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1 Introduction

Pure supersymmetric Yang-Mills theories in D = 3, 4, 6 and 10 space-time dimensions [1]
are among the best studied examples of quantum field theories. Especially the maxi-
mally extended N = 4, D = 4 theory occupies a central place because of its finiteness
properties [2, 3], its exact quantum conformal invariance, and its possible relevance for a
non-perturbative formulation of string theory (M-theory), either via the AdS/CFT cor-
respondence [4] or, in its dimensionally reduced form, via the maximally supersymmetric
D = 1 matrix model with gauge group SU(∞) [5, 6]. These links clearly warrant a sustained
effort to study supersymmetric Yang-Mills theory from all possible perspectives.

Yet, despite the huge literature on the subject, and especially the maximally extended
N = 4 theory, important questions remain. For instance, in what precise sense is this
theory supposed to exist as a non-trivial quantum field theory beyond perturbation theory,
and how can one ensure that it is not simply a free theory in disguise? The framework of
Wightman axioms is not appropriate here: because of exact quantum conformal invariance
there is no mass gap, consequently there are no asymptotic one particle states, and hence
no S-matrix (at least not in any conventional sense) whose non-triviality would affirm the
non-triviality of the theory. A better framework is provided by the conformal bootstrap
(see e.g. [7]) where one must establish the existence of non-trivial correlation functions
satisfying all the axioms of the conformal bootstrap program. This specifically concerns
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n-point correlators for n ≥ 4 and the associated functions of the conformal cross ratios,
whose existence beyond perturbation theory remains to be established, despite consider-
able evidence from integrability [8], progress with amplitude calculations [9, 10], and from
holographic duality (see e.g. [11] and references therein).

Likewise, questions remain with regard to finiteness, especially concerning a non-
perturbative construction of the theory which would require a non-perturbative regulariza-
tion both in the IR and the UV. Beyond the vanishing of the β-function, which has been
confirmed in a variety of ways [12–17], the perturbative finiteness of the N = 4 theory
has been manifested only in the light-cone gauge [2, 3], whereas for other (in particular,
covariant) gauges one has to cope with the usual quantum field theoretic infinities (wave
function renormalizations) [18]. It is therefore not at all obvious how maximal supersym-
metry can be usefully exploited towards a truly non-perturbative construction, as every
non-perturbative regularization will break supersymmetry at least partially.

The present work is part of an ongoing effort to develop an alternative perspective
on supersymmetric Yang-Mills theories, in order to eventually address some of the above
questions in a different way. Our approach has its origins in one of the authors’ early
work [19, 20], according to which there exists a non-linear and non-local transformation Tg
of the bosonic fields (Nicolai map) which maps the full interacting functional measure to
that of a free theory, and whose Jacobian equals the product of fermionic determinants, at
least on the gauge hypersurface. While the expansion of Tg for the N = 1, D = 4 theory
in Landau gauge up to second order in the Yang-Mills coupling g was already given in the
original work, these results were only recently extended to other critical dimensions [21] and
to third order [22, 23], again in the Landau gauge. The latter constructions make crucial
use of techniques developed already long ago by Dietz and Lechtenfeld [24–27], employing
a certain functional integro-differential operator R ≡ Rg governing the coupling constant
flow. The inverse map T −1

g is then obtained by formally exponentiating this operator.
In this paper we extend these results in two directions. First of all we show how the

construction generalizes to arbitrary gauges, and in particular to the axial gauge, which
includes the light-cone gauge as a special case. Secondly, we present explicit formulas for
the axial gauge up to second order, and to order O(g4) for the Landau gauge. These
formulas illustrate that Tg takes a more complicated form for gauges different from the
Landau gauge. The privileged status of the Landau gauge follows from general properties
of the R-operator, some of which were already discussed in [25–27], and which will be
further elaborated here. We will furthermore distinguish between ‘on-shell’ and ‘off-shell’
R-operators: this distinction goes in parallel with the usual notion of ‘on-shell’ vs. ‘off-
shell’ in supersymmetric theories, but here only refers to the need (or not) to restrict the
functional measure to the gauge surface. Therefore the ‘on-shell-ness’ is much less of a
restriction here than it is in the standard formulation of supersymmetric field theories: it
only means that, when using the field transformation to perform higher order quantum
computations, along the lines of [28], one must restrict the gauge parameter to the value
ξ = 0. We note that light-cone computations are anyway done in this way, by setting
to zero one light-cone component of the gauge field, so one can indeed ignore the ghost
determinant.
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The fact that the results in the axial gauge are more complicated is in accord with the
mixed success story of the axial gauge in quantum field theory [29]. Nevertheless, there
are at least two reasons to follow up on it. The first is early work displaying hints of a
polynomial form of the mapping for the N = 1 and N = 2 theories in the light-cone gauge,
and in terms of the light-cone components of the field strength [30–33]. Unfortunately,
inspection of the relevant formulas reveals that they do not apply to the ‘real’ super-Yang-
Mills theory. Instead, one must simultaneously invoke the light-cone gauge (which exists
only for Lorentzian signature) and introduce a complexification of the basic fields, which
for the fermions would be appropriate for Euclidean spinors. On the other hand, employing
a time-like axial gauge with Euclidean signature, a direct construction fails [34]. A second
reason comes from more recent work where it was shown that the maximal N = 4 theory
admits a reformulation where the Hamiltonian acquires a quadratic form in light-cone
superspace [35, 36]. The relevant formulas there involve a field re-definition in terms of the
light-cone supercharge operator which likewise acts non-locally and non-linearly.

As the explicit formulas derived in this paper are quite involved, readers may wonder
about their possible use. However, one should keep in mind that these complications
are mainly due to the fact that we here consider gauge-variant expressions (operators),
something that is rarely done in more standard investigations of N = 4 super-Yang-Mills
theory. If one restricts attention to gauge-invariant combinations, the relevant expressions
simplify, because then only the invariant part Rinv of the R-operator contributes. We plan
to return to these issues in future work, limiting ourselves here to a few brief comments in
the concluding section.

While finalizing the present paper we received the preprint [37] which contains very
similar results, and derives an elegant formula for Tg via a path ordered exponential.

2 Pure super-Yang-Mills theories: preliminaries

We first collect some basic and well known formulas, mainly to fix our notations and conven-
tions. Throughout, we employ the ‘mostly minus’ metric ηµν with signature (+,−, · · · ,−)
and the gamma matrices {γµ, γν} = 2ηµν .

The N = 1 super-Yang-Mills action Sinv in D = 4 dimensions is given by [38, 39]

Sinv[Aaµ, λa, Da] =
∫

dx
[
−1

4F
a
µνF

aµν − i

2 λ̄
aγµ(Dµλ)a + 1

2D
aDa

]
(2.1)

with the standard definitions

F aµν := ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν , (2.2)

(Dµλ)a := ∂µλ
a + gfabcAbµλ

c , (2.3)

where g is the coupling constant, and fabc are the structure constants of the group in
question (usually SU(N)). λa is a Majorana spinor, and Da is the auxiliary field which
is needed to close the super-algebra off-shell. The action (2.1) is invariant under the
supersymmetry variations

δαA
a
µ =

(
iλ̄aγµ

)
α
, δαλ

a
β = −1

2(γµν)βαF aµν + i(γ5)βαDa , δαD
a =

(
Dµλ̄aγ5γµ

)
α
, (2.4)
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where we have stripped off the (anti-commuting) supersymmetry parameter. Thanks to
the presence of the auxiliary field, the supersymmetric action (2.1) can be written as a
super-variation, viz.

