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We study the TT̄ deformation on multiquantum mechanical systems. By introducing dynamical
coordinate transformation, we reformulate the one-dimensional TT̄ deformation of generic quantum
mechanical systems, which is consistent with the previous proposal in the literature. We further study the
thermo-field-double state under the TT̄ deformation on these systems, which include the conformal
quantum mechanical system, the Sachdev-Ye-Kitaev model, and the model satisfying the eigenstate
thermalization hypothesis. We find common regenesis phenomena in which the signal injected into one
local system can regenerate from the other local system. From the AdS2=CFT1 perspective, we study the
deformation of Jackiw-Teitelboim gravity governed by Schwarzian action and find that these regenesis
phenomena are realized by exchanging boundaries graviton via the nonlocal TT̄ coupling.
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I. INTRODUCTION

The TT̄ deformation of field theory has recently attracted
significant research interest in field theory and holographic
duality. The TT̄ deformation of two-dimensional (2D)
rotation and the translational invariant field theory have
been defined in previous research [1–3], as being triggered
by the irrelevant and double-trace operator TT̄¼−detðTμνÞ.
Although the TT̄ deformation flows toward ultraviolet (UV),
it exhibits numerous intriguing properties, particularly its
integrability [2,4,5]. If the undeformed theory is integrable, a
set of infinite commuting conserved charges or Korteweg-
de-Vries charges exists in the deformed theory. If the theory
is maximally chaotic, the deformed theory holds the maxi-
mal chaos [6,7], which agrees with the TT̄ deformation, is
irrelevant.
The TT̄ deformation of the (0þ 1)-dimensional quan-

tum mechanical (QM) system is studied in [8,9]. When the
QM system is taken as the Sachdev-Ye-Kitaev (SYK)
model [10–15], the deformed SYK model exhibits the

maximal chaotic behavior as the undeformed model.
Moreover, the one-dimensional deformation of boson
gas has been studied in [16].
The present study analyzes the TT̄ deformation in multi-

QM systems. It is a broad class of QM’s integrable
deformations, which can be regarded as a transformation
of the Hamiltonian H → fðHÞ. As shown in [3], the TT̄
deformation on multi-QM systems effectively couple the
local system and generate a nonlocal phenomenon. In this
paper, we calculate the causal correlation caused by the TT̄
deformation on the bi-QM system, in which the two local
QM systems, labeled L and R, share the Hamiltonian in the
same form.
We will focus on a particular entangled state in the bi-

QM system, the thermo-field-double (TFD) state, in which
the local system is in a thermal state, and the local entropy
is caused by entanglement. When the QM system has
holographic duality, the geometric correspondence of the
TFD state is an eternal black hole [17,18].
When the two QM systems are coupled with each other,

and their interactions match the entanglement structure of
the TFD state, a phenomenon similar to quantum telepor-
tation appears, in which the signal injected into one QM
system can regenerate from the other QM system [19].
The teleportation of the quantum state is constructed in
the SYK model [20] and in 2D conformal field theory
(CFT) [21]. We call this phenomenon regenesis.
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The geometric correspondence is known as a traversable
wormhole [22–25], in which a signal injected into the
external black hole from one boundary at a proper time
can transverse the Einstein-Rosen bridge and reach the
other boundary. The traversability of the wormhole is
closely associated with the violation of the averaged null
energy condition (ANEC). The ANEC indicates that the
integral of null energy on a null ray must be non-negative
in any UV complete quantum field theory (QFT). The
ANEC has been proven in many particular cases [26–28].
The ANE can measure changes in the causal structure
when the matter stress tensor perturbs the solution of the
vacuum Einstein equation. When the ANE is negative,
the null ray in the unperturbed metric becomes timelike
in the perturbed metric. In classical general relativity, the
existence of a traversable wormhole implies negative ANE.
To construct a traversable wormhole, the authors of [22,23]
added the double-trace deformationsOLOR between the two
sides of the black hole. Under this deformation, the ANEC is
violated, and the Einstein-Rosen bridge of the eternal black
hole becomes traversable.
However, not all the regenesis phenomenahave geometric

correspondence in the semiclassical approximation [19,23].
The signal is injected earlier than the scrambling time in the
interference region. The backreaction to the wormhole
destroys the correlation betweenOL andOR and contributes
a nonzero phase to the correlator carrying the signal. The
signal regenerates from the other side at the time-reversed to
the injection time. Such a regenesis phenomenon is called a
“quantum traversable wormhole” [19].
The above double-trace deformation on the bi-QM system

is relevant and can change the ground state [24,25]. The
present study considers the TT̄ deformation of bi-QM
systems in the TFD state. As a double-trace deformation
with stress tensors, it is nonlocal and irrelevant. So we expect
to find regenesis phenomena contributed by UV channels. In
the usual construction of a traversable wormhole, the non-
local deformation should match the entanglement structure
of the TFD state such that the OL and OR constructing the
deformation should be initially correlated. However, the TT̄
deformation is unique and unrelated to the entanglement
structure; therefore, we expect a relatively weak but general
regenesis phenomenon.
The organization of this paper is as follows. In Sec. II,

we give a general framework of the TT̄ deformation of
single or multi-QM systems. In Sec. III, we study the first-
order TT̄ deformation of bi-QM systems in TFD states.
Taking conformal QM, the SYK model, and the system
satisfying the eigenstate thermalization hypothesis (ETH),
we discuss general regenesis phenomena in which a signal
can pass from one QM system to another QM system.
In Sec. IV, we study the TT̄ deformation in a wormhole
based on Schwarzian theory, the results of which agree
with those of the bi-QM system analysis. A summary
and a discussion of prospects are given in Sec. V, which
concludes the paper.

II. TT̄ DEFORMATION ON
(0 + 1)-DIMENSIONAL SYSTEMS

In this section, we give some general approaches to study
the TT̄ deformation on a multi-QM system.

A. Solution of TT̄ deformed Hamiltonian

Consider a pair of canonical variables fq; pg and a
HamiltonianH0ðq; pÞ. Given a solution of the Hamiltonian
equation

qðtÞ ¼ q̃ðq0; p0; tÞ; pðtÞ ¼ p̃ðq0; p0; tÞ; ð2:1Þ

in which the initial conditions are q0¼qð0Þ and p0 ¼ pð0Þ,
we consider a new Hamiltonian

H ¼ fðH0Þ ð2:2Þ

that may be in the form of the TT̄ deformed Hamiltonian
proposed in Refs. [8,9]. The new Hamiltonian equations are

q0 ¼ f0ðH0Þ
∂H0

∂p
; p0 ¼ −f0ðH0Þ

∂H0

∂x
: ð2:3Þ

The solution of the deformed theory with the same initial
condition is

qðtÞ ¼ q̃ðq0; p0; TÞ; pðtÞ ¼ p̃ðq0; p0; TÞ;
T ¼ f0ðH0ðq0; p0ÞÞt; ð2:4Þ

where T is the dynamical coordinate.
For the theory H0ðq⃗; p⃗Þ with multiple pairs of canonical

variables fq⃗ ¼ ðq1; q2;…; qnÞ; p⃗ ¼ ðp1; p2;…; pnÞg, sim-
ilarly, we can construct a new solution

qsðtÞ ¼ q̃sðq⃗0; p⃗0; TÞ; psðtÞ ¼ p̃sðq⃗0; p⃗0; TÞ;
T ¼ f0ðH0ðq⃗0; p⃗0ÞÞt; s ¼ 1; 2;…; n; ð2:5Þ

which satisfies the initial conditions q⃗0 ¼ ðq1ð0Þ;
q2ð0Þ;…; qnð0ÞÞ and p⃗0 ¼ ðp1ð0Þ; p2ð0Þ;…; pnð0ÞÞ.

B. TT deformation and dynamical coordinate

In this section, we realize the TT̄ deformation in the
(0þ 1) dimension by generalizing the dynamical coordi-
nate transformation from Refs. [29,30]. One can also
refer to recent extensive studies [31–37] in the (0þ 1)
dimension. We couple the original action S0 to a (0þ 1)-
dimensional “gravity” as

S½eμ; vμ;ϕ� ¼ Sgrav½eμ; vμ� þ S0½eμ;ϕ�; ð2:6Þ

Sgrav½eμ; vμ� ¼
1

λ

Z
dtetBðetvtÞ; ð2:7Þ
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with eμ the dynamical tetrad, B the undetermined function,
and vμ a fixed co-tetrad corresponding to the metric on
which the deformed theory lives. We can take vt ¼ 1 and
then have

vT ¼ dT
dt

; eT ¼ 1; et ¼
dT
dt

: ð2:8Þ

Take the scalar theory

S0 ¼
Z

dtet

�
1

2ðetÞ2
∂tϕ∂tϕ − VðϕÞ

�
ð2:9Þ

as an example. By introducing the canonical momentum p,
we can write it into a first-order form

S0 ¼
Z

dtet

�
1

et
p∂tϕ −H0ðϕ; pÞ

�
; ð2:10Þ

with H0 the undeformed Hamiltonian.
The equation of motion of et is

etvtB0ðetvtÞ þ BðetvtÞ − λH0 ¼ 0: ð2:11Þ

In the T coordinate, from (2.8), it becomes

dT
dt

B0
�
dT
dt

�
þ B

�
dT
dt

�
− λH0

¼ f0ðH0ÞB0ðf0ðH0ÞÞ þ Bðf0ðH0ÞÞ − λH0 ¼ 0; ð2:12Þ

where dT ¼ f0ðH0Þdt is used. It could be solved by

Bðf0ðHÞÞ ¼ λH −
λfðHÞ
f0ðHÞ þ

C
f0ðHÞ ; ð2:13Þ

where C is a constant of integration.
In the t coordinate, one can find the solution B of (2.11)

such that et ¼ f0ðH0Þ. By integrating out et in the action,
the resulting action is

S ¼
Z

dt ðp∂tϕ − fðH0ÞÞ; ð2:14Þ

where the constant term C=λ has been dropped.
For TT̄ deformation [9], we have

fðHÞ ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8Hλ

p

4λ
: ð2:15Þ

The function B is determined as

BðxÞ ¼ ðx − 1Þ2
8x2

: ð2:16Þ

Finally, one can check that the deformed Hamiltonian
satisfies the flow equation

2∂λH ¼ H2

4 − 2λH
; ð2:17Þ

which is consistent with [9]. If S0 takes the form given
by (2.9), the deformed action after integrating out et is
given by

S ¼
Z

dt

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4∂tϕ∂tϕλþ 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8λVðϕÞp

− 1

4λ

�
: ð2:18Þ

We can apply the above approach to the single 1D Liouville
action and obtain the deformed action given in [9].
We follow the dynamical coordinate transformation

proposed by [29,30] in 2D quantum field theories to realize
the TT̄ flow equation. We extend this approach to 1D;
namely, the undeformed theory couples with the 1D
massive gravity B, which can be regarded as an alternative
way to realize the TT̄ deformation. We introduce an
undetermined function B to characterize the unclear mas-
sive gravity in 1D. Our approach gives the same results
as Ref. [8]. But we work in the Minkowski signature and
use the saddle point approximation, while the authors in
Ref. [8] work in the Euclidean signature and use the exact
path integral.

