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STABLE AND EFFICIENT COMPUTATION OF GENERALIZED
POLAR DECOMPOSITIONS∗
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Abstract. We present methods for computing the generalized polar decomposition of a matrix
based on the dynamically weighted Halley iteration. This method is well established for computing
the standard polar decomposition. A stable implementation is available, where matrix inversion
is avoided and QR decompositions are used instead. We establish a natural generalization of this
approach for computing generalized polar decompositions with respect to signature matrices. Again
the inverse can be avoided by using a generalized QR decomposition called hyperbolic QR decom-
position. However, this decomposition does not show the same favorable stability properties as its
orthogonal counterpart. We overcome the numerical difficulties by generalizing the CholeskyQR2
method. This method computes the standard QR factorization in a stable way via two successive
Cholesky factorizations. An even better numerical stability is achieved by employing permuted graph
bases, yielding residuals of order 10−14 even for badly conditioned matrices, where other methods
fail.
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sign function, LDLT factorization, hyperbolic QR decomposition, indefinite QR decomposition, per-
muted graph basis
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1. Introduction. For K = C or K = R, the polar decomposition of a matrix
A ∈ Km×n, m ≥ n, is given as

A = UH, U∗U = I, H = H∗ ≥ 0,(1.1)

where U ∈ Km×n has unitary columns and H ∈ Kn×n is positive semidefinite. ·∗ is a
placeholder for the transpose ·T or conjugate transpose ·H. Applications of the polar
decompositions arise from looking at the following key aspects.

(a) The polar decomposition and the singular value decomposition (SVD) are
intimately connected.

(b) The factors of the polar decomposition possess particular best-approximation
qualities and can be used to solve the orthogonal Procrustes problem (see [28,
Chapter 8]).

(c) The unitary polar factor U of a Hermitian matrix A = UH coincides with its
matrix sign function sign(A) = U [28].

Elaborating on aspect (a), the polar decomposition is classically computed by
dropping the middle term in the SVD, but recently, more efficient alternatives have
been developed [36, 41, 42, 43], and rather, the polar decomposition can now be seen
as a first step for computing the SVD [51].

The matrix sign function, referred to in aspect (c), is a widely used tool for acquir-
ing invariant subspaces of a matrix. This property is used to solve matrix equations
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COMPUTATION OF GENERALIZED POLAR DECOMPOSITIONS 1059

[8, 47] and develop parallelizable algorithms for solving eigenvalue problems [3, 52].
Therefore, efficient iterations for computing the polar decomposition, such as the QR-
based dynamically Weighted Halley (QDWH) iteration [43] and its successor based
on Zolotarev’s functions [42], can be used to improve these methods for Hermitian
matrices.

The concept of polar decompositions can be generalized in terms of nonstandard
inner product spaces. The papers [11, 12, 39] treat inner products induced by Hermit-
ian matrices, while [29, 30] provide a more general treatment. The group theoretical
foundations are laid out in [24] and used to provide a systematic derivation of a large
class of matrix decompositions. Let A ∈ Km×n, and M ∈ Km×m, N ∈ Kn×n be non-
singular. Under certain assumptions on A, M , and N (see [30]), A has a (canonical)
generalized polar decomposition with respect to the inner products induced by M and
N :

A = WS,(1.2)

where W ∈ Km×n is a partial (M,N)-isometry, i.e., AA⋆M,NA = A. The nota-
tion A⋆M,N refers to a generalized transpose with respect to the two inner products.
S ∈ Kn×n is self-adjoint with respect to N and its nonzero eigenvalues are contained
in the open right half plane. Details are given in section 2.

The standard polar decomposition (1.1) can be used to solve the orthogonal Pro-
crustes problem, arising in fields such as marketing in the context of multidimensional
scaling [13]. A generalized polar decomposition can be used as a tool to solve the non-
orthogonal variant [34].