Sinv = δα∆α (2.5)

with

∆α :=
∫

dx
[
− i

16(γµνλa)αF aµν + 1
8(γ5λa)αDa

]
. (2.6)

For the full action S ≡ Sinv + Sgf we also need the gauge fixing term (see e.g. [40])

Sgf[Aaµ, Ca, C̄a] =
∫

dx
[

1
2ξ G

a[A]Ga[A] + C̄a
δGa[A]
δAbµ

(DµC)b
]

(2.7)

with the ghost and anti-ghost fields Ca and C̄a, and the gauge fixing functional Ga[A](x)
with gauge parameter ξ (usually taken as ξ = 1, while ξ → 0 corresponds to the insertion
of the delta functional ∏x Ga[A](x) in the functional measure). The combined action S is
then invariant under the BRST (Slavnov) transformations:

s(Aaµ) = (DµC)a , s(F aµν) = fabcF bµνC
c , s(λa) = fabcλbCc ,

s(Ca) = −g2f
abcCbCc , s(C̄a) = −1

ξ
Ga[A] , s(Da) = fabcDbCc .

(2.8)

The most general gauge fixing functional compatible with our construction is any functional
obeying the scaling relation

Ga[A] = g Ga[g−1A] (2.9)

Although our derivation is thus valid for a very large class of possibly non-local and non-
linear gauge functionals, we will mostly restrict attention to linear and local gauge fixing
conditions

Ga[A](x) ≡ GµAaµ(x) (2.10)

in the remainder, so that for Gµ = ∂µ and Gµ = nµ, respectively, we recover the Landau
and axial gauges (or light-cone gauge, if nµ is null).

For the pure super-Yang-Mills theories in D = 6 and D = 10 dimensions there are
no fully supersymmetric off-shell formulations (at least not with finitely many auxiliary
fields), but the on-shell Lagrangians are the same as in (2.1) with Da = 0, keeping in mind
that the gauginos are Weyl, and Majorana-Weyl, respectively, in those dimensions [1]. The
formula (2.5) can therefore not be directly applied to the extended theories in D = 6 and
D = 10: without auxiliary fields, the variation of Sinv w.r.t. the coupling constant produces
extra terms which cannot be written as super-variations, cf. appendix A of [22]. Neverthe-
less, the vacuum energy vanishes for these theories as well; this can be seen for instance
by formulating them in a partially off-shell version by re-writing them in terms of N = 1
off-shell supermultiplets. Such a re-writing would actually suffice for our purposes here, as
all we need is a formulation where the action Sinv can be expressed as a super-variation.
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Although the closure of the super-algebra is not a relevant criterion in a formulation where
all fermions have been integrated out, we will see that the distinction between ‘on-shell’
and ‘off-shell’ still persists, in that the main statements of section 3.1 below are valid only
on the gauge surface Ga[A] = 0 for the ‘on-shell’ R-prescription.

The derivation of the off-shell R-prescription will necessitate a ‘detour’ via a reformu-
lation of the theory in terms of rescaled fields

Ãaµ = gAaµ , λ̃a = gλa , D̃a = gDa , C̃a = gCa , ¯̃Ca = gC̄a , (2.11)

such that the coupling constant appears only as an overall factor outside

S̃inv[Ãaµ, λ̃a, D̃a] = 1
g2

∫
dx

[
−1

4 F̃
a
µνF̃

aµν − i

2
¯̃λaγµ(Dµλ̃)a + 1

2D̃
aD̃a

]
, (2.12)

where now

F̃ aµν ≡ ∂µÃ
a
ν − ∂νÃaµ + fabcÃbµÃ

c
ν , (2.13)

Dµλ̃
a ≡ ∂µλ̃

a + fabcÃbµλ̃
c . (2.14)

The ghost action S̃gf, the supersymmetry and the BRST transformations are obtained
from (2.4) and (2.8) by dropping g and putting tildes on all fields; idem for (2.5) and (2.6)
(it is here that we need the scaling relation (2.9)). For clarity of notation we always put
tildes on all quantities involving rescaled fields.

In both formulations correlation functions are given by the standard formula〈〈
X[A]

〉〉
g

=
∫
DA Dλ DC DC̄ X[A] e−iS[g,A,λ,C,C̄] , (2.15)

where X is some functional (usually a monomial) in the gauge fields; since we do not
consider matter couplings nor expectation values with the auxiliary Da-fields, we can ignore
them (and eliminate them by trivial Gaussian integration). The formula for the tilded fields
is analogous, so that for instance〈〈

Ãa1
µ1(x1) . . . Ãanµn(xn)

〉〉
g

= gn
〈〈
Aa1
µ1(x1) . . . Aanµn(xn)

〉〉
g
. (2.16)

Either way, there is no need for a normalizing factor for the expectation value because
of the (piecewise) constancy of the vacuum functional 〈〈1〉〉g as a function of the coupling
parameters (vanishing vacuum energy in supersymmetric theories). As in [22], we can
re-express the expectation value by means of a purely bosonic functional integral〈

X[A]
〉
g

=
∫
Dg[A] X[A]

(
=
〈〈
X[A]

〉〉
g

)
, (2.17)

where the non-local functional measure Dg[A] is obtained by integrating out all anti-
commuting fields (gauginos and ghosts), with an analogous formula for the rescaled fields.

There are thus two versions of the theory in which to consider the limit g → 0. For the
untilded version, the limit of Sinv + Sgf is simply the free supersymmetric Maxwell theory.
By contrast, the g → 0 limit of S̃inv + S̃gf localizes the bosonic Yang-Mills action on zero
curvature configurations. Here we will be concerned with the former case, and make use
of the tilded formulation only as an intermediate device.
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3 The R̃-operator

3.1 Basic properties

The aim is now to construct the transformation Tg [19, 20] which maps the functional
measure to a free measure so that〈

X[A]
〉
g

=
〈
X
[
T −1
g [A]

]〉
0

=
∫
D0[A] X

[
T −1
g [A]

]
. (3.1)

More specifically, denoting bosonic Yang-Mills action by SYM[A, g] this means in particular

SYM
[
A, g

]
= SYM

[
Tg[A], 0

]
. (3.2)

Furthermore, the map should have the property that the Jacobian of the transformation
Tg equals the product of the fermionic determinants

det
(
δTg[A]
δA

)
= ∆MSS[A] ∆FP[A] , (3.3)

at least on the gauge surface Ga[A] = 0. Here the Matthews-Salam-Seiler determinant
∆MSS[A] [41, 42] is obtained by integrating out the gauginos,1 and ∆FP[A] is the Faddeev-
Popov determinant [43, 44]. The map Tg is constructed iteratively in terms of a generating
functional differential operator Rg, such that(

T −1
g A

)a
µ

(x) =
∞∑
n=0

gn

n!

(
(RngA)aµ(x)

∣∣∣∣
g=0

)
. (3.4)

The operator Rg is determined from the flow equation [25, 26]
d
dg
〈
X
〉
g

=
〈
Rg(X)

〉
g

(3.5)

and should act distributively:

Rg(XY ) = Rg(X)Y +XRg(Y ) . (3.6)

Furthermore the statement (3.2) is equivalent to

Rg
(∫

dx F aµνF aµν
)

= 0 . (3.7)

Finally we require

Rg (Ga[A]) = 0 . (3.8)

Below we will perform this construction in the tilded formulation and compare the resulting
expression for the new R̃g-operator with the Rg-operator obtained in [22]. Importantly, in
the limit g → 0 these operators differ by terms involving the Landau gauge condition, and
in general the latter do not vanish on the gauge surface Ga[A] = 0 if Ga is different from
the Landau gauge. Consequently, even though we are ultimately interested in constructing
Tg in the untilded formulation it turns out that for gauges other than the Landau gauge we
have to perform the construction first for the tilded version, because it reveals the existence
of terms that cannot be obtained from the on-shell R-prescription.

1Because λa is Majorana, ∆MSS is really a Pfaffian.
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3.2 On-shell R-operator

Building on earlier results of [24], it was shown in [22] that for all pure super-Yang-Mills
theories in dimensions D = 3, 4, 6 and 10, and with the Landau gauge, the R-operator
can be represented in the form

Rg = Rinv +Rgf (3.9)

with

Rinv := d
dg −

1
2r

∫
dx dy Tr

(
γµS

ab(x, y;A)γρλ
)
f bcdAcρ(y)Adλ(y) δ

δAaµ(x) (3.10)

and

Rgf := − 1
2r

∫
dx dy dz (DµG)ae(x, z;A)Tr

(
γν∂νS

eb(z, y;A)γρλ
)
f bcdAcρ(y)Adλ(y) δ

δAaµ(x) ,

(3.11)

where r = 2(D − 2) is the number of effective gaugino degrees of freedom. The gaugino
and ghost propagators in the gauge field background given by Aaµ(x) appearing in these
expressions are defined by

γµ(DµS)ab(x, y;A) = δabδ(x− y) , (3.12)
δGa

δAcµ
(DµG)cb(x, y;A) ≡ ∂µ(DµG)ab(x, y;A) = δabδ(x− y) . (3.13)

For practical calculations it is sometimes useful to write out these equations in Dyson-
Schwinger (integrated) form

Sab(x, y;A) = δabS0(x− y)− gfacd
∫

dz S0(x− z)γµAcµ(z)Sdb(z, y;A) ,

Gab(x, y;A) = δabG0(x− y)− gfacd
∫

dz G0(x− z)GµAcµ(z)Gdb(z, y;A)
(3.14)

for linear gauge functions of the form (2.10).
While the above prescription works for all pure super-Yang-Mills theories, it is subject

to the following restrictions [22]:

• It only works for the Landau gauge Ga[A] ≡ ∂µAaµ.

• Rg acts distributively only on the gauge surface ∂µAaµ = 0, corresponding to the limit
ξ → 0 in Sgf where the measure contains the delta functional ∏x δ

(
∂µAaµ(x)

)
.

• Beyond order O(g2) the equality (3.3) of the functional Jacobian and the product of
fermionic determinants likewise holds only on the gauge surface ∂µAaµ = 0.

In particular, the prescription does not work for the axial and light-cone gauges, for which
one encounters discrepancies in the construction of Tg already at order O(g2).
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3.3 R̃-operator for rescaled fields

Now, already in 1984 Dietz and Lechtenfeld constructed a R̃-operator for the rescaled
(tilded) N = 1, D = 4 theory, and for general Ga[Ã] [25–27]. With our notation and
conventions, their result for R̃g = R̃inv + R̃gf reads

R̃inv = d
dg + 1

8g

∫
dx dy Tr

(
γµS̃

ab(x, y; Ã)γρλ
)
F̃ bρλ(y) δ

δÃaµ(x)
+ 1
g

∫
dx D̃a(x) δ

δD̃a(x)

+ i

4g

∫
dx dy Tr

(
γ5γµS̃

ab(x, y; Ã)
)
D̃b(y) δ

δÃaµ(x)
(3.15)

and

R̃gf = −g
∫

dx dy (DµG̃)ab(x, y; Ã) R̃inv
(

1
g G

b[Ã](y)
) δ

δÃaµ(x)

+ gfabc
∫

dx dy G̃bd(x, y; Ã) R̃inv
(

1
g G

d[Ã](y)
)
D̃c(x) δ

δD̃a(x)

(3.16)

(now with r = 4). For the reader’s convenience we summarize the derivation of this result
in appendix A. In the remainder we will disregard all terms involving the auxiliary fields
D̃a as the relevant expressions considered here do not depend on them.

While R is specific to the Landau gauge, but works for all critical dimensions, R̃ exists
for any gauge functional and is manifestly distributive.2 The corresponding inverse map is
obtained as

(
T −1
g (A)

)a
µ
≡
(
T̃ −1
g

(
1
g Ã
))a

µ
(x) :=

∞∑
n=0

gn

n!

[(
R̃ng

(
1
g Ã
))a

µ
(x)

∣∣∣∣
Ã=gA

∣∣∣∣
g=0

]
. (3.17)

The question which we wish to address here is how the operators R and R̃ are precisely
related. The main step will be the demonstration that a proper limit g → 0 exists also for
R̃g, which should then yield the above prescription. To compare the two prescriptions we
first rewrite (3.15) and (3.16) by means of the identity [26]

γρλF̃ bρλ = 2γργλ(DρÃλ)b − 2∂λÃbλ − f bdeγρλÃdρÃeλ , (3.18)

leaving the gauge functional (2.10) arbitrary. Integrating by parts, so Dρ acts on the
fermionic propagator to give a δ-function, then leads to the new representation

R̃g = R̃0 + R̃1 + R̃2 (3.19)

with the counting operator (now with D̃a = 0)

R̃0 := d
dg + 1

g

∫
dx Ãaµ(x) δ

δÃaµ(x)
. (3.20)

2As we pointed out, analogous off-shell R̃-operators can in principle be constructed for the extended
theories in D = 4 by formulating them in terms of off-shell N = 1 supermultiplets.
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The other two operators are given by

R̃1 :=− 1
8g

∫
dx dy Tr

(
γµS̃

ab(x, y; Ã)γρλ
)
f bcdÃcρ(y)Ãdλ(y) δ

δÃaµ(x)

− 1
8g

∫
dx dy dz (DµG̃)ae(x, z; Ã)Tr

(
γν
δGe

δÃfν
S̃fb(z, y; Ã)γρλ

)
f bcdÃcρ(y)Ãdλ(y) δ

δÃaµ(x)
(3.21)

and

R̃2 :=− 1
4g

∫
dx dy Tr

(
γµS̃

ab(x, y; Ã)
)
∂λÃbλ(y) δ

δÃaµ(x)

+ 1
4g

∫
dx dy dz (DµG̃)ab(x, y; Ã)Tr

(
γν
δGb

δÃeν
S̃ec(y, z; Ã)

)
∂λÃcλ(z) δ

δÃaµ(x)
.

(3.22)

The counting operator R̃0 obeys

R̃0(Aaµ) ≡ R̃0

(1
g
Ãaµ

)
= 0 (3.23)

as well as relations like

R̃0
(
S̃ab(x, y; Ã)

)
= −f cde

∫
dz S̃ac(x, z; Ã)γµÃdµ(z)S̃eb(z, y; Ã) etc. (3.24)

It is readily seen that R̃1 coincides with the relevant terms from (3.10) and (3.11) for r = 4
upon substituting Ãaµ = gAaµ and adopting the Landau gauge. By contrast, the new term
R̃2 has no analog in the on-shell R-operator, as it vanishes for ∂λÃaλ = 0. However, off
the gauge surface it does contribute and thus contains relevant information even for the
Landau gauge. In evaluating it, one must first show that it possesses a well defined limit
for arbitrary gauge functionals Ga[Ã] subject to the condition (2.9) upon setting Ãaµ = gAaµ
and taking g → 0. To prove this we need to consider the potentially singular zeroth order
contributions in both integrands of (3.22), using (3.14),

S̃ab(x, y; Ã) = −δabγρ∂ρC(x− y) +O(Ã) , (3.25)
G̃ab(x, y; Ã) = δabG̃0(x− y) +O(Ã) , (3.26)
δGa[Ã](x)
δÃbµ(y)

= δabGµδ(x− y) +O(Ã) , (3.27)

where C(x) is the free scalar propagator obeying 2C(x) = −δ(x). By (2.9) we can ignore
the O(Ã) terms since they are non-singular as g → 0. For the Landau gauge (Gµ = ∂µ)
the cancellation of the singular term follows easily upon use of γµ∂µS0(x) = δ(x) and
G0(x) = −C(x). For the axial gauge (Gµ = nµ), we compute

Tr (γµnµS0(y − z)) = −4nµ∂µC(y − z) , (3.28)

integrate by parts, and use the defining equation for the free ghost propagator nµ∂µG̃0(x) =
δ(x) to show that these contributions cancel again (as we pointed out, higher order terms
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in the gauge functional do not affect this argument). All remaining terms in (3.22) are at
least of order Ã and therefore possess a well-defined limit for g → 0.

The calculation ofR(A) then proceeds by first computing R̃(g−1Ã) and then expanding
in Ã, setting Ã = gA. To compute the Taylor coefficients in (3.17) we finally take the
limit g → 0. This limit yields extra contributions over and above the ones from the R-
prescription (3.10) and (3.11) even for the Landau gauge. For the latter these are the terms
that for D = 4 ensure that the equality of the determinants (3.3) remains valid to any order
even without imposing the gauge condition. For the axial gauge we also find extra terms,
and moreover ones which do not vanish on the gauge hypersurface nµAaµ = 0, i.e.

lim
g→0

R̃2

(1
g
Ãaµ

) ∣∣∣∣
n·Aa=0

6= 0 . (3.29)

This explains why the on-shell R-prescription does not work for the axial gauge: to get
the correct answer, we need to add the extra terms resulting from (3.29).

4 The map in axial gauge

We next apply the above prescription to determine the expansion of Tg to second order for
the axial gauge. By the above construction this result will contain a part identical to the
result in the Landau gauge, as well as extra terms resulting from (3.29). We shall then
verify all requisite properties. Although we start from the N = 1 theory, it turns out that
at least to second order this expansion remains valid for the other critical dimensions, and
even off the gauge surface nµAaµ = 0. This is a feature which for the extended theories we
do not expect to persist in higher orders, as it would require a formulation of these theories
at least in terms of N = 1 off-shell multiplets.

4.1 Expansion to O(g2)

(TgA)aµ (x) = Aaµ(x) + gfabc
∫

dy dz (ηµνδ(x− y)− ∂µG0(x− y)nν)

×
{
Ab ν(y)C(y − z) ∂ ·Ac(z) + ∂λC(y − z)Ab ν(z)Acλ(z)

}
+ 2gfabc

∫
dy dz dw (ηµνδ(x− y)− ∂µG0(x− y)nν)

× ∂λC(y − z)Ab [ν(z)∂λ]C(z − w) ∂ ·Ac(w)

+ g2

2 f
abcf bde

∫
dy dz dw (ηµνδ(x− y)− ∂µG0(x− y)nν)

{
− 2Ac ν(y)C(y − z)Adλ(z)∂λC(z − w) ∂ ·Ae(w)

−Ac ν(y)C(y − z) ∂ ·Ad(z)C(z − w) ∂ ·Ae(w)

− 1
2C(y − z) ∂ ·Ac(z)∂λC(z − w)Ad ν(w)Aeλ(w)

+ 1
2C(y − z) ∂ ·Ac(z)∂λC(y − w)Ad ν(w)Aeλ(w)

− 1
2C(y − z)Ad ν(z)Aeλ(z)∂λC(z − w) ∂ ·Ac(w)

+ 1
2∂

λC(y − z)Ad ν(z)Aeλ(z)C(z − w) ∂ ·Ac(w)

− 2∂λC(y − z)Ac [ν(z)Ad λ](z)C(z − w) ∂ ·Ae(w)

+ 3∂ρC(y − z)Acλ(z)∂[νC(z − w)Ad λ(w)Ae ρ](w)
}
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+ g2

2 f
abcf bde

∫
dy dz dw dv (ηµνδ(x− y)− ∂µG0(x− y)nν)

{
− C(y − z)Ad [ν(z)∂λ]C(z − w) ∂ ·Ae(w)∂λC(z − v) ∂ ·Ac(v)

− C(y − z) ∂ ·Ac(z)∂λC(z − w)Ad [ν(w)∂λ]C(w − v) ∂ ·Ae(v)

+ C(y − z) ∂ ·Ac(z)∂λC(y − w)Ad [ν(w)∂λ]C(w − v) ∂ ·Ae(v)

− ∂λC(y − z)Ad [ν(z)∂λ]C(z − w) ∂ ·Ae(w)C(z − v) ∂ ·Ac(v)

− ∂λC(y − z)∂νC(z − w) ∂ ·Ac(w)∂ρC(z − v)Adλ(v)Aeρ(v)

+ 2∂λC(y − z)∂[νAd λ](z)C(z − w) ∂ ·Ae(w)C(z − v) ∂ ·Ac(v)

− 2∂λC(y − z)Ac [ν(z)∂λ]C(z − w) ∂ ·Ad(w)C(w − v) ∂ ·Ae(v)

− 4∂λC(y − z)Ac [ν(z)∂λ]C(z − w)Adρ(w)∂ρC(w − v) ∂ ·Ae(v)

+ 6∂ρC(y − z)Acλ(z)∂[νC(z − w)Ad λ(w)∂ρ]C(w − v) ∂ ·Ae(v)
}

− g2fabcf bde
∫

dy dz dw dv du (ηµνδ(x− y)− ∂µG0(x− y)nν)

× ∂λC(y − z)∂νC(z − w) ∂ ·Ac(w)∂ρC(z − v)Ad[λ(v)∂ρ]C(v − u) ∂ ·Ae(u)
+O(g3) .

(4.1)

Recall that C(x) is the free (massless) scalar propagator, while (now with nµnµ = 1)

G0(x) = ε(n ·x) δ(3)(x⊥) = −G0(−x) (4.2)

is the free ghost propagator for the axial gauge, with the anti-symmetric step function
ε(x) := Θ(x)− 1

2 and the transverse coordinate x⊥µ ≡ xµ − nµ(n ·x). In writing the above
result we have regrouped terms in such a way that they all appear with the axial projector

Πµν(x) := ηµνδ(x)− ∂µG0(x)nν (4.3)

in front. This projector obeys nµΠµν(x) = 0 (but Πµν(x)nν 6= 0!). By the definition of the
free ghost propagator G0 we also have∫

dy Πµν(x− y)∂νF (y) = 0 (4.4)

for any function F . Hence the second order result in axial gauge can be written in such a
way that it differs from the off-shell result for the Landau gauge only by the insertion of
this projector, since all terms of type (4.4) drop out.

Finally we point out that the above derivation is in principle valid for all nµ, regardless
whether they are time-like, space-like or null. It therefore applies to the light-cone gauge
as well.

4.2 Tests

To check the above result, we now go through all relevant tests for A′ aµ ≡ (TgA)aµ. The first
test (preservation of the gauge function)

nµA′ aµ (x) = nµAaµ(x) (4.5)

is trivially satisfied up to the order considered, by the defining property of the axial pro-
jector (4.3) and the fact that it appears in front of all terms.

– 11 –



J
H
E
P
0
6
(
2
0
2
1
)
0
0
1

Free action. Next we test the free action. By (4.5) we can ignore the piece ∝ (nµAaµ)2

that needs to be included in the action (2.7). Thus we need only show that
1
2

∫
dx A′ aµ (x)(−2ηµν + ∂µ∂ν)A′aν (x) = 1

4

∫
dx F aµν(x)F aµν(x) +O(g3) . (4.6)

We notice that any term which can be written as ∂xµ (. . .) does not contribute by the gauge
invariance of the free action. At first order we find

1
2

∫
dx A′ aµ (x)(−2ηµν + ∂µ∂ν)A′ aν (x)

∣∣∣∣
O(g1)

= fabc
∫

dx dy
{
Abµ(x)C(x− y) ∂ ·Ac(y) + ∂λC(x− y)Abµ(y)Acλ(y)

}
× (−2ηµν + ∂µ∂ν)A′aν (x)

+ 2fabc
∫

dx dy dz ∂λC(x− y)Ab[µ(y)∂λ]C(y − z) ∂ ·Ac(z)

× (−2ηµν + ∂µ∂ν)A′aν (x) .

(4.7)

We integrate by parts and remove anti-symmetric terms

1
2

∫
dx A′ aµ (x)(−2ηµν + ∂µ∂ν)A′ aν (x)

∣∣∣∣
O(g1)

= −fabc
∫

dx ∂λAaµ(x)Ab µ(x)Ac λ(x)

+ fabc
∫

dx dy
{
−2Aaµ(x)Ab µ(x)C(x− y) ∂ ·Ac(y)

+ ∂µ ∂ ·Aa(x)Ab µ(x)C(x− y) ∂ ·Ac(y)− 2∂λAaµ(x)Ab [µ(x)∂λ]C(x− y) ∂ ·Ac(y)
}

= fabc
∫

dx ∂µAaλ(x)Ab µ(x)Ac λ(x) = 1
4

∫
dx F aµν(x)F aµν(x)

∣∣∣∣
O(g1)

. (4.8)

At the second order the steps are generally the same. Again we can disregard half the
terms because of the axial projector Πµν(x). Performing similar partial integrations as
above yields

1
2

∫
dx A′ aµ (x)(−2ηµν + ∂µ∂ν)A′ aν (x)

∣∣∣∣
O(g2)

=
∫

dx A′ aµ (x)
∣∣
O(g2)(−2η

µν + ∂µ∂ν)A′aν (x)
∣∣
O(g0)

+ 1
2

∫
dx A′ aµ (x)

∣∣
O(g1)(−2η

µν + ∂µ∂ν)A′aν (x)
∣∣
O(g1)

= −g
2

4 f
abcf bde

∫
dx Aaµ(x)Acλ(x)Adµ(x)Ae λ(x)

− g2

2

∫
dx dy Aaµ(x)Aeλ(x)∂λAdµ(x)C(x− y) ∂ ·Ac(y)

×
(
fabcf bde + f ebaf bdc + f cbef bda

)
= −g

2

4 f
abcf bde

∫
dx Aaµ(x)Acλ(x)Adµ(x)Ae λ(x) = 1

4

∫
dx F aµν(x)F aµν(x)

∣∣∣∣
O(g2)

,

(4.9)
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where, in the second to last step, we have used the Jacobi identity

0 = fabcf bde + f ebaf bdc + f cbef bda . (4.10)

These relations are independent of dimension.

Jacobians, fermion and ghost determinants. Finally we need to perturbatively show
that the Jacobian determinant is equal to the product of the MSS and FP determinants.
This is done as usual order by order in g by considering the logarithms of the determi-
nants, i.e.

log det
(
δA′ aµ (x)
δAbν(y)

)
!= log (∆MSS[A]∆FP[A]) . (4.11)

As it turns out, for (4.1) this equality is actually valid for all critical dimensions and off
the gauge surface nµAaµ = 0 up to the order considered (but we do not expect this feature
to persist in higher orders). For this reason we re-instate the general values r and D in the
formulas below.

The ghost determinant is computed from the functional matrix

Xab(x, y;A) = gfabcG0(x− y)n·Ac(y) , (4.12)

using the well-known equation

log det(1−X) = Tr log(1−X) . (4.13)

Up to O(g2) this yields

log det(1−X) = g2

2 N
∫

dx dy G0(x− y)n·Aa(y)G0(y − x)n·Aa(x) +O(g3) , (4.14)

where we used fabcfabd = Nδcd. The relevant kernel for the MSS determinant is

Yab
αβ(x, y;A) = gfabc∂ρC(x− y)

(
γργλ

)
αβ
Acλ(y) . (4.15)

Because of the Majorana condition we must include an extra factor of 1
2 in the expan-

sion (4.13) and get

1
2 log det(1−Y) = g2

4 N Tr
(
γργλγσγν

) ∫
dx dy ∂ρC(x− y)Aaλ(y)∂σC(y − x)Aaν(x)

+O(g3) . (4.16)

For both determinants there is no contribution at O(g1) and also there is no contribution
from the Jacobi determinant at this order. Taking the trace in (4.16) and multiplying the
two determinants yields the right hand side of (4.11)

log (∆MSS[A] ∆FP[A])
∣∣
O(g2) = g2

2 N
∫

dx dy
{

+ r ∂µC(x− y)Aaµ(y)∂νC(y − x)Aaν(x)

− r

2 ∂µC(x− y)Aaν(y)∂µC(y − x)Aa ν(x)

+G0(x− y)n ·Aa(y)G0(y − x)n·Aa(x)
}
.

(4.17)
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At O(g2) the logarithm of the Jacobi determinant consists of two terms

log det
(
δA′ aµ (x)
δAbν(y)

) ∣∣∣∣
O(g2)

= Tr
[
δA′

δA

∣∣∣∣
O(g2)

]
− 1

2Tr
[
δA′

δA

∣∣∣∣
O(g1)

δA′

δA

∣∣∣∣
O(g1)

]
(4.18)

and the final trace is done by setting µ = ν, a = b, x = y and integrating over x. The
computation is straightforward but we must be careful with formally divergent terms.
Subsequently we find

−1
2Tr

[
δA′

δA

∣∣∣∣
O(g1)

δA′

δA

∣∣∣∣
O(g1)

]
= Ng2

∫
dx dy

{
+ D

2 ∂
µC(x− y)Aaµ(y)∂νC(x− y)Aaν(x)

+ 1
2G0(x− y)n·Aa(y)G0(y − x)n·Aa(x)

+ C(x− y) ∂µ
(
Aaµ(y)G0(y − x)

)
n·Aa(x)

+ 2−D
8 C(x− y) ∂ ·Aa(y) (C(y − x)− 2C(0)) ∂ ·Aa(x)

}
+Ng2

∫
dx dy dz

{
(4.19)

− 1
4G0(x− z)nµC(z − x) ∂ ·Aa(y)∂µC(y − x) ∂ ·Aa(x)

− 2G0(x− z)∂µC(z − x) ∂ ·Aa(y)nν∂{νC(y − x)Aaµ}(x)

+ 2G0(x− z)∂µC(z − y)Aaν(y)nλ∂ν∂{λC(y − x)Aaµ}(x)

+ 1−D
2 δ(0)C(z − y) ∂ ·Aa(y)C(z − x) ∂ ·Aa(x)

}
.

The other term gives

Tr
[
δA′

δA

∣∣∣∣
O(g2)

]
= Ng2

∫
dx dy

{
− 4−D

2 ∂µC(x− y)Aaµ(y)∂νC(y − x)Aaν(x)

+ 2−D
2 ∂µC(x− y)Aaν(y)∂µC(y − x)Aa ν(x)

− C(x− y) ∂µ
(
Aaµ(y)G0(y − x)

)
n·Aa(x)

− 2−D
8 C(x− y) ∂ ·Aa(y) (C(y − x)− 2C(0)) ∂ ·Aa(x)

}
+Ng2

∫
dx dy dz

{
+ 1

4G0(x− z)nµC(z − x) ∂ ·Aa(y)∂µC(y − x) ∂ ·Aa(x)

+ 2G0(x− z)∂µC(z − x) ∂ ·Aa(y)nν∂{νC(y − x)Aaµ}(x)

− 2G0(x− z)∂µC(z − y)Aaν(y)nλ∂ν∂{λC(y − x)Aaµ}(x)

− 1−D
2 δ(0)C(z − y) ∂ ·Aa(y)C(z − x) ∂ ·Aa(x)

}
.

(4.20)
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The blue terms cancel for any dimension D. Notice that this applies also to the formally
divergent terms including a factor of δ(0) (which can be appropriately regularized). The
remaining black terms in (4.19) and (4.20) need to match the three terms from (4.17). One
of them is identically satisfied, while the two others are

r

2 = D

2 −
4−D

2 = D − 2 ,

−r4 = 2−D
2

(4.21)

and are thus satisfied with r = 2(D− 2). In particular this is true even without restricting
to the gauge surface nµAaµ = 0. Let us further remark that we have also computed the
Nicolai map in Landau gauge from the rescaled field formalism. When performing the
tests in Landau gauge we found that the determinants match either on the gauge surface
∂µAaµ = 0 for any r = 2(D − 2) or everywhere else for D = 4 only.

5 Outlook

In this paper we have presented explicit results for Tg beyond the ones known so far, and
for different gauge choices. The fact that these are rather complicated is due to the fact
that we have been considering gauge-variant expressions. We anticipate that the pertinent
expressions will simplify substantially for the gauge-invariant operators that are usually
considered in studies of N = 4 Yang-Mills theory, as well as for the BPS-protected objects
annihilated by the action of the R-operator. These topics will be left for future study.
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A Construction of the R̃-operator

For the reader’s convenience we here recall the derivation of the R̃-operator in the rescaled
field formalism [25, 26], pointing out the differences to the derivation of the R-operator
in [22]. In particular, we will see that unlike R, the R̃-operator does not come with a
multiplicative term 〈〈ZX〉〉 which vanishes only on the gauge surface, and thus violates
distributivity away from this surface. Hence we will see that the R̃-operator exists in any
gauge. The full action S̃ = S̃inv + S̃gf is invariant under the BRST variations (2.8) for all
positive ξ and arbitrary gauge-fixing functionals Ga[Ã] (which for simplicity we assume not
to depend on g).

As in [22] we start from the flow equation

d
dg
〈
X̃
〉
g

= d
dg
〈〈
X̃
〉〉
g

=
〈〈dX̃

dg

〉〉
g

− i
〈〈d(S̃inv + S̃gf)

dg X̃

〉〉
g

=:
〈
R̃ X̃

〉
g
. (A.1)
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Because the g dependence appears only as an overall factor in S̃ = S̃inv + S̃gf we have

dS̃inv
dg = −2S̃inv

g
= − 2

g3 δα∆̃α , (A.2)

where ∆̃α is defined in (2.6) (with tildes); note that, being fermionic, δα and ∆α anti-
commute. By contrast, in [22] we needed an extra term on the r.h.s, which is not of the
form of a supervariation, but which is absent here thanks to the auxiliary field. Thus (A.1)
becomes

d
dg 〈X̃〉g =

〈〈dX̃
dg

〉〉
g

+ 2i
g3
〈〈

(δα∆̃α)X̃
〉〉
g

+ 2i
g

〈〈
S̃gfX̃

〉〉
g
. (A.3)

We then continue as before and rewrite〈〈
(δα∆̃α)X̃

〉〉
g

=
〈〈
δα
(
∆̃αX̃

)〉〉
g

+
〈〈

∆̃αδαX̃
〉〉
g
. (A.4)

Next we use the supersymmetry Ward identity〈〈
δαỸ

〉〉
g

= −i
〈〈

(δαS̃gf)Ỹ
〉〉
g
. (A.5)

Employing the Slavnov variations (2.8) one finds that

S̃gf = −s
( 1
g2

∫
dx ¯̃CaGa[Ã])

)
, (A.6)

which in particular implies

δαS̃gf = −s
( 1
g2

∫
dx ¯̃CaδαGa[Ã]

)
. (A.7)

Thus, the Ward identity becomes

〈〈δα Y 〉〉g = −
〈〈

i

g2

∫
dx ¯̃Ca(x)δαGa(Ã) s(Ỹ )

〉〉
g

. (A.8)

We now apply this identity to Ỹ = ∆̃αX̃. Because ∆̃α is gauge invariant we have s(∆̃α) = 0
and thus s(∆̃αX) = −∆̃αs(X̃) (the minus sign here appears because s anti-commutes with
fermionic expressions). Subsequently we put everything back together to obtain

d
dg 〈〈X̃〉〉g =

〈〈dX̃
dg

〉〉
g

− 2i
g3
〈〈

∆̃αδα X̃
〉〉
g
− 2
g5

〈〈∫
dx ¯̃Ca(x)δαGa(Ã) ∆̃α s(X̃)

〉〉
g

+ 2
g3

〈〈∫
dx ¯̃Ca(x)Ga(Ã) s(X̃)

〉〉
g

.

(A.9)

Unlike the R-operator constructed in [22] the r.h.s. of (A.9) does not contain a multiplica-
tive contribution which only vanishes on the gauge surface, and therefore acts distributively
without further ado, and for any Ga[Ã]. Finally we integrate (A.9) over all fermionic degrees
of freedom. Each integration absorbs two powers of 1

g , so we arrive at

R̃ X̃ = dX
dg + 2i

g
δαX̃ ∆̃α −

2
g

∫
dx ¯̃Ca(x)δαGa(Ã)∆̃αs(X̃) + 2

g

∫
dx ¯̃Ca(x)Ga(Ã)s(X̃)

(A.10)
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from which the distributivity of R̃ is manifest by the distributivity of δα and s. The final
form (3.9) is arrived at by taking X̃ = Ãaµ with s(Ãaµ) = (D̃µC̃)a and substituting the
formulas for the ghost and gaugino propagators.

For gauge invariant X̃ the above formula reduces to

R̃X̃ ≡ R̃invX̃ := dX̃
dg + 2i

g
δαX̃ ∆̃α . (A.11)

A straightforward calculation analogous to the one in A.3 of [22] shows that

− 1
4g2

∫
dx F̃ aµνF̃ aµν and − 1

2g2

∫
dx D̃aD̃a (A.12)

are in the kernel of R̃. Thus we can set D̃a = 0 without loss of generality. Using the
definitions of the fermion and ghost propagators

iλ̃a(x)¯̃λb(y) = S̃ab(x, y; Ã) and C̃a(x) ¯̃Cb(y) = G̃ab(x, y; Ã) (A.13)

we obtain the final form of R̃ = R̃inv + R̃gf spelled out in (3.15) and (3.16).

B Fourth order result in Landau gauge

In this appendix we give the explicit form of the on-shell map Tg for the Landau gauge
up to and including order O(g4), thus extending the result of [22] by one order. This
expression does satisfy all the tests on-shell, that is, on the gauge surface ∂µAaµ = 0; details
of the latter calculation will be provided in a forthcoming thesis [45]. We emphasize that
for the N = 1 theory our prescription would also yield the corresponding off-shell result,
but the resulting expressions would be considerably more cumbersome.

(TgA)aµ(x) = Aaµ(x) + g fabc
∫

dy ∂ρC(x− y)Abµ(y)Acρ(y)

+ 3g2

2 fabcf bde
∫

dy dz ∂ρC(x− y)Aλ c(y)∂[ρC(y − z)Adµ(z)Aeλ](z)

+ g3

2 f
abcf bdefcfg

∫
dy dz dw ∂ρC(x− y)

× ∂λC(y − z)Adλ(z)Aσ e(z)∂[ρC(y − w)Afµ(w)Agσ](w)

+ g3fabcf bdefdfg
∫

dy dz dw ∂ρC(x− y)Aλ c(y)
{

− ∂σC(y − z)Aeσ(z)∂[ρC(z − w)Afµ(w)Agλ](w)

+ ∂[ρC(y − z)Aeµ(z)∂σC(z − w)Afλ](w)Agσ(w)
}

+ g3

3 f
abcf bdefdfg

∫
dy dz dw

{
+ 6 ∂ρC(x− y)Aλ c(y)∂[ρC(y − z)Aσ] (z)∂[λC(z − w)Afµ(w)Agσ](w)

− 6 ∂ρC(x− y)Acλ(y)∂[λC(y − z)Aσ] e(z)∂[ρC(z − w)Afµ(w)Agσ](w)

− 6 ∂ρC(x− y)Acλ(y)∂[σC(y − z)Aeµ](z)∂[ρC(z − w)Aλ f (w)Aσ] g(w)

+ 2 ∂ρC(x− y)Ac[ρ(y)∂µ]C(y − z)Aλ e(z)∂σC(z − w)Afλ(w)Agσ(w)

− ∂µC(x− y) ∂ρ
(
Acρ(y)C(y − z)

)
Aλ e(z)∂σC(z − w)Afλ(w)Agσ(w)

}

(B.1)
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− g3

3 f
abcf bdefdfg

∫
dy dz Acµ(x)C(x− y)Aρ e(y)∂λC(y − z)Afρ(z)Agλ(z)

+ g4

12f
abcf bdefdfgfchi

∫
dy dz dw

× C(x− y)Aλ e(y)∂ρC(y − z)Afλ(z)Agρ(z)∂σC(x− w)Ahσ(w)Aiµ(w)

+ g4

8 f
abcf bdefdfgfchi

∫
dy dz dw dv ∂λC(x− y)∂ρC(y − z)

{
− 9Aeσ(z)∂[ρC(z − w)Aσ f (w)Aν] g(w)∂[µC(y − v)Ahλ(v)Aiν](v)

+ 4A[ρ e(z)∂|σ|C(z − w)Afσ(w)Aν] g(w)∂[µC(y − v)Ahλ(v)Aiν](v)

− 2Aρ e(z)∂[µC(z − w)Afλ(w)Agν](w)∂σC(y − v)Ahσ(v)Aν i(v)
}

− g4

12f
abcf bdefdfgfchi

∫
dy dz dw dv ∂µC(x− y)∂λC(y − z)

×Aρ e(z)∂σC(z − w)Afσ(w)Agρ(w)∂τC(y − v)Ahτ (v)Aiλ(v)

+ g4

2 f
abcf bdefdfgfchi

∫
dy dz dw dv ∂λC(x− y)

{
+ ∂[µC(y − z)Aeρ](z)∂[λC(z − w)Aρ f (w)Aν] g(w)∂σC(y − v)Ahσ(v)Aiν(v)

− ∂[λC(y − z)Aρ] e(z)∂[µC(z − w)Afρ(w)Agν](w)∂σC(y − v)Ahσ(v)Aiν(v)
}

+ g4

6 f
abcf bdefdfgfchi

∫
dy dz dw dv ∂λC(x− y)

{
+ 3∂[ρC(y − z)Aν] e(z)∂[µC(z − w)Afλ(w)Agρ](w)∂σC(y − v)Ahσ(v)Aiν(v)

+ ∂[λC(y − z)Aν e(z)∂σC(z − w)Af|σ(w)Agν(w)∂ρC(y − v)Ahρ|(v)Aiµ](v)
}

− g4

3 f
abcf bdefdfgfehi

∫
dx dy dz dw

×Acµ(x)C(x− y)∂λC(y − z)Afλ(z)Aρ g(z)∂σC(y − w)Ahσ(w)Aiρ(w)

− g4

3 f
abcf bdefdfgfehi

∫
dy dz dw dv ∂µC(x− y)

× ∂λ (Acλ(y)C(y − z)) ∂ρC(z − w)Afρ(w)Aν g(w)∂σC(z − v)Ahσ(v)Aiν(v)

+ g4

12f
abcf bdefdfgfehi

∫
dy dz dw dv ∂λC(x− y)Aρ c(y)

{
− 3∂ρC(y − z)∂[µC(z − w)Afλ(w)Agν](w)∂σC(z − v)Ahσ(v)Aiν(v)

− 3∂νC(y − z)∂[µC(z − w)Afρ(w)Agν](w)∂σC(z − v)Ahσ(v)Aiλ(v)

+ 3∂νC(y − z)∂[λC(z − w)Afρ(w)Agν](w)∂σC(z − v)Ahσ(v)Aiµ(v)

− 3∂µC(y − z)∂[λC(z − w)Afρ(w)Agν](w)∂σC(z − v)Ahσ(v)Aiν(v)

+ 3∂λC(y − z)∂[µC(z − w)Afρ(w)Agν](w)∂σC(z − v)Ahσ(v)Aν i(v)

− 2∂[λC(y − z)∂νC(z − w)Af|ν|(w)Agµ](w)∂σC(z − v)Ahσ(v)Aiρ(v)

+ ∂ρC(y − z)∂νC(z − w)Afν(w)Agµ(w)∂σC(z − v)Ahσ(v)Aiλ(v)
}

+ g4

6 f
abcf bdefdfgfehi

∫
dy dz dw dv ∂λC(x− y)

{
− 7Ac[µ(y)∂λ]C(y − z)∂ρC(z − w)Afρ(w)Aν g(w)∂σC(z − v)Ahσ(v)Aiν(v)

+ 3A[ν c(y)∂ρ]C(y − z)∂[µC(z − w)Afλ(w)Agρ](w)∂σC(z − v)Ahσ(v)Aiν(v)
}
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− g4

2 f
abcf bdefdfgffhi

∫
dy dz dw

× ∂λC(x− y)Ac[µ(y)Aeλ](y)C(y − z)Aρ g(z)∂σC(z − w)Ahσ(w)Aiρ(w)

+ g4

12f
abcf bdefdfgffhi

∫
dx dy dz dw Acµ(x)C(x− y)

{
+ 9Aλ e(y)∂ρC(y − z)Aσ g(z)∂[λC(z − w)Ahρ(w)Aiσ](w)

+ 4A[λ e(y)∂ρ]C(y − z)Agλ(z)∂σC(z − w)Ahσ(w)Aiρ(w)

− 3Aeλ(y)∂λC(y − z)Aρ g(z)∂σC(z − w)Ahσ(w)Aiρ(w)

− 3∂λ (Aeλ(y)C(y − z))Aρ g(z)∂σC(z − w)Ahσ(w)Aiρ(w)
}

+ g4

12f
abcf bdefdfgffhi

∫
dy dz dw dv ∂µC(x− y)∂λ (Acλ(y)C(y − z))

{
+ 9Aρ e(z)∂σC(z − w)Aν g(w)∂[ρC(w − v)Ahσ(v)Aiν](v)

+ 4A[ρ e(z)∂ν]C(z − w)Agρ(w)∂σC(w − v)Ahσ(v)Aiν(v)

− 3∂ρ
(
Aeρ(z)C(z − w)

)
Aν g(w)∂σC(w − v)Ahσ(v)Aiν(v)

− 3Aeρ(z)∂ρC(z − w)Aν g(w)∂σC(w − v)Ahσ(v)Aiν(v)
}

+ g4

2 f
abcf bdefdfgffhi

∫
dy dz dw dv ∂λC(x− y)Ac[µ(y)∂λ]C(y − z)

{
− ∂ρ

(
Aeρ(z)C(z − w)

)
Aν g(w)∂σC(w − v)Ahσ(v)Aiν(v)

−Aeρ(z)∂ρC(z − w)Aν g(w)∂σC(w − v)Ahσ(v)Aiν(v)
}

+ 2g4

3 fabcf bdefdfgffhi
∫

dy dz dw dv ∂λC(x− y)

×Ac[µ(y)∂λ]C(y − z)Aρ e(z)∂νC(z − w)Ag[ρ(w)∂σC(w − v)Ah|σ|(v)Aiν](v)

+ 3g4

2 fabcf bdefdfgffhi
∫

dy dz dw dv ∂λC(x− y)
{

+ 4Aρ c(y)∂[λC(y − z)Ae ν](z)∂σC(z − w)Ag[µ(w)∂ρC(w − v)Ahσ(v)Aiν](v)

− 4Acr(y)∂[µC(y − z)Aeν](z)∂σC(z − w)Ag [λ(w)∂ρC(w − v)Ahσ(v)Ai ν](v)

−Aρ c(y)∂[ρC(y − z)Aeσ](z)∂µC(z − w)Agν(w)∂[λC(w − v)Ahσ(v)Ai ν](v)
}

+ 3g4

2 fabcf bdefdfgffhi
∫

dy dz dw dv ∂λC(x− y)
{

−Ac[λ(y)∂µ]C(y − z)Aρ e(z)∂σC(z − w)Aν g(w)∂[ρC(w − v)Ahσ(v)Aiν](v)

−A[ρ c(y)∂λC(y − z)Aσ] e(z)∂ρC(z − w)Aν g(w)∂[µC(w − v)Ahσ(v)Aiν](v)

+A[ρ c(y)∂µC(y − z)Aσ] e(z)∂ρC(z − w)Aν g(w)∂[λC(w − v)Ahσ(v)Aiν](v)

+A[ρ c(y)∂σ]C(y − z)Aeλ(z)∂ρC(z − w)Aν g(w)∂[µC(w − v)Ahσ(v)Aiν](v)

−A[ρ c(y)∂σ]C(y − z)Aeµ(z)∂ρC(z − w)Aν g(w)∂[λC(w − v)Ahσ(v)Aiν](v)
}

+ g4

2 f
abcf bdefdfgffhi

∫
dy dz dw dv ∂λC(x− y)Aρ c(y)

{
− 8∂νC(y − z)Ae[µ(z)∂λC(z − w)Agρ(w)∂σC(w − v)Ah|σ|(v)Aiν](v)

− 2∂λC(y − z)Aν e(z)∂[µC(z − w)Agρ(w)∂σC(w − v)Ah|σ|(v)Aiν](v)

− 2∂ρC(y − z)Aν e(z)∂[µC(z − w)Agλ(w)∂σC(w − v)Ah|σ|(v)Aiν](v)

+ 2∂µC(y − z)Aν e(z)∂[λC(z − w)Agρ(w)∂σC(w − v)Ah|σ|(v)Aiν](v)
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− 3
2∂[µC(y − z)Aeρ](z)∂σC(z − w)Aν g(w)∂[λC(w − v)Ahσ(v)Aiν](v)

+ 3
2∂[λC(y − z)Aeρ](z)∂σC(z − w)Aν g(w)∂[µC(w − v)Ahσ(v)Aiν](v)

+ 3
2∂[µC(y − z)Aeλ](z)∂σC(z − w)Aν g(w)∂[ρC(w − v)Ahσ(v)Aiν](v)

+ ∂[µC(y − z)Aeλ(z)∂νC(z − w)Agρ](w)∂σC(w − v)Ahσ(v)Aiν(v)

− ∂[µC(y − z)Aeλ(z)∂νC(z − w)Ag|ν(w)∂σC(w − v)Ahσ|(v)Aiρ](v)
}

+ 3g4

4 fabcf bdefdfgffhi
∫

dy dz dw dv ∂λC(x− y)Aρ c(y)
{

− 20∂νC(y − z)Aσ e(z)∂[νC(z − w)Agµ(w)∂σC(w − v)Ahλ(v)Aiρ](v)

− 4∂ρC(y − z)Aν e(z)∂σC(z − w)Ag[µ(w)∂λC(w − v)Ahσ(v)Aiν](v)

+ 4∂σC(y − z)Aeσ(z)∂νC(z − w)Ag[µ(w)∂λC(w − v)Ahρ(v)Aiν](v)

− 2∂[µC(y − z)Aσ e(z)∂λ]C(z − w)Aν g(w)∂[ρC(w − v)Ahσ(v)Aiν](v)

+ 2∂σC(y − z)Ae[µ(z)∂λ]C(z − w)Aν g(w)∂[ρC(w − v)Ahσ(v)Aiν](v)

− 2∂σC(y − z)Ae[σ(z)∂ρ]C(z − w)Aν g(w)∂[µC(w − v)Ahλ(v)Aiν](v)

− 2∂[µC(y − z)Aeλ(z)∂ρ]C(z − w)Aν g(w)∂σC(w − v)Ahσ(v)Aiν(v)

− 2∂σC(y − z)Aeρ(z)∂νC(z − w)Ag[µ(w)∂λC(w − v)Ahσ](v)Aiν(v)

− ∂ρC(y − z)Aeσ(z)∂σC(z − w)Aν g(w)∂[µC(w − v)Ahλ(v)Aiν](v)

− ∂σC(y − z)Aeσ(z)∂µC(z − w)Aν g(w)∂[λC(w − v)Ahρ(v)Aiν](v)

− ∂σC(y − z)Aeρ(z)∂νC(z − w)Ag[µ(w)∂|ν|C(w − v)Ahλ(v)Aiσ](v)

+ ∂σC(y − z)Aeρ(z)∂νC(z − w)Agν(w)∂[µC(w − v)Ahλ(v)Aiσ](v)

+ ∂σC(y − z)Aeσ(z)∂λC(z − w)Aν g(w)∂[µC(w − v)Ahρ(v)Aiν](v)
}

+O(g5) .

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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