C. TT̄ deformation on multifields

For the theory with multiscalars ϕ⃗ ¼ ðϕ1;ϕ2;…;ϕnÞ in
the (0þ 1) dimension, the TT̄ deformed action can be
obtained as follows. We consider the original Lagrangian

L0 ¼
1

2

X
s

ϕ0
sϕ

0
s − Vðϕ⃗Þ: ð2:19Þ

Then the Hamiltonian is

H0 ¼
1

2

X
s

psps þ Vðϕ⃗Þ; ð2:20Þ

where ps is the momentum conjugate to ϕs. We consider
the TT̄ deformation as

Hλ ¼
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8λH0

p
4λ

: ð2:21Þ

Then the deformed Lagrangian is

Lλ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 4λ

P
sϕ

0
sϕ

0
sÞð1 − 8λVðϕ⃗ÞÞ

q
4λ

: ð2:22Þ

It satisfies the flow equation
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∂Lλ

∂λ
¼ −T2

λ

1=2 − 2λTλ
; ð2:23Þ

where the deformed energy-momentum tensor is

Tλ ¼
X
s

ϕ0
s
∂Lλ

∂ϕ0
s
− Lλ: ð2:24Þ

III. CAUSAL CORRELATION CAUSED
BY THE TT̄ DEFORMATION

A. First-order TT̄ deformation on bi-QM system

We consider a QM system with Hilbert space H and
Hamiltonian H. Denote the dimension of the Hilbert space
as D ¼ dimH and the spectrum density of H as ρðEÞ. The
summation of the energy spectrum can be written as an
integral forms

P
E ¼ D

R
dEρðEÞ.

Now, we consider the two copies of the QM system
and call them QML and QMR. The Hilbert space isH ⊗ H.
The Hamiltonian is H0 ¼ HL þHR, where HL ¼ H ⊗ 1
and HR ¼ 1 ⊗ H.
We consider the global Hamiltonian as

Hλ ¼ fðH0Þ; ð3:1Þ

with

fðHÞ ¼ H þ 2λH2; ð3:2Þ

which is the TT̄ deformation (2.15) at the first order. The
TT̄ term couples QML and QMR nonlocally. Because the
TT̄ deformation is irrelevant, new mechanics is introduced
in the UV, but the ground state of the deformed theory
generally remains unchanged. We introduce the TT̄ defor-
mation of states with two strategies.

B. TT̄ quenched TFD state

1. State

We prepare the undeformed and non-normalized TFD
state as

jΨi ¼
X
E

e−βE=2jEiLjEiR ð3:3Þ

in which the reduced density matrix on each side is

ρ ¼
X
E

e−βEjEihEj: ð3:4Þ

Their normalization is

jΨ̃i¼ jΨi=
ffiffiffiffiffiffiffiffiffiffi
ZðβÞ

p
; ρ̃¼ρ=ZðβÞ; ZðβÞ¼

X
E

e−βE: ð3:5Þ

We consider the TFD state jΨi at t ¼ 0 and let it evolve
with the deformed Hamiltonian Hλ, namely,

jΨðtÞi ¼ e−itfðH0ÞjΨi: ð3:6Þ
Notably, the reduced density matrix on each side remains
unchanged, namely,

ρðtÞ ¼ ρ: ð3:7Þ
Therefore, the entanglement between QML and QMR is
independent of the time.

2. Correlation

Consider a local and Hermitian operator O acting on H.
Its two copies are

OL ¼ O ⊗ 1; OR ¼ 1 ⊗ OT; ð3:8Þ
where the transpose is taken on the energy basis of H0.
To study the causal correlation between two QM systems

under the TT̄ quench, we calculate the retarded correlator

GR
LRðt1; t2Þ ¼ −iΘðt−ÞhΨ̃j½OLðt1Þ; ORðt2Þ�jΨ̃i

¼ 2Θðt−ÞImhΨ̃jOLðt1ÞORðt2ÞjΨ̃i; ð3:9Þ
where t� ¼ t1 � t2 and OðtÞ ¼ eitHλOe−itHλ . This is the
linear response of the protocol, which is sending a signal
from QMR at time t2 and measuring QML at time t1. We
consider t− ≥ 0 below. We first calculate the correlator on
the energy basis as

hΨjOLðt1ÞORðt2ÞjΨi ð3:10Þ

¼
X
E1E2

O12O21 exp

�
−
β

2
E1 −

β

2
E2 þ it1fð2E1Þ − it2fð2E2Þ − it12fðE1 þ E2Þ

�
ð3:11Þ

¼
X
E1E2

O12O21 exp

�
−
β

2
Eþ þ 2iλt−E2

− þ itþð1þ 4λEþÞE−

�
ð3:12Þ

¼
X
E1E2

O12O21 exp

�
−
β

2
Eþ

�Z
i∞

−i∞
dβ0Kð−2iλt−; itþð1þ 4λEþÞ þ β0Þ expf−β0E−g; ð3:13Þ
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where Oij ¼ hEijOjEji, E� ¼ E1 � E2, and the kernel

Kðα; βÞ ¼ 1

2πi

Z
∞

−∞
dEe−αE

2þβE ¼ −i
2

ffiffiffiffiffiffi
πα

p exp
β2

4α
: ð3:14Þ

To analytically calculate the above transformation,
we consider the weakly coupled limit jλj ≪ 1=Eβ, where
Eβ ¼ hΨ̃jHsjΨ̃i is the energy at the inverse temperature β.
Thus, we can approximate jλjEþ ≪ 1 such that

GLRðt1;t2Þ¼hΨ̃jOLðt1ÞORðt2ÞjΨ̃i

≈ i
Z

∞

−∞
duKð−2iλt−;itþþ iuÞGWðu;βÞ; ð3:15Þ

where the half-circle Wightman correlator is GWðu; βÞ ¼
Tr½e−ðβ=2þiuÞHOe−ðβ=2−iuÞHO�=ZðβÞ. The approximation
becomes exact when tþ ¼ 0 or t− → ∞. The complex
conjugate of (3.15) shows

λ ↔ −λ; GLRðt1; t2Þ ↔ GLRðt1; t2Þ� ð3:16Þ

at the weakly coupled limit. Thus, we consider a positive
λ value.
Furthermore, at weakly coupled limit jλj ≪ 1=Eβ, we

can use the saddle point approximation u ¼ −tþ þ δu
in (3.15) when the variance

ffiffiffiffiffiffiffi
λt−

p
in the exponent is small

compared to the characteristic time in GW , namely,

GLRðt1; t2Þ≈
Z

∞

−∞
dδu

ffiffiffiffiffiffiffiffiffiffiffiffi
i

8πλt−

s
exp

−iδu2

8λt−

×

�
GWð−tþ;βÞþ

1

2
δu2G00

Wð−tþ;βÞ
�

ð3:17Þ

¼ GWð−tþ; βÞ − 2iλt−G00
Wð−tþ; βÞ: ð3:18Þ

Thus, the retarded correlator is approximated by

GR
LRðt1; t2Þ ≈ −4λt−Θðt−ÞG00

Wð−tþ; βÞ: ð3:19Þ

If the characteristic time in GW is β, such as conformal
correlators, the valid region of the approximation is
λt− ≪ β2.
This is also the result from the first-order perturbation

on λ, since

½OLðt1Þ;ORðt2Þ�¼−4iλt− _Oð0Þ
L ðt1Þ _Oð0Þ

R ðt2ÞþO½λ2�; ð3:20Þ

where Oð0ÞðtÞ ¼ eitH0Oe−itH0 . Because of the entangle-
ment structure, G00

Wð−tþ; βÞ is maximized at tþ ¼ 0.
Therefore, the signal appears from QML near the time
t1 ¼ −t2.
A similar regenesis phenomenon appears if we apply an

instantaneous TT̄ quench on the TFD state

HλðtÞ ¼ HL þHR þ 2λðHL þHRÞ2δðtÞ: ð3:21Þ

The retarded correlator at the first-order perturbation of λ is

GR
LRðt1; t2Þ ¼ −iΘðt−ÞhΨ̃j½ei2λðHLþHRÞ2Oð0Þ

L ðt1Þe−i2λðHLþHRÞ2 ; Oð0Þ
R ðt2Þ�jΨ̃i ð3:22Þ

≈ − 4λΘðt−ÞhΨ̃j _Oð0Þ
L ðt1Þ _Oð0Þ

R ðt2ÞjΨ̃i ð3:23Þ

¼ −4λΘðt−ÞG00
Wðtþ; βÞ: ð3:24Þ

When t1 ¼ −t2 ¼ t > 0, GR
LRðt;−tÞ ≈ −4λG00ð0; βÞ is

completely independent of t. The signal can instantly pass
through the system from QMR to QML.
Both kinds of TT̄ quench lead to a nonvanishing retarded

correlator. The entanglement structure of the TFD state
leads to the quantum correlation between the operator OL
and OR. Because the operators also perturb the energy
correlation, under TT̄ deformation, the quantum correlation
becomes the causal correlation. It can be described as
sending a signal into QMR at a particular time and
measuring it on QML at the reverse time with the highest
intensity, similar to the traversal phenomenon under non-
local double-trace deformation in the interference region
discussed in [19,20]. However, there is some difference
between ours and theirs. The double-trace deformations in

their setting are usually relevant, which changes IR physics.
At the same time, the TT̄ deformation is irrelevant, which
only changes the UV physics. So our regenesis could
happen instantly and without a finite waiting time. More
specifically, since the GR

LR is related to the two-point
function GW rather than four-point functions, namely
out-of-time-order correlator, it does not rely on chaos
and is not associated with the scrambling [12,38,39].

C. TT̄ deformed TFD state

1. State

Alternatively, we can prepare a new TFD state with the
TT̄ deformed Hamiltonian
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jΨλi ¼
X
E

e−βfðEÞ=2jEiLjEiR; ð3:25Þ

ρλ ¼
X
E

e−βfðEÞjEihEj: ð3:26Þ

It evolves with the deformed Hamiltonian as

jΨλðtÞi ¼ e−itfðH0ÞjΨλi; ð3:27Þ
ρλðtÞ ¼ ρλ; ð3:28Þ

where ρλ is the reduced density matrix on each side. The
state can be normalized as jΨ̃λi ¼ jΨλi=

ffiffiffiffiffiffiffiffiffiffiffi
ZλðβÞ

p
, where

the deformed partition function is ZλðβÞ ¼ Tr½e−βfðHÞ�. The
entanglement is time independent as well. Since f0ðEÞ > 1
for λ > 0, the deformation enhances the imbalance of the
energy distribution e−βfðEÞ such that low energy states have
higher probabilities. Therefore, at the same temperature, the
entanglement in the TT̄ deformed TFD state is generally
lower than that in the TT̄ quenched TFD state.

2. Correlation

The correlator on the TT̄ deformed TFD state is

hΨλjOLðt1ÞORðt2ÞjΨλi ð3:29Þ

¼
X
E1E2

O12O21 exp

�
−
β

2
fðE1Þ −

β

2
fðE2Þ þ it1fð2E1Þ − it2fð2E2Þ − it12fðE1 þ E2Þ

�
ð3:30Þ

¼
X
E1E2

O12O21 exp

�
−
β

2
Eþð1þ λEþÞ þ 2λ

�
it− −

β

4

�
E2
− þ itþð1þ 4λEþÞE−

�
ð3:31Þ

¼
X
E1E2

O12O21 exp

�
−
β

2
Eþð1þ λEþÞ

�Z
i∞

−i∞
dβ0K

�
−2λ

�
it− −

β

4

�
; itþð1þ 4λEþÞ þ β0

�
expf−β0E−g: ð3:32Þ

Similarly, at the weakly coupled limit jλj ≪ 1=Eβ ¼ 1=hΨ̃λjHsjΨ̃λi, we use the approximation jλjEþ ≪ 1 and find

GLRðt1; t2Þλ ¼ hΨ̃λjOLðt1ÞORðt2ÞjΨ̃λi ≈ i
Z

∞

−∞
duK

�
−2λ

�
it− −

β

4

�
; itþ þ iu

�
GWðu; βÞ; ð3:33Þ

which is coincident with the GLRðt1; t2Þ in (3.15) with the
replacement it− → it− − β

4
. From (3.20), at the first-order

perturbation on λ, the retarded correlator GR
LRðt1; t2Þλ is the

same as GR
LRðt1; t2Þ.

D. Applications

1. Conformal QM

We can apply the above formula to a conformal QM. For
a primary operator O with dimension Δ, the Wightman
correlator is

GWðt; βÞ ¼
�
π

β
sech

πt
β

�
2Δ
: ð3:34Þ

From (3.15), the correlator on the TT̄ quenched TFD state is

GLRðt1; t2Þ ¼
�
π

β

�
2Δ

ffiffiffiffiffiffiffiffi
i

8πx

r Z
∞

−∞
du sech2ΔðπuÞ

× exp
ðuþ tþ=βÞ2

i8x
; x ¼ λ

β

t−
β
; ð3:35Þ

as shown in Figs. 1–3. In Fig. 1, the peak appears near the
timescale β2=λ, which indicates the best regenesis. The
correlator on the TT̄ deformed TFD state is

GLRðt1; t2Þλ ¼
�
π

β

�
2Δ

ffiffiffiffiffiffiffiffi
i

8πx

r Z
∞

−∞
du sech2ΔðπuÞ

× exp
ðuþ tþ=βÞ2

i8x
; x ¼ λ

β

�
t−
β
þ i
4

�
:

ð3:36Þ
The behavior is close to that in the case of the TT̄ quenched
TFD state, except that the correlation is slightly suppressed
due to the loss of entanglement.

2. The SYK model

We consider the SYK model as the QM system, in which
the local Hamiltonian is [12–15]

H¼ i
q
2

q!

X
j1;…;jq

Jj1;…;jqψ
j1 � ��ψ jq ; J2j1;…;jq

¼2q−1ðq−1Þ!J 2

qNq−1 :

ð3:37Þ
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The SYK model exhibits free fermionic behavior in
the UV and conformal symmetry in the infrared (IR).
The two-point function interpolating between UV and IR
can be solved at the large-q limit. The Wightman function
is [14]

GWðt; βÞ ¼
1

2

��
cos πv

2

cosh πvt
β

�
2
�
1=q

; πv ¼ βJ cos
πv
2
:

ð3:38Þ

For the TT̄ quenched TFD state, the correlator at weakly
coupled limit jλj ≪ 1=Eβ ∼ βJ 2=N is similar to the con-
formal result:

GLRðt1; t2Þ ¼
�
πv
βJ

�
2=q 1

2

ffiffiffiffiffiffiffiffi
i

8πx

r Z
∞

−∞
du sech2=qðπvuÞ

× exp
ðuþ tþ=βÞ2

i8x
; x ¼ λ

β

t−
β
; ð3:39Þ

which is close to the result from exact diagonalization in
Fig. 4. For the TT̄ deformed TFD state, the correlator is

GLRðt1; t2Þλ ¼
�
πv
βJ

�
2=q 1

2

ffiffiffiffiffiffiffiffi
i

8πx

r Z
∞

−∞
du sech2=qðπvuÞ

× exp
ðuþ tþ=βÞ2

i8x
; x ¼ λ

β

�
t−
β
þ i
4

�
:

ð3:40Þ

3. The system satisfying the ETH

We can apply the above formula to the system satisfying
the ETH. Consider the Hermitian operator O which
satisfies [40–43]

Oab ≈
1ffiffiffiffi
D

p FðEþ; E−ÞRab; a ≠ b; ð3:41Þ

hRabi¼0; hRabR�
cdi¼δacδbd; E�¼Ea�Eb; ð3:42Þ

where Rab is a random matrix. We further assume that the
operator O has bandwidth Γ:

FIG. 3. GLRðt;−βÞ for conformal QM, where Δ ¼ 0.25.

FIG. 2. GLRðt;−βÞ for conformal QM, where λ=β ¼ 0.01.

10- 4 0.01 1 100

10–4

0.001

0.010

0.100

1

0.25

0.05

0.01

FIG. 1. GLRðt;−tÞ for conformal QM, in which the real
(imaginary) part is denoted as a solid (dashed) line. The gray
lines denote power laws t and t−1=2.
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FðEþ; E−Þ ∼ AðEþ=2Þe−jE−j=Γ: ð3:43Þ

The off-diagonal part of the correlator of the operator on the TT̄ quenched TFD state is

hΨjOLðt1ÞORðt2ÞjΨi −
X
a

O2
aa exp f−βEag ð3:44Þ

¼ 1

D

X
a≠b

hRabRbaiA
�
Eþ
2

�
2

exp

�
−
β

2
Eþ þ 2iλt−E2

− þ itþð1þ 4λEþÞE− −
2

Γ
jE−j

�
ð3:45Þ

≈
1

D

X
a≠b

A

�
Eþ
2

�
2

exp

�
−
β

2
Eþ þ 2iλt−E2

− þ itþE− −
2

Γ
jE−j

�
ð3:46Þ

based on the weakly coupled limit jλj ≪ 1=Eβ. For large D, the energy band Λ ¼ Emax − Emin is much larger than the
bandwidth Γ. So we can calculate the integral in the approximation of the flat spectrum difference as

X
a≠b

≈D2

Z
Λ

0

dEadEbρðEaÞρðEbÞ ≈D2

Z
2Λ

0

dEþρðEþ=2Þ
Z þ∞

−∞
dE−: ð3:47Þ

Then, the off-diagonal part is simplified as

D
Z

2Λ

0

dEþA
�
Eþ
2

�
2

ρ

�
Eþ
2

�
exp

�
−
β

2
Eþ

�Z þ∞

−∞
dE− exp

�
2iλt−E2

− þ itþE− −
2

Γ
jE−j

�

¼ 2

�
D
Z

Λ

0

dEAðEÞ2ρðEÞe−βE
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

−8iλt−

r �
g

�
2=Γ − itþffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−8iλt−

p
�
þ g

�
2=Γþ itþffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−8iλt−
p

��
; ð3:48Þ

where

gðzÞ ¼ ez
2

erfcðzÞ ¼ ez
2

�
1 −

2ffiffiffi
π

p
Z

z

0

dxe−x
2

�
: ð3:49Þ

Let A2 ¼ Z½β�−1D RΛ
0 dEAðEÞ2ρðEÞe−βE. The retarded correlator is

GR
LRðt1; t2Þ ≈ 4A2Im

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

−i8λt−

r �
g

�
2=Γ − itþffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−8iλt−

p
�
þ g

�
2=Γþ itþffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−8iλt−
p

���
: ð3:50Þ

Asymptotically,

FIG. 4. GLRðt;−βÞ for the SYK model. The dots denote the results from exact diagonalization. The curves denote the results from
(3.39). The parameters are q ¼ 4, N ¼ 20, J ¼ 1, β ¼ 2, λ ¼ 0.02.

SONG HE and ZHUO-YU XIAN PHYS. REV. D 106, 046002 (2022)

046002-8



GR
LRðt;−tÞ → 2A2

8<
:

32Γ3λt−
4−3Γ2t2þ
ð4þΓ2t2þÞ3 ; t− → 0ffiffiffiffiffi

π
λt−

q
; t− → ∞

; ð3:51Þ

whose exponents are the same as the conformal result in Fig. 1.
By replacing it− → it− − β

4
, we obtain the retarded correlator of the TT̄ deformed TFD state as

GR
LRðt1; t2Þλ ≈ 4A2Im

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

2λðβ − 4it−Þ
r �

g

�
2=Γ − itþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λðβ − 4it−Þ

p �
þ g

�
2=Γþ itþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λðβ − 4it−Þ

p ���
: ð3:52Þ

IV. TT̄ DEFORMATION ON
SCHWARZIAN THEORY

In this section, we consider the TT̄ deformation on
an eternal black hole in Jackiw-Teitelboim (JT) gravity
as [44,45]

I¼ 1

16πG

�Z
d2x

ffiffiffiffiffiffi
−g

p
ΦðRþ2Þþ2

Z
b
dx

ffiffiffiffiffiffi
−h

p
ΦbðK−1Þ

�
ð4:1Þ

with the boundary condition

ds2h ¼ −dt2=ϵ2; Φb ¼ Φr=ϵ; ð4:2Þ

where b denotes the boundary, h is the induced metric
on the boundary, Φb is the value of the dilaton Φ on the
boundary, and ϵ is the UV cutoff. We have introduced a
counterterm to cancel the divergence in the exterior
curvature K. By integrating out the dilaton Φ, we have
Rþ 2 ¼ 0. The solution is an AdS2 space. In the global
coordinate and the Rindler coordinate, the metric reads

ds2 ¼ −dν2 þ dσ2

sin2 σ
¼ − sinh2 ρdφ2 þ dρ2: ð4:3Þ

We consider two boundaries L and R with reparametriza-
tion ðφLðtÞ; ρLðtÞÞ and ðφRðtÞ; ρRðtÞÞ, respectively. To
satisfy the boundary condition, the reparametrizations
are expanded as

sinh ρLðtÞ ¼ −
1

ϵφ0
LðtÞ

−
ϵφ00

LðtÞ2
2φ0

LðtÞ3
þOðϵ2Þ; ð4:4Þ

sinh ρRðtÞ ¼
1

ϵφ0
RðtÞ

þ ϵφ00
RðtÞ2

2φ0
RðtÞ3

þOðϵ2Þ: ð4:5Þ

The action is then reduced to the two-sited Schwarzian
theory:

I ¼ 1

8πG

Z
L;R

dx
ffiffiffiffiffiffi
−h

p
ΦbðK − 1Þ ð4:6Þ

¼ −C
Z

dt

�
Sch

�
− coth

φL

2
; u

�
þ Sch

�
tanh

φR

2
; u

��
þO½ϵ2� ð4:7Þ

¼ C
2

Z
dt

�
φ00
LðtÞ2

φ0
LðtÞ2

þ φ0
LðtÞ2 þ

φ00
RðtÞ2

φ0
RðtÞ2

þ φ0
RðtÞ2

�

þ surface term; C ¼ Φr

8πG
: ð4:8Þ

Similar to the argument presented in [24], the action has
SL(2) gauge symmetry, and the gauge charges vanish.
Therefore, the solution can be transformed into the LR-
symmetric form φLðuÞ ¼ φRðtÞ ¼ φðtÞ. Following [8], we
will consider the TT̄ deformation and use Ostrogradsky
formalism to write down the canonical variables [46]

q1 ¼ φ; q1 ¼ φ0;

p1 ¼
∂L
∂φ0 − ∂t

∂L
∂φ00 ¼ C

�
φ002

φ03 þ φ0 −
φð3Þ

φ02

�
;

p2 ¼
∂L
∂φ00 ¼ C

φ00

φ02 : ð4:9Þ

The Hamiltonian in Ostrogradsky formalism is

H0 ¼ HL þHR ¼ p1q2 þ
1

4C
p2
2q

2
2 − Cq22: ð4:10Þ

The solution of the TFD state at inverse temperature β is

φðtÞ ¼ φβðtÞ ¼
2πt
β

; ð4:11Þ

and all the canonical variables are determined by (4.9).
With (4.4) and (4.5), the solution of the reparametrization
describes two boundary trajectories on the constant radius
in the Rindler patch of AdS2 space, which corresponds to a
wormhole connecting the two boundaries from a higher-
dimensional perspective.
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We first consider a general deformation:

Hλ ¼ fðH0Þ: ð4:12Þ

Under the deformation, the canonical relations are deter-
mined by the deformed Hamiltonian equation as

q0i ¼
∂Hλ

∂p0
i
; p0

i ¼ −
∂Hλ

∂q0i
: ð4:13Þ

Given a solution of the Hamiltonian equation ofH0, such as
the φβðtÞ in (4.11), we can find a solution of Hλ from (2.5).
We introduce the dynamical time as

T ¼ kt; k ¼ f0ðH0½φβðtÞ�Þ; ð4:14Þ

where H0½φβðtÞ� ¼ 4π2C=β2 refers to the value of H0 on
the canonical variables determined by the solution in (4.11)
with the canonical relation in (4.9). A solution of the
Hamiltonian equation of Hλ is

φðtÞ ¼ φβðktÞ ¼ φβ=kðtÞ ¼ 2πkt=β; ð4:15Þ

q1¼2πkt=β; q2¼2π=β; p1¼2πC=β; p2¼0; ð4:16Þ

and the energy is Hλ½φβðktÞ� ¼ fð4π2C=β2Þ.
We select the TT̄ deformation as

Hλ ¼ fðH0Þ ¼
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8H0λ

p
4λ

: ð4:17Þ

Then, k ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 32π2λC=β2

p
and Hλ½φβðktÞ� ¼ ð1−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 32π2λC=β2
p

Þ=4λ. So, the weakly coupled limit in
Sec. III means jλj ≪ β2=C and k ≈ 1 here.
The solution (4.15) has two interpretations that corre-

spond to the two strategies separately in Sec. III. First,
recall that the local state ρðtÞ in (3.7) is a thermal state
of the undeformed Hamiltonian H0. Thus, the solution
φðtÞ ¼ φβ=kðtÞ is interpreted as the TT̄ quenched TFD state
jΨðtÞi at the inverse temperature β=k in (3.6). Second,
recall that the local state ρλðtÞ in (3.7) is a thermal state of
the deformed Hamiltonian fðH0Þ, in which the dynamical
time is kt as well. Thus, the solution φðtÞ ¼ φβðktÞ is
interpreted as the TT̄ deformed TFD state jΨλðtÞi at the
inverse temperature β in (3.27).
The deformed solution (4.15) is related to the unde-

formed solution (4.11) by rescaling the time. By plugging
(4.15) into (4.4) and (4.5), respectively, we know that the
TT̄ deformation moves the two boundaries into the bulk but
keeps them spacelike separated, which agrees with the fact
that the deformation is irrelevant. Thus, the causal corre-
lation found in Sec. III is not associated with the causal
structure of a semiclassical wormhole and is instead similar

to the “quantum traversable wormhole”1 in Ref. [19].
Without the TT̄ deformation, the vanishing of the retarded
correlator is originated from the perfect cancellation

between the two propagators hOð0Þ
L Oð0Þ

R i and hOð0Þ
R Oð0Þ

L i,
which are dual to the process of a virtual particle traveling
from R to L and from L to R in bulk, respectively. With
the TT̄ deformation, the virtual particle can release two
gravitons that annihilate on the boundaries via the HLHR

term in the TT̄ deformation, as shown in Fig. 5. The
propagators acquire different factors, resulting in the
propagation of real particles.
More precisely, we can directly calculate retarded

correlator GR
LRðt1; t2Þ at the first order of λ by using the

Schwarzian action. Taking the GR
LRðt1; t2Þ in (3.23) as an

example, where the TT̄ quench is applied instantaneously,
we consider the reparametrization mode φðtÞ ¼ tþ εðtÞ
and expand the dynamical part of the Euclidean Schwarzian
action, the correlator, and the nonlocal TT̄ term with
respect to εðtÞ as

Iε ¼
C
2

Z
dτðε00ðτÞ2 − ε0ðτÞ2 þO½ε3�Þ; ð4:18Þ

hOðτ1ÞOðτ2Þi

¼
�ð1þε0ðτ1ÞÞð1þε0ðτ2ÞÞ

4
csc2

τ1−τ2þεðτ1Þ−εðτ2Þ
2

�
Δ
;

ð4:19Þ

FIG. 5. Witten diagram in retarded correlator GR
LR at first the

order of λ in the global coordinate of AdS2. The solid line
represents the propagator of the matter field, and the wavy line
represents the propagator of the boundary graviton (reparamet-
rization model). The boundaries are spacelike separated.

1Notice that the traversability of the semiclassical traversable
wormholes in Ref. [22] is different from the traversability of the
“quantum traversable wormhole” in Ref. [19]. The former
happens after the scrambling time and is related to the spacetime
structure of the bulk. The latter occurs in the interference regime
much later than the scrambling time. It is generated by the
superposition of the bulk states and is not related to the spacetime
structure.
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−4λHLHR ¼O½ε�− 4λC2ðεð3Þð0Þ þ ε0ð0ÞÞðεð3ÞðπÞ þ ε0ðπÞÞ
þO½ε3�; β ¼ 2π: ð4:20Þ

The quadratic term in Iε gives the propagator of reparamet-
rization model hεðτÞεi ¼ −ðπ − jτjÞðπ − jτj þ 2 sin jτjÞ=
ð4πCÞ [45]. The brackets hεεεεi in the commutator
−4λh½½HLHR;OLðt1Þ�; Oðt2Þ�i are factorized into hεεihεεi,
as shown in Fig. 5. TheO½ε3� term in Iε and theO½ε� term in
−4λHLHR do not contribute to the commutator. The final
result is (3.24) at the tree level.
By Legendre transforming the deformed Hamiltonian

and letting q1 ¼ φ, q2 ¼ eϕ, we obtain the deformed
Lagrangian as

Lλ ¼
Ceϕðφ02 þ ϕ02Þ

φ0 þ ðeϕ − φ0Þ2
8λφ0eϕ

: ð4:21Þ

Solving φ and substituting it in the Lagrangian, we have

Lλ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 8Cλϕ02Þð1þ 8Cλe2ϕÞ

p
− 1

4λ
; ð4:22Þ

which agrees with the TT̄ deformation of the Liouville QM
L ¼ C

2
ðϕ0

L
2 þ ϕ0

L
2 þ e2ϕL þ e2ϕRÞ when ϕL ¼ ϕR ¼ ϕ, as

given in (2.22).
To keep the correction of finite cutoff ϵ, we substitute

(4.4) and (4.5) into the action (4.6) and obtain the
Lagrangian as

Lϵ ¼ C
X
s¼L;R

1

2

�
φ0
s
2 þ φ00

s
2

2φ0
s
2

�

þ ϵ2

8

�
−
57φ00

s
4

φ0
s
4

− φ0
s
4 þ 8φs

0002

φ0
s
2

− 6φ00
s
2

�
þO½ϵ3�:

ð4:23Þ

Substituting the solution (4.11) in the above Lagrangian,
we get Lϵ ¼ 4π2Cβ−2 − 16π4C2λ=β−4, where we use
λ ¼ 2πϵ2G=ΦR, based on [9,47]. However, if we substitute
the deformed solution (4.15) into (4.22), we get Lλ ¼
4π2Cβ−2 − 32π4C2λ=β−4, which is the different form Lϵ.
Therefore, the effect of the nonlocal TT̄ deformation
considered in this study is not simply equivalent to moving
the boundaries into the bulk [48]. Rather, it couples the two
boundaries and leads to nonlocal dynamics.

V. SUMMARY AND PROSPECT

In this study, we reformulate the TT̄ deformation of
multiple systems in the (0þ 1) dimension in terms of the
dynamical coordinate transformation, which originated
from 2D TT̄ deformation of quantum field theories
[29–32]. In 2D TT̄ deformation, the deformed quantum
field theory is equivalent to the seed theory coupling with

2D massive gravity. We generalize the philosophy to a
(0þ 1)-dimension quantummechanic system. By using the
known fact of the TT̄ deformed SYK model [9], we obtain
the so-called 1D massive gravity formalism and then obtain
the Hamiltonian for the TT̄ deformation of multiple
systems in the (0þ 1) dimension. It has been confirmed
that it is equivalent to the TT̄ deformation by flow equation
in 2D deformed quantum field theory. Given a solution
of the original theory, we can find an explanation of
the deformed theory related to the original resolution by
time rescaling. Motivated by this rescaling, we introduce
the dynamical tetrad acting as one-dimensional gravity.
By integrating the dynamical tetrad, we can obtain the
deformed action. The TT̄ deformation of multiscalar theory
follows a similar form.
The TT̄ deformation of bi-systems effectively couples

the local systems. We further consider the TFD states on
the bi-system. The signals injected into one system at a
particular time can appear from the other at the reversal
time. The time of best traversal scales is β2=λ in conformal
QM. In the SYK model, our analytical result at the large-q
limit was close to the result obtained from exact diago-
nalization. For the theory satisfying ETH, we find that the
traversal is dependent mainly on the bandwidth of the
operator carrying the signal.
Finally, we study such TT̄ deformation on two-sited

Schwarzian action, which describes the leading noncon-
formal dynamics of the eternal black hole in JT gravity. We
obtain the deformed Lagrangian and find that the deformed
solution is an external black hole with rescaled time, whose
two boundaries are spacelike separated. It shows that the
regenesis found in the bi-QM system is not associated with
the causal structure of a semiclassical wormhole.
In this study, we focus on the regenesis phenomenon of

the TFD state under TT̄ deformation. Because TT̄ coupling
is directly related to energy, the energy transport also merits
investigation in the future [49]. Our study of the regenesis
phenomena under the TT̄ deformation gives a new per-
spective of the information process, and the causal structure
of TT̄ deformed field theories. We expect that the regenesis
phenomena under TT̄ deformation are common in highly
entangled states because this deformation is not required
to match the entanglement structure of the TFD state. It is
natural to extend the TT̄ deformation to the CFT2 with
multiple fields and check the regenesis of the deformed
TFD states [6,7,50]. In terms of [51], one can choose proper
two-sided TT̄ coupling to reconstruct the bulk geometry of
the deformed TFD state and compare the correlators from
gravity and field theory.
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