In analogy with the standard setting, the factor W of the generalized polar de-
composition (1.2) coincides with the matrix sign function of a square matrix A if A
is self-adjoint with respect to the defining inner product. This is shown in section
2 of this paper. Finding efficient iterations for computing the generalized polar de-
composition can therefore lead to new methods for matrix equations and eigenvalue
problems involving self-adjoint matrices.

In this work, we present some results on how generalized polar decompositions
can be computed based on the dynamically weighted Halley (DWH) iteration. This
iteration is successful in computing the standard polar decomposition in an efficient
and stable way [43]. We focus on the important subclass of inner products induced
by signature matrices, i.e., diagonal matrices with +1 and −1 as diagonal values,
denoted by Σ throughout the paper. Self-adjoint matrices with respect to Σ are
called pseudosymmetric. They show up in the field of computational quantum physics
[20, 44], from which our main motivation is drawn. Discretizations of differential
equations often lead to structured eigenvalue problems of very large size. Consider,
e.g., the Bethe–Salpeter eigenvalue problem [45], which aims to find eigenvalues and
eigenvectors of a block matrix

HBS =

[
A B
−B̄ −Ā

]
=

[
A B
−BH −AT

]
, A = AH, B = BT ∈ Cn×n.

These are used to determine optical properties of crystalline systems [48] or molecules
[9]. HBS has the additional property, coming from physical constraints of the original
problem, that ΣHBS is positive definite for Σ = diag(In,−In). Similar structures arise
in different contexts of electronic structure theory [5, 22, 38]. We call pseudosymmet-
ric matrices with this property definite pseudosymmetric matrices. For these matrices
in particular, the convergence behavior of our proposed method will turn out to be as
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1060 PETER BENNER, YUJI NAKATSUKASA, AND CAROLIN PENKE

good as in the standard setting defined by the Euclidean inner product. Pseudosym-
metric matrices also play a role in describing damped oscillations of linear systems.
See [53], where they are called J-Hermitian and definite pseudosymmetric matrices
are called J-positive.

The remainder of this paper is structured as follows. Section 2 fixes the notation
on inner products and related aspects which form basic concepts used throughout the
paper. Section 3 clarifies how generalizations of the QR factorization can be used to
compute matrices that are orthogonal with respect to nonstandard inner products. In
section 4, we recapitulate the central ideas of the QDWH algorithm. Section 5 shows
how they can be applied in order to compute a generalized polar decomposition. We
show general results and then restrict ourselves to inner products induced by signature
matrices. Here, inverses can be avoided by using the decompositions presented earlier
in section 3. The introduction of permuted graph bases can improve the stability of
the computation of the generalized polar factor. Details are found in section 6. Section
7 gives numerical results on the questions of stability and convergence. Conclusions
and further research directions are given in section 8.

2. Preliminaries. Following [29] and [37], we provide basic notation regarding
inner products needed for the generalized polar decomposition. A nonsingular matrix
M defines an inner product on Kn (where K ∈ {C,R}), which is a bilinear or a
sesquilinear form ⟨., .⟩M , given by

⟨x, y⟩M =

{
xTMy for bilinear forms,

xHMy for sesquilinear forms,

for x, y ∈ Kn. We use ·∗ throughout the paper to indicate transposition ·T or conju-
gated transposition ·H , depending on whether a bilinear or sesquilinear form is given.
We overline a quantity to denote complex conjugation.

For a matrix A ∈ Km×n, the matrix A⋆M,N ∈ Kn×m denotes the adjoint with
respect to the inner products defined by the nonsingular matrices M ∈ Km×m and
N ∈ Kn×n. This matrix is uniquely defined by satisfying the identity

⟨Ax, y⟩M = ⟨x,A⋆M,N y⟩N

for all x ∈ Kn, y ∈ Km. The matrix A⋆M,N is called the (M,N)-adjoint of A and
fulfills

A⋆M,N = N−1A∗M.(2.1)

A is (M,N)-orthogonal if A⋆M,NA = In and this notion is generalized in the form
of partial (M,N)-isometries. A matrix A is called a partial (M,N)-isometry when
AA⋆M,NA = A.

If A is square and M = N , the notation simplifies and the M -adjoint is given
by A⋆M := A⋆M,M . We call a square matrix A an (M -)automorphism if A⋆M = A−1

(given the inverse exists) and (M -)self-adjoint if A = A⋆M .
In the following, we give basic results regarding the generalized polar decom-

position (1.2) that can be found in [29] or [30]. The canonical generalized polar
decomposition can be defined if M ∈ Km×m and N ∈ Kn×n form an orthosymmetric
pair, i.e., if they satisfy

(a) MT = βM , NT = βN , β = ±1 for bilinear forms,
(b) MH = αM , NH = αN , |α| = 1 for sesquilinear forms.
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COMPUTATION OF GENERALIZED POLAR DECOMPOSITIONS 1061

Definition 2.1 (Definition 3.6 in [30]). A matrix A ∈ Km×n has a canonical
generalized polar decomposition with respect to an orthosymmetric pair of matrices
M ∈ Km×m and N ∈ Kn×n if there exists a partial (M,N)-isometry W and an
N -self-adjoint matrix S, whose eigenvalues all have positive real parts, s.t.

A = WS,

and range(W ⋆M,N ) = range(S).

If A has full column rank, W is (M,N)-orthogonal and, if additionally A is square
and M = N , then W is an N -automorphism.

In contrast to the standard polar decomposition (see Theorem 8.1 in [28]), the
existence of the (canonical) generalized polar decomposition can in general not be
guaranteed. The following theorem clarifies this issue.

Theorem 2.2 (existence of the canonical generalized polar decomposition, The-
orem 3.9 in [30]). A matrix A ∈ Km×n has a unique canonical generalized polar
decomposition with respect to the orthosymmetric pair M , N if and only if

1. A⋆MA has no eigenvalues on the negative real axis,
2. if zero is an eigenvalue of A⋆M,NA, then it is semisimple, and
3. ker(A⋆M,N ) = ker(A).

In case of existence, we have S = (A∗M,NA)
1
2 and W ⋆M,NWS = S. Just as the

standard polar decomposition, the generalized polar decomposition is related to the
matrix sign function, which is a generalization of the scalar sign function

sign(z) =

{
1, Re(z) > 0,

−1, Re(z) < 0,
z ∈ C, z /∈ iR,

applied to matrices. For a detailed treatment see [28, Chapter 5]. Let a square
matrix A without purely imaginary eigenvalues have a Jordan decomposition A =
Z diag(J+, J−)Z

−1, where J+ ∈ Kn+×n+ contains all Jordan blocks associated with
eigenvalues with positive real part and J− ∈ Kn−×n− contains Jordan blocks asso-
ciated with eigenvalues with negative real part. Then the matrix sign function is
defined as

sign(A) := Z diag
(
In+

,−In−

)
Z−1.

Theorem 2.3. Let M be a nonsingular matrix and A ∈ Kn×n be self-adjoint with
respect to the inner product induced by M . If A has no purely imaginary eigenvalues
or eigenvalues equal to zero, sign(A) and the canonical generalized polar decomposition
(with respect to M) A = WS are well-defined and they are connected in the form of

sign(A) = W.

Proof. The matrix sign function can be expressed as [28]

sign(A) = A(A2)−1/2.

The generalized polar decomposition A = WS is well-defined with a unique self-
adjoint factor S if all eigenvalues of M−1A∗MA are positive real. For self-adjoint
matrices we have M−1A∗M = A, so M−1A∗MA = A2 can only have negative real
eigenvalues if A has purely imaginary eigenvalues. A2 can only have an eigenvalue
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1062 PETER BENNER, YUJI NAKATSