Cauchy problem for Einstein’s vacuum field equation
with Cauchy data on S. Seeking to construct local in time solutions to initial boundary value
problems, a first step is to control the solutions in a neighbourhood of the edge Σ that simulta-
neously represents the boundary of S and of T . The choice of data on the boundary T depends
very much on the chosen representation of the field equations. We follow here the discus-
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sion of [7], which employs a frame formalism and uses the vacuum Bianchi equations for the
conformal Weyl tensor.

2.1. Formalism and gauge conditions

On any smooth ST-space-time (M, g) can be chosen as follows an ST-adapted gauge, consisting
of a smooth coordinate system xμ, μ = 0, . . . , 3, and smooth local orthonormal frames ek,
k = 0, . . . , 3 near T .

The function x3 satisfies x3 = 0 on T , x3 > 0 elsewhere, so that the sets Tc = {x3 =
c = const.} with 0 � c < c∗ and T0 = T are time-like hypersurfaces diffeomorphic to T that
smoothly foliate some neighbourhood W of T in M with dx3 �= 0 on W.

The unit vector field e0 on W is time-like, future directed, tangential to the hypersurfaces
Tc, and orthogonal to the two-surfaces Sc = S ∩ Tc with S0 = Σ. The space-like vector field
e3 on W represents the inward directed unit normals to the Tc.

The local vector fields eA, A = 1, 2, define together with e0 and e3 a local orthonormal frame
on some open subset of S ∩ W, so that

g(ei, e j) = gi j = ηi j = diag(1,−1,−1,−1).

The eA are then tangential to the surfaces Sc. Denoting by D the Levi-Civita connection of the
Lorentz-three-metric k induced by g on Tc we require the fields eA to be D-Fermi transported
in the direction of e0 so that

g(e0, e0)De0eA + g(eA, De0e0)e0 − g(eA, e0)De0e0 = 0. (2.1)

The fields eA are then everywhere tangential to Tc.
The function x0 defines a natural parameter on the integral curves of e0 so that

〈e0, dx0〉 = 1 on W, x0 = 0 on S ∩ W. (2.2)

Consider the vector field X = (q#(dx3, dx3))−1 gradq x3 tangential to S and orthogonal to the
Sc, where q denotes the metric induced on S by g. An integral curve γ(σ) of X with γ(0) ∈ Σ
satisfies

d
dσ

(x3(γ(σ))) =

〈
dx3,

d
dσ

γ(σ)

〉
= 〈dx3, (q#(dx3, dx3))−1 gradq x3〉 = 1,

so that σ = x3(γ(σ)), whence γ(c) ∈ Sc. The flow of X thus maps Σ diffeomorphically onto
the Sc and we have a parametrization W = {(x0, p, x3)|x0 � 0, p ∈ Σ, 0 � x3 < c∗}. Choose
local coordinates xα, α = 1, 2, on Σ, assume them to be dragged into the interior of S with the
flow of X so that

q#(dxα, dx3) = 0, α = 1, 2, (2.3)

and then dragged along with the flow of e0 so that

〈e0, dxα〉 = 0 on W, α = 1, 2. (2.4)

The xα, α = 1, 2, define local coordinates on the Sc and the xα, α = 0, 1, 2, define local
coordinates on Tc for 0 � c < c∗. For the frame coefficients satisfying ek = eμk∂μ holds

eμ0 = δμ0, e3
A = 0, e3

3 > 0 on Tc and e0
A = 0, A = 1, 2, on Sc. (2.5)
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We will have to consider three types of projections. Since our frame is well adapted to the
geometrical situation, corresponding projection formalisms can be avoided by distinguishing
three groups of indices. They are given, with the values they take, by

a, c, d, e, f = 0, 1, 2; i, j, k, l, m, n = 0, 1, 2, 3; A, B, C, D = 1, 2.

For each group the summation rule is assumed. If ∇ denotes the connection defined by g, the
connection coefficients Γ j

i
k in the frame ek satisfy ∇ jek ≡ ∇e jek = Γ j

i
kei and Γ jlk = −Γ jkl

with Γjlk = gliΓ j
i
k. The second fundamental form induced on Tc in the frame ea and the mean

extrinsic curvature of the hypersurfaces Tc are given by

χab ≡ g(∇eae3, eb) = −g(e3,∇eaeb) = Γa
3

b = Γ(a
3

b),

χ ≡ gabχab = g jkΓ j
3

k = ∇μeμ3, (2.6)

respectively. Because

Daec ≡ Deaec = Γa
b

ceb, (2.7)

the Γa
b

c define the inner connection D on Tc. The Fermi condition implies

Γ0
A

B = 0, (2.8)

De0 e0 = FAeA, De0 eA = −FAe0 with FA = Γ0
A

0, FA = ηABFB. (2.9)

The freedom of choosing the function x3 and the time-like vector field e0 we started with
finds new expression in this formalism. With ea as given above the functions FA = FA(xμ) fol-
low from these formulas. We can, however, also think of the functions FA as being at our free
disposal. If we solve equation (2.9) on Tc with arbitrarily prescribed functions FA = FA(xα, c)
and initial data satisfying g(ea, eb) = ηab on Sc and e0 orthogonal to Sc, the solution will sat-
isfy the relation g(ea, eb) = ηab on Tc. Since the field equations (2.12)–(2.14) do not provide
propagation equations for the FA this suggests to consider these functions in the reduced field
equations as smooth gauge source function that can be freely prescribed. With the special
choice

FA = 0, (2.10)

the field e0 will be D-geodesic and the fields eA parallel propagated. More general choices of
FA may allow one to avoid the development of caustics.

The freedom of choosing the leaves Tc of the foliation defined by the function x3 is
encoded in the mean extrinsic curvature χ = χ(xα, c) induced on Tc. It will be discussed
below in detail how Tc is determined by χ = χ(xα, c) and the initial data on S ∩ W. Since
equations (2.12)–(2.14) do not provide a propagation equation for χ this function will be con-
sidered as a gauge source function that will be represented by a smooth function f = f (xμ) in
the reduced field equations. There is, however, a slight difference with the FA. The function
χ(xα, 0) will be used as a free boundary datum on T that determines the form of T . While the
function f can be freely extended into the interior of the solution space-time, it must thus be
given so that f (xα, 0) = χ(xα, 0) on T.

Due to the compactness of Σ, whence of Sc = S ∩ Tc, the coordinates xα, α = 1, 2 and,
in general, also the frame vector fields eA are only defined locally on Sc. If they have to be
redefined on some overlap region U in W ∩ S it is important to note that the corresponding
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transformation is explicitly controlled along the integral curves of e0 by the propagation laws
imposed above and the transformation on U.

If the frame is subject to a transformation eA → eA′ = sA
A′eA in some overlap patch

U ⊂ S ∩ W with some point dependent transformation sA
A′ ∈ SO(2) on Sc, we must require

FA → FA′
= sA′

BFB whence FA → FA′ = sA
A′FA with sA

A′sA′
B = δA

B,

to preserve the first of equation (2.9) and the second equation then requires

De0 sA
A′ = 0,

which allows us to control the corresponding transformations

ηAB → ηA′B′ = ηABsA
A′sB

B′ , βAB → βA′B′ = βABsA
A′sB

B′ ,

along the integral curves of e0.
In the coordinates xα, α = 1, 2 described above f is assumed to be smooth with local

representation f = f (x0, xα, x3) on W. If the coordinates are subject on a subset of Σ to a
transformation xα → xβ

′
= xβ

′
(xα) with inverse xα = xα(xβ

′
), this transformation transfers

by the rules (2.3) and (2.4) into W , which allows us to control explicitly the new coordinate
representation f ′ = f ′(x0, xα

′
, x3) = f (x0, xβ(xα

′
), x3). In a similar way transform the coordi-

nate representations of the functions FA on W and of the functions χ, ηAB, βAB, α, and β on T
discussed below.

2.2. The field equations

The basic unknowns in the representation of the field equations used in [7] are

eμk, Γk
i

j, Ci
jkl, (2.11)

where Ci
jkl is a tensor field with the algebraic properties of a conformal Weyl tensor which for

a solution of the equations will in fact assume that meaning. The field equations are given by
the torsion free condition

[ei, e j] = (Γi
k

j − Γ j
k

i)ek, (2.12)

where the square bracket denotes the commutator of the vector fields, the curvature relation

ek(Γl
i

j) − el(Γk
i

j) + 2Γ[k
i
|m|Γl]

m
j − 2Γm

i
jΓ[k

m
l] = Ci

jkl, (2.13)

where the left-hand side gives the curvature of the connection ∇ in terms of the connection
coefficients and the frame, and the vacuum Bianchi identity

∇iC
i
jkl = 0. (2.14)

2.2.1. Splittings of the conformal Weyl tensor. In the following we shall need two different
decompositions of the conformal Weyl tensor. The decomposition used in [7] is defined by the
time-like frame vector field n = e0. The N-electric and the N-magnetic part of the conformal
Weyl tensor are given by

En
ik = pi

m pk
nCmjnln

jnl, Bn
ik = pi

m pk
n 1

2
Cmjpqε

pq
nln

jnl,

respectively, where εi jkl = ε[i jkl] with ε0123 = 1 and pi j = gi j − nin j. These tensors are symmet-
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ric, trace free, and spatial in the sense that niEn
ik = 0 and niBn

ik = 0. It holds

Cijkl = 2
(
q j[kEn

l]i − qi[kEn
l] j − n[kBn

l]mε
m

i j − n[iB
n
j]mε

m
kl

)
,

with qi j = gi j − 2nin j and ε jkl = niεi jkl = ε0 jkl, and also

Cmnpqnm pn
jp

p
k pq

l = C0npq pn
jp

p
k pq

l = −Bn
jmε

m
kl,

Cmnpq pm
i p

n
jp

p
k pq

l = 2
(

pj[kEn
l]i − pi[kEn

l] j

)
.

The second decomposition is defined by the space-like frame vector field N = e3. The
N-electric and the N-magnetic part of the conformal Weyl tensor are given by

EN
ik = km

i kn
kCmjnlN

jNl, BN
ik = km

i kn
k

1
2

Cmjpqε
pq

nlN
jNl.

These tensors are symmetric, trace free, satisfy NiEN
ik = 0, NiBN

ik = 0, and

Cijkl = 2
(
−l j[kEN

l]i + li[kEN
l] j + N[kBN

l]mε̄
m

i j + N[iB
N
j]mε̄

m
kl

)
,

where ki j = gi j + NiN j, li j = gi j + 2NiN j, ε̄ijk = εijklNl = εi jk3. It holds

CmnpqNmkn
jk

p
kkq

l = C3npqkn
jk

p
kkq

l = −BN
jmε

m
kl,

i.e.

C3
abc = BN

adε
d

bc3 or BN
ad =

1
2

C3abcεbc
3d,

and

Cmnpqkm
ik

n
jk

p
kkq

l = 2
(
−k j[kEN

l]i + ki[kEN
l] j

)
.

The different parts are related by

BN
00 = C0312 = Bn

33, BN
01 = C0302 = En

23, BN
02 = C0310 = −En

13,

BN
10 = C1312 = En

32, BN
11 = C1302 = −Bn

22, BN
12 = C1310 = Bn

12,

BN
20 = C2312 = −En

13, BN
21 = C2302 = Bn

12, BN
22 = C3201 = −Bn

11,

EN
00 = C0303 = En

33, EN
01 = C0313 = −Bn

32, EN
02 = C0323 = Bn

31,

EN
10 = C1303 = −Bn

32, EN
11 = C1313 = −En

22, EN
12 = C1323 = En

12,

EN
20 = C2303 = Bn

31 EN
21 = C2313 = En

21, EN
22 = C2323 = −En

11.

2.2.2. The Gauss–Codazzi equations. The tensor

ki j = gi j + NiNj = ηabδ
a

iδ
b

j,

represents the metric induced on the hypersurfaces Tc. We shall need the well known equations
which relate the curvature tensor Ri

jkl[g] of the metric g to fields living on the hypersurfaces
Tc. Gauss’ equation, which reads in our formalism

R̄a
bcd[k] = Ra

bcd[g] − χc
aχdb + χd

aχcb, (2.15)

8
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relates it to the curvature tensor R̄a
bcd[k] of k and the second fundamental form. Codazzi’s

equation

Dcχdb − Ddχcb = R3
bcd[g], (2.16)

relates it to Tc-intrinsic derivatives of the second fundamental form. With the well known
decomposition of the curvature tensor on three-dimensional spaces and the relations on the
Weyl tensor above, Gauss’ equation can be written on vacuum solutions

kb[dRc]a[k] + ka[cRd]b[k] +
1
3

R[k]ka[dkc]b

= 2
(
kb[dEN

c]a + ka[cEN
d]b

)
− χcaχdb + χdaχcb,

where Rab[k] and R[k] denote the Ricci tensor and the Ricci scalar of k. A contraction gives

1
2

(
Rdb[k] +

R[k]
3

kdb

)
= EN

db − χχbd + χ c
d χbc. (2.17)

Codazzi’s equation takes on a vacuum solution the form

Dcχdb − Ddχcb = C3
bcd = BN

beε
e

cd3. (2.18)

2.2.3. Reduced equations and boundary data. In the following a few remarks will be made
on the reduced equations, the initial and boundary data, the corner conditions, and the sub-
sidiary equations. For details (which are sometimes slightly rewritten here) the reader is
referred to [7].

With the gauge conditions and the gauge source functions FA = FA(xμ) and f = f (xμ)
equations (2.12)–(2.14) imply a symmetric hyperbolic system of reduced equation for the
unknowns

eβa, eμ3, ΓA
B

0, ΓA
B

C, Γ3
A

B, Γ3
A

0, Γ3
3

A, Γ3
3

0,

χ01, χ02, χ11, χ12, χ22, Bn
ab, En

ab.

The field χ00, which only occurs in non-differentiated form in these equations, is taken care of
by writing χ00 = χ11 + χ22 + f .

The initial data on S are given by standard Cauchy data, i.e. a solution to the vacuum
constraints on space-like hypersurfaces, which extend smoothly to the boundary Σ of S.

To describe the boundary conditions we consider the trace free parts of the orthogonal
projections of the N-electric and N-magnetic parts of the conformal Weyl tensor on T into
the planes orthogonal to e3 and e0. The corresponding symmetric trace free tensors ηAB and
βAB, which by the relations given above can also be expressed in terms of the N-electric and
N-magnetic parts of the conformal Weyl tensor, are given by

β11 = −β22 = −1
2

(C3201 + C3102) =
1
2

(Bn
11 − Bn

22) =
1
2

(BN
11 − BN

22), (2.19)

β12 = β21 = C3101 = Bn
12 = BN

12,

9
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and

η11 = −η22 =
1
2

(C1010 − C2020) =
1
2

(En
11 − En

22) =
1
2

(EN
11 − EN

22), (2.20)

η12 = η21 = E12 = C1020 = En
12 = EN

12.

In terms of the pseudo-orthonormal frame l, k, m satisfying (with e3 inward pointing)
√

2l = e0 + e3,
√

2k = e0 − e3,
√

2m = e1 − ie2,

and the Newman–Penrose notation for the curvature tensor, the relevant components of the
conformal Weyl tensor are given by

Ψ0 = Cμνσπlμmν lσmπ = η11 + β12 + i(β11 − η12),

Ψ4 = Cμνσπm̄μkνm̄σkπ = η11 − β12 + i(β11 + η12).

The boundary conditions of [7] then take the form

f = χ, −Ψ4 + αΨ0 + βΨ̄0 = q on T, (2.21)

where α and β are complex-valued functions on T that satisfy

|α|+ |β| � 1, (2.22)

and q, the main datum besides χ on T , is a smooth complex-valued function on T that can
be prescribed, consistent with the conditions discussed below, freely. Condition (2.22), which
looks simpler than the corresponding condition given in [7], is obtained from the latter by
diagonalizing the matrix B used there to express the restrictions on α and β.

As special examples, which will be of interest below, we note that the admissible choice
α = 0 and β = 1 results in the boundary condition

q = 2(β12 − iβ11) = 2Bn
12 − i(Bn

11 − Bn
22) = 2BN

12 − i(BN
11 − BN

22) on T. (2.23)

It only involves magnetic parts. The choice α = 0, β = −1 gives the boundary condition

q = −2(η11 + iη12) = En
22 − En

11 − 2iEn
12 = EN

22 − EN
11 − 2iEN

12 on T, (2.24)

which only involves electric parts of the conformal Weyl tensor.
To determine a smooth solution, the initial and the boundary data must satisfy a consistency

condition, the so-called corner condition at the edge Σ. Because the reduced equations with
given f and FA are symmetric hyperbolic, the Cauchy data on S determine in our gauge a
unique formal expansion type solution on S = {x0 = 0}. For given functions α and β this
expansion determines, in particular, a unique formal expansion of the fields on the left hand
sides of (2.21) at Σ. The corner conditions require the data χ and q on the right hand sides to
be prescribed consistent with these expansions at Σ.

For given Cauchy data it is always possible to find boundary data that satisfy this condition,
which leaves the right hand sides of (2.21) essentially arbitrary away from Σ. If the boundary
data are supposed to satisfy certain conditions, possibly suggested by some intended applica-
tion, it requires an extra effort (and may not be possible) to construct Cauchy data, i.e. solutions
to the constraint equations on S, that meet these requirements.

The main result of [7] says (in the notation introduced above):

10
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Let be given smooth Cauchy data for Einstein’s vacuum field equations on the compact
three-manifold S with boundary Σ and smooth boundary data

χ, q and functions α, β on T = R
+ × Σ, (2.25)

satisfying (2.22). Choose on M = R
+ × S smooth gauge source functions f with f = χ on

T and FA that satisfy together with the initial and boundary data the corner conditions at Σ
defined by the reduced field equations. Then there exists for some x0

∗ > 0 a unique smooth
solution g to Einstein’s vacuum equations on the manifold M′ = [0, x0

∗ [× S ⊂ R
+ × S so that

S ≡ {0} × S is space-like, T ′ = [0, x0
∗ [× Σ ⊂ T is time-like, g induces the given Cauchy data

on S, χ acquires on T ′ the meaning of the mean intrinsic curvature induced on T ′ by g and
q coincides with the function of the conformal Weyl tensor of g on the left-hand side of the
second equation of (2.21).

The first step to arrive at this result consists in setting up local initial boundary value prob-
lems for the reduced field equations and showing the existence of local solutions near given
points of Σ. In a next step the local solutions are patched together to obtain a solution covering
a neighbourhood of Σ. Because, as pointed out above, the transformations between local solu-
tions can be explicitly controlled, there arises no problem. The solution near Σ is then patched
together with the solution to the Cauchy problem for the reduced equations that is determined
by the data on S.

This establishes the existence of a unique solution to the reduced equations on a manifold of
the form M′ = [0, x0

∗ [× S. In a final step a hyperbolic subsidary system is derived that supplies
an argument that the solution to the reduced equations is in fact a solution to the Einstein
equations.

Suppose (M, g) is a ST-vacuum solution. After choosing a gauge as above one can read
off the data induced on S and T and the gauge source functions f and FA near T (the corner
conditions will, of course, be satisfied). Our result then shows that local in time the given
ST-vacuum solution will be reconstructed uniquely by our method. Thus local in time all ST-
vacuum solutions are covered by the existence result above.

3. Time-like hypersurfaces and mean extrinsic curvature

In this section we discuss the basic equation associated with the mean extrinsic curvature on
time-like hypersurfaces. We consider then the case of CMC and derive the equations which are
in this case implicit in the formulation of the initial boundary value problem of [7]. It follows
a discussion of totally geodesic boundaries.

3.1. The basic equation

Let (M, g) be a four-dimensional space-time, S a space-like hypersurface which we assume
for convenience to be a Cauchy hypersurface of M, and T a time-like hypersurface which
intersects S so that it cuts out from it a compact three-dimensional manifold S with compact
space-like boundary Σ = S ∩ T . The sets S and Σ may be thought of as identical with the
ones labelled by the same symbols in the previous section. The set T does represent a space-
time boundary but serves as a subsidiary hypersurface to establish a certain equation. It is
fairly arbitrary, only when we arrive at condition (4.11) we will need to restrict it, together
with the coordinates zμ introduced below, further. The metric g is not required to satisfy any
field equation. In the following the coordinate indices α, β, γ, δ take values 0, 1, 2 while the
coordinate indices κ,λ, μ, ν, π, ρ take values 0, 1, 2, 3.

11
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Let z0, z3 with dz0 �= 0, dz3 �= 0 denote smooth functions defined on a neighbourhood
of Σ so that S = {z0 = 0}, T = {z3 = 0}, and z3 > 0 on S on that neighbourhood. Set
Sc = {z0 = 0, z3 = c = const.} for 0 � c < c∗ so that S0 = Σ. By our assumptions we have
g00 = g#(dx0, dx0) > 0 on S, g33 = g#(dx3, dx3) < 0 on T , and thus g00 > 0 and g33 < 0 on
the Sc for suitably chosen c∗ > 0. In the following this will always be assumed.

The functions z0, z3 are complemented by functions z1, z2 so that the zμ define local coordi-
nates, z1, z2, z3 define local coordinates on S, z1, z2 define local coordinates on the Sc, and z0,
z1, z2 define local coordinates on T . The vector field ∂z0 is future directed.

To construct a time-like hypersurface Tc with Tc ∩ S = Sc whose mean extrinsic curvature
coincides with a given functionχ we assume it to be essentially given as the graph of a function
φ = φ(zα) over T so that

Tc = {Φ(zμ) = c} where Φ(zμ) = z3 − φ(zα) with (3.1)
φ|z0=0 = 0 whence φ,α|z0=0 = δ0

αφ,0 on Sc.

For Tc to be time-like we need

∇νΦ∇νΦ = g33 − 2g30φ,0 + g00φ,0φ,0 < 0 on Sc. (3.2)

This inequality is satisfied if

g03

g00
−

√
−g33

g00
+

(
g03

g00

)2

< φ,0 <
g03

g00
+

√
−g33

g00
+

(
g03

g00

)2

. (3.3)

Since g33 < 0 and g00 > 0 on Sc the roots are real and the unit normal to Tc will be well defined
near Sc and given by the restriction to Tc of the vector field

Nμ = ν∇μΦ = ν(gμ3 − gμαφ,α), (3.4)

with

ν = −(−∇νΦ∇νΦ)−
1
2 = −(−g33 + 2g3αφ,α − gαβφ,αφ,β)−

1
2 .

The gradient fields in brackets on the right-hand side of (3.4) are orthogonal to {x3 = c} and
S respectively and thus to the tangent spaces T pSc of Sc. With φ,0 varying in the range (3.3) the
vector Nμ exhausts all space-like directions in the two-plane orthogonal to the tangent space
T pSc of Sc. That plane contains the time-like vector

Tμ = (g03 − φ,0g00)gμ3 − (g33 − φ,0g03)gμ0, (3.5)

which is orthogonal to N and T pSc and unique up to a factor. It follows with (3.2)

g33 − φ,0g03 <
1
2

(g33 − g00φ2
,0) < 0 on Sc near Σ. (3.6)

The metric induced on Tc is given by

kμν = gμν + NμNν , (3.7)

the induced second fundamental form is given by

χμν = k κ
μ k λ

ν ∇κNλ = νk κ
μ k λ

ν ∇κ∇λΦ, (3.8)

= −νk κ
μ k λ

ν (φ,αβδ
β
κδ

α
λ + Γκ

ρ
λ(δ3

ρ − φ,αδ
α
ρ))

12
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and the mean extrinsic curvature by

χ = kμνχμν = kμν∇μNν = ∇μNμ = νkμν∇μ∇νΦ.

The equation which controls the evolution of φ and thus of Tc thus reads

−νkαβφ,αβ − νkμν (Γμ
3
ν − Γμ

α
νφ,α) = χ, (3.9)

where here and in the following the background fields gμν Γμ
ρ
ν as well as ν, kμν etc have to

be taken at the points (zα, z3) = (zα,φ(zα) + c).
In the following we will consider the zα also as coordinates on Tc. A vector field on Tc

will then be of the form X = Xα∂zα . Considered as a vector field in M is must be written
X′ = Xα∂zα + φ,αXα∂z3 . It holds then g(X′, Y ′) = k̄(X, Y) with k̄ the pull back k̄ of kμνdzμdzν

to the hypersurface Tc = {(zμ) = (zα,φ(zα) + c)}. It coincides with the pull back of gμνdzμdzν

to Tc and is given by

k̄ = k̄αβ dzα dzβ = (gαβ + 2g3(αφ,β) + g33φ,αφ,β )dzαdzβ. (3.10)

As long as Tc is time-like this metric is Lorentzian.
The principal part of equation (3.9) is governed by the symmetric tensor

kαβ = k̄αβ ≡ gαβ + ν2(gα3 − gαγφ,γ )(gβ3 − gβδφ,δ) on Tc, (3.11)

with

ν2 = (−g33 + 2g3αφ,α − gαβφ,αφ,β )−1.

It satisfies

k̄αβ k̄βγ = δβα.

Suppose χ is is a given function of four variables. We write then χ = χ(zα,φ(zα) + c) on the
right-hand side of (3.9). Equation (3.9) defines then a quasi-linear wave equation for φ. With a
given, sufficiently small constant c, a given right-hand side χ as above, and initial data φ and
φ,0 on Sc that satisfy (3.1) and (3.2) it determines a unique solution φ near Sc for which the
hypersurface Tc = {z3 = φ(zα) + c} is time-like. Because of the smooth dependence of the
solutions on c, the initial data and χ, the hypersurfaces Tc represent the leaves of a smooth
local foliation of M near Σ that defines a smooth function x3 with x3 = c on Tc.

3.1.1. Boundaries of constant mean extrinsic curvature. The coordinate dependence of the
function χ has been specified above in a somewhat cursory way. In the context of the initial
boundary value problem it requires in general further considerations. There is, however, a case,
pointed out already in [7], where things simplify considerably. If the data (2.21) are given with

χ = χ∗ = constant on T, (3.12)

we can set f = χ∗ near T. Equation (3.9) simplifies and the construction of the hypersurfaces
Tc and the coordinate x3 completely decouples from setting up the frame vectors ea and coor-
dinates xα and thus from the choice of the FA. The reduced equations will ensure that their
solution satisfies χ = χ∗ near T.

13
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Simple though not uninteresting examples of such situations are given by the hypersurfaces
T = {r = const. > 2m} of the Schwarzschild solution in standard Schwarzschild coordinates.
Their mean extrinsic curvature is given by

χ = −
√

1 − 2m
r

(
2r − 3m

r(r − 2m)

)
. (3.13)

This still leaves the freedom to prescribe as a datum the function q in (2.21) on T . Its deviation
from the Schwarzschild values may be thought of as representing ingoing or outgoing gravi-
tational radiation. The situation changes if we consider the Kerr solution in Boyer–Lindquist
coordinates. The mean extrinsic curvature of the hypersurface T = {r = const. > 2m} is then
given by

χ = −1
2

√
r2 − 2mr + a2

r2 + a2 cos2 θ

{
2(r − m)

r2 − 2mr + a2
+

2r
r2 + a2 cos2 θ

}
.

3.1.2. Totally geodesic boundaries. An even more restricted case is considered by Fourno-
davlos and Smulevici [3], who study the existence of solutions with boundaries that are totally
geodesic, emphasizing that the problem of geometric uniqueness discussed in [6] is absent
here. We consider this situation here again because the present formalism sheds additional
light onto the special nature of these issues in this case.

In general we are free to prescribe three functions on the boundary. On the face of it, the
conditionχab = 0, needed to make the boundary totally geodesics, thus looks much too strong.
Precisely because all components of χab are required to vanish, it turns out, however, that the
problem can be reduced to the prescription of three functions. Suppose (M, g) is a ST vacuum
solution with totally geodesic time-like boundary T so that χab = 0 on T . To set up a gauge as
described in section 2, we can use equation (3.9) with χ = 0 on the right-hand side to construct
the function x3, which has been handpicked before, so that f = 0 near T. For convenience we
can then require (2.10) near T .

The Codazzi equation (2.18) implies with our assumption that

BN
ab = 0 on T, (3.14)

and thus the, by (2.23) admissible, boundary conditions

χ = 0, β12 = BN
12 = 0, β11 =

1
2

(BN
11 − BN

22) = 0 on T. (3.15)

Together with the Cauchy data induced by g on S these boundary conditions determine the
solution uniquely near S. Because the solution is smooth, the corner conditions are satisfied,
which guarantees that

χab = 0 on Σ. (3.16)

This shows that in our setting conditions (3.15) and (3.16) must necessarily be satisfied. It
turns out that the boundary conditions (3.15) and initial data satisfying (3.16) are also sufficient
for the construction of solutions with totally geodesic boundary. In fact, the reduced equations
derived in [7] under general assumptions comprise the subsystem

D0χ01 − D1χ11 − D2χ12 = D1( f ),

D0χ02 − D1χ12 − D2χ22 = D2( f ),

14
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D0χ11 − D1χ01 = −β12,

2D0χ12 − D1χ02 − D2χ01 = 2β11,

D0χ22 − D2χ02 = β12,

where f = χ00 − χ11 − χ22, β11 =
1
2 (Bn

11 − Bn
22) = 1

2 (BN
11 − BN

22) and β12 = Bn
12 = BN

12.
Because the vector fields ea are tangential to T this subsystem defines a system intrinsic to
the boundary T. It is symmetric hyperbolic. With the boundary condition (3.15) the right
hand sides of the equations vanish on T. Observing the consistency condition (3.16), we can
conclude, without explicit knowledge of the frame and the connection coefficients on T , that
χab = 0 on T .

The argument shows that every ST-vacuum solution with totally geodesic boundary T can
be obtained locally in time by solving the initial boundary value problem with boundary condi-
tions that satisfy (3.15) and Cauchy data that imply (3.16). The main problem of characterizing
all such solutions then reduces to the construction of Cauchy data for Einstein’s vacuum field
equations on three-manifolds S with boundary Σ for which the reduced equations determine a
formal expansion with χab = 0, BN

ab = 0 on Σ.
The particular choice of the gauge source functions made here is convenient but nowhere

enters the argument. In fact, because of (3.14) conditions (3.15) will be satisfied in any frame.
The obstructions to geometric uniqueness pointed out in [6] simply do not occur in this par-
ticular case. Anyway, the discussion of [6] does not ask so much for specific cases in which
geometric uniqueness may hold but refers to the general problem with the complete freedom
of prescribing three functions as boundary data.

In the case of anti-de Sitter type solutions that admit a smooth conformal boundary J at
space-like and null infinity, the boundary is totally geodesic in a suitable conformal gauge as
consequence of the field equations. Nevertheless, there is the freedom, in a sense similar to the
second of conditions (2.21), to freely prescribe on J two functions derived from the conformal
Weyl tensor. Moreover, with a condition similar to (2.23) the boundary conditions can be stated
in a completely geometric way [5].

Since the Codazzi equation so much simplifies the above argument one may wonder whether
something similar could be done by imposing conditions on the metric induced on T and using
Gauss’ equation (2.17). Because of the occurrence of the second fundamental form in that
relation there appears to be no obvious way.

4. Prescribed mean extrinsic curvature

The case of point dependent mean intrinsic curvature is complicated because the function χ
(or the gauge source function f ) is not given in terms of some arbitrary coordinates like the
zα considered above. A relation like: χ = χ(xα

′
, c) on Tc or f = f (xα

′
, c) on Tc in section 2

is saying that we must think of χ or f as being given in the specific coordinates xα
′

on Tc

that are obtained by solving equations (2.2)–(2.9) on Tc. We write xα
′

here to distinguish the
index coming with x from the completely unrelated index of zα.While the function f can be
chosen freely away from the boundary T = T0, the free data must be specified on T in some
distinguished coordinate system. This coupling between the gauge on T and the way boundary
data are prescribed, which is a specific feature of the initial boundary value problem, cannot
be avoided unless the boundary conditions are completely stated in terms geometric structures
(see the discussion in [6]). The functions FA = FA(xα

′
) will have to play a role when we specify

χ or f .
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Equations (2.2), (2.4) and (2.9), i.e.

De0 xα
′
= δα

′
0, De0 e0 = FAeA, De0eA = −FAe0, (4.1)

are defined in terms of structures supposed to be induced by the ambient space-time on the
hypersurface Tc which we want to determine by solving equation (3.9). The right-hand side
of the latter must thus be arranged so as to correspond in the coordinates xα

′
to the datum

χ = χ(xα
′
, c) (or f = f (xα

′
, c)) assumed as known.

This suggests to consider FA(xα
′
, c), f (xα

′
, c),χ(xα

′
, c) as given functions and use (4.1) with

FA = FA(xα
′
(zβ , c), c) as a system of equations for xα

′
= xα

′
(zβ , c) and the frame vectors ea.

The latter are thought to be given in the form eαa∂zα with eαa = eαa (zβ) and can be expressed in
terms of the coordinates xα

′
once the coordinate transformation is available on Tc. The system

(4.1) must be coupled to (3.9) with χ = χ(xα
′
(zβ , c), c) or f = f (xα

′
(zβ , c), c) on the right-

hand side to determine φ and thus Tc. The dependence of the various functions on c will often
be suppressed in the following because we mostly work with a fixed c.

This recipe does not work immediately. Two of equation (4.1) involve the Levi-Civita
connection D of the metric k̄αβ on Tc by (3.10), and thus the Christoffel symbols

ζ̄α γ
β
=

1
2

k̄βδ(k̄δγ,α + k̄αδ,γ − k̄αγ,δ) on Tc. (4.2)

They depend on the functions gμν(zα,φ(zα) + c), their derivatives gμν,β(zα,φ(zα) + c) +
gμν,3(zα,φ(zα) + c)φ,β , on the φ,α, and in particular on the second derivatives φ,αβ . To control
these functions we write equation (3.9) in the form

−νkαβφ,αβ − F = χ(xα
′
(zβ)), (4.3)

with

0 = Dγ(eα0Dαxβ
′
) = eα0DγDαxβ

′
+ Dγeα0Dαxβ

′

= De0 (Dγxβ
′
) + Dγeα0(Dαxβ

′
),

where the background function depend on (zα,φ(zα) + c). To obtain an equation that supplies
the φ,αβ , we apply ∂zγ to the equation above and obtain

−νkαβ(φ,γ),αβ − G = ∂xα′χ∂zγ xα
′

(4.4)

with some function

G = G(φ,φ,α,φ,αβ , background),

where the background functions now involve (zα,φ(zα),φ,β(zα)). For given smooth functions

xα
′
(zβ) the two equations above define a system of wave equations for φ and φ,α. In addition

to xα
′
(zβ) the right-hand side of (4.4) requires, however, also control of

∂zγ xα
′
= Dγxα

′
. (4.5)

The solvability of the coupled system (4.1), (4.3) and (4.4) thus depends on the possibility to
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implement equations for this field. The first of equation (4.1) implies

0 = Dγ(eα0Dαxβ
′
) = eα0DγDαxβ

′
+ Dγeα0Dαxβ

′

= De0 (Dγxβ
′
) + Dγeα0(Dαxβ

′
).

To obtain equations for Dγeαa we use

De0 (Dγeβ a) = eα0DγDαeβ a + Rβ
δαγ[k̄]eα0eδ a

= Dγ(De0eβ a) − (Dγeα0)(Dαeβ a) + Rβ
δαγ[k̄]eα0eδ a.

For the first term on the right-hand side we get from equation (4.1)

Dγ(De0eβ 0) = FA
,xα′

(Dγxα
′
)eβA + FA(DγeβA),

Dγ(De0eβA) = −FA,xα′ (Dγxα
′
)eβ 0 − FA(Dγeβ 0).

Thus together

De0 (Dγxβ
′
) = −Dγeα0(Dαxβ

′
), (4.6)

De0 (Dγeβ 0) = FA
,xα′

(Dγxα
′
)eβA + FA(DγeβA) (4.7)

−(Dγeα0)(Dαeβ 0) + Rβ
δαγ [k̄]eα0eδ 0,

De0 (DγeβA) = −FA,xα′ (Dγxα
′
)eβ0 − FA(Dγeβ0), (4.8)

−(Dγeα0)(DαeβA) + Rβ
δαγ[k̄]eα0eδ A.

These equations involve the curvature tensor of k̄. Because the Christoffel symbols depend on
φ,αβ we can expect third derivatives of φ to enter the expression for the curvature tensor of k̄.
Because the background is known, however, we can use Gauss’ equation

Rβ
δαγ [k̄]eα0eδ a = (4.9)

(
3∑

ρ,π,μ,ν=0

Rρ
πμν[g]kβρkπδk

μ
αkν γ − χβ

αχδγ + χβ
γχδα

)
eα0eδ a,

where the background field Rρ
πψν[g] is taken at (zα,φ(zα) + c) and (3.7) and (3.8) are used. The

terms in large brackets only contain φ,α and φ,αβ .
With (4.9) taken into account, the system (4.1), (4.3), (4.4) and (4.6)–(4.8) provides the

desired closed system for the unknowns

xα
′
, xβ

′
,α, eβa, Dαeβa, φ, φ,α. (4.10)

The initial data on Sc are determined, respectively chosen, as follows.
As in (3.1) we assume

φ|Sc = 0 so that φ,α = δ0
αφ,0 on Sc.
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The function φ,0 must be chosen on Sc so as to satisfy (3.3). Later on we will be led to consider
the further condition (4.11).

The unique future directed unit vector field orthogonal to N and Sc is given by

eμ0 =
Tμ√

(gνρTνTρ)
on Sc,

where Tμ is the vector field (3.5) on Sc which will be tangential to Tc. Because e3
0 = φ,0e0

0 =
φ,αeα0, eμ0 is uniquely determined by

eα0 =
Tα√

(gνρTνTρ)
=

Tα√
(k̄αβTαTβ)

= ν
(g03 − φ,0g00)gα3 − (g33 − φ,0g03)gα0√

(g03)2 − g33g00
on Sc.

It satisfies

e0
0 = ν

√
(g03)2 − g33g00 > 0.

The fields eαA are chosen tangential to Sc so that e0
A = 0, whence k̄αβeα0eβA = 0. They are

required to satisfy

k̄αβeαAeβB = k̄C DeC
AeD

B = gC DeC
AeD

B = −δAB.

The forms dual to ea are denoted by σa = σa
α dzα so that σa

αeαb = δa
b. We assume

x0′ = 0, whence x0′
,A = 0 on Sc.

With the zA defining local coordinates on Sc, we choose local coordinates x A ′
= x A ′

(zA) on
Sc, which give xA′

,A on Sc with det(xA′
,A) �= 0. Following (2.5) we need to require δα

′
0 = eα

′
0 =

eα0xα
′
,α which implies

x0′
,0 =

1
e0

0

, xA′
,0 = − 1

e0
0

eA
0xA′

,A, e0′
A = 0.

It remains to determine

Dαeβ b = σa
αDea eβb.

By (2.9) we must set, with the right hand sides given by the fields obtained so far,

De0 eβ 0 = FAeβA, De0 eβA = −FAeβ 0 on Sc.

With the given information we can finally calculate

DeA eβ 0, DeA eβB on Sc,

by using the Christoffel symbols (4.2). These involve the functions φ,αβ on Sc. From the data
given above we get

φ,AB = 0 φ,0B = (φ,0),B on Sc.
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To obtain φ,00 we solve (3.9) on Sc for kαβφ,αβ and observe that by (3.11)

k00 = k̄00 ≡ g00 + ν2(g03 − g00φ,0)2 > 0 on Sc.

To discuss the solvability of our system we consider its principal part.
The first four of the unknowns (4.10) can be combined to an R

j-valued unknown w that
satisfies an equation of the form

eα0w,α = . . . ,

while the remaining unknowns combine to an R
l-valued unknown u that satisfies an equation

of the form

k̄αβu,αβ = . . . .

That e0 is time-like with respect to k̄αβ suggests that the coupled system can be written as a
quasi-linear, symmetric hyperbolic system of first order [8].

In fact, in terms of the auxiliary unknowns vα ≡ u,α the equation for u implies the system
of first order

u,0 = v0,

k̄00v0,0 + 2k̄0Av0,A + k̄A BvA,B = . . .

−k̄ABvB,0 + k̄ABv0,B = 0,

and the equations for w writes

e0
0w,0 + eA

0w,A = . . .

We have seen above that e0
0 > 0 and k̄00 > 0 on (whence near) Sc. If k̄AB defines a negative

definite symmetric bilinear form on (whence near) Sc, it follows that the combined system
is quasi-linear, symmetric hyperbolic. It also implies then for its solutions the integrability
condition vB,0 = v0,B and thus (vA,B − vB,A),0 = v0,AB − v0,BA = 0. With suitably given initial
data the remaining integrability conditions follow. It remains to see under which conditions
k̄AB is negative definite.

Assume a, b ∈ R, y, z ∈ R
k, k � 2, and A, B are k × k matrices so that the following matrix

equation holds with k × k unit matrix 1k(
a ty
y A

) (
b tz
z B

)
=

(
1 t0k

0k 1k

)
.

If b > 0 and A is negative definite and symmetric, i.e. tu A u < 0 for u �= 0 and tA = A, then B
is negative definite and symmetric if and only if a > 0.

In fact, the matrix equation is equivalent to the relations

by + Az = 0, ab + tyz = 1, yt z + AB = 1k, atz + tyB = 0.

The second equation implies a > 0 if y = 0. Assume that y �= 0. Being symmetric and negative
definite, A has an inverse A−1, which is also symmetric and negative definite. The first equation
implies z = −b A−1y, which gives with the second relation 1 = b(a −t x A−1y) and thus with
our assumptions

a − tyA−1y > 0, b =
1

a − tyA−1y
, z = − 1

a − tyA−1y
A−1y.
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The third and fourth equations are then satisfied with the symmetric matrix

B = A−1 +
1

a − tyA−1y
(A−1y)t(A−1y).

In terms of the positive definite matrix W = −A−1 the condition tu B u < 0 for u �= 0 translates
into

(tuWy)2 < (tyWy)(tuWu) + a(tuWu).

The Cauchy–Schwarz inequality with u = y implies that a > 0. �
Compare the matrix equation above with the relation k̄αβ k̄βγ = δγα. Since S is space-like and

k̄AB = gAB on Sc, k̄AB is negative definite. We saw above k̄00 > 0 on Sc. Thus k̄AB is negative
definite if and only if k̄00 = g00 + 2g3(0φ,0) + g33φ,0φ,0 > 0 on Sc, or

k̄00 = gμνPμPν > 0 on Sc with Pμ = δμ0 + φ,0δ
μ
3 . (4.11)

It holds NμPμ = 0. Thus Pμ is tangential to Tc on Sc, but without further assumptions it need
not be time-like. By suitable choices of the hypersurface T and the coordinates zμ, which were
rather arbitrary so far, it can be arranged that Pμ is in fact time-like on, whence near Sc with
φ,0 satisfying (3.3).

The Cauchy problem for the system (4.1), (4.3), (4.4) and (4.6)–(4.8) with initial data on
open subsets of Sc as discussed above is then well posed. The corresponding solutions define
pieces of the prospective hypersurface Tc. These local pieces can be patched together to obtain
a part of the hypersurface Tc diffeomorphic to [0, x0′

∗ [× Sc, where x0′
∗ > 0 and the unknown

x0 ′ takes values in [0, x0′
∗ [.

Because these solutions depend smoothly on the initial data and, for sufficiently small
c∗ > 0, on c ∈ [0, c∗ [, the hypersurfaces Tc define a foliation that is smooth in the sense that the
function x3 ′ obtained by setting x3 ′ = c on Tc is smooth. Moreover, the coordinates xα

′
and the

vector fields e0, eA obtained on the patches can be glued together to give smooth coordinates
and vector fields (expressed in terms of xα

′
) that satisfy equation (4.1) with the given functions

FA = FA(xα
′
, x3′ ) on the domain covered by the foliation. The mean extrinsic curvature of the

Tc is given there by χ = χ(xα
′
, x3 ′ ) (or f = f (xα

′
, x3 ′)).

5. Concluding remarks

It has been shown that the gauge based in section 2 on the choice of the function x3 and the
vector field e0, both suitably adapted to the given time-like boundary T, can be completely
reconstructed, together with the hypersurface T , on the basis of the given gauge source func-
tions f and FA. The construction imposes no conditions on the underlying space-time and, in
particular, does not require the metric to satisfy any field equation. The system of differential
equations required for this turns out to be fairly complicated and only quasi-linear. Obtaining
information about the life time of a gauge is a notoriously difficult problem. The characteriza-
tion in terms of f and FA appears particularly difficult. A closer comparison with the way the
gauge is discussed in section 2, which covers without complications a whole neighbourhood
of the given hypersurface T, may give some insight into this.

Because the system considered in section 4 looks so difficult, it may be mentioned that fixing
the gauge in terms of f and FA introduces no additional complication into the reduced system
extracted in [7] from equations (2.12) and (2.14). Part of the reason is that the curvature, which
somewhat unexpectedly enters the system derived in section 4, is already an unknown in the
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reduced system. In a similar way as equation (1.1) reduces to the relation −gνλΓν
μ
λ = Fμ if it

is expressed in terms of the coordinates xμ that solve the equation, the equations of section 4
reduce to simpler expressions if they are expressed in terms of their solution so that T coincides
with the hypersurface T0 and x3 ′ = z3 whence φ = 0. The possibility to declare a particular set
of functions as gauge source functions and the usefulness of this choice obviously depends on
the chosen representation of the field equations.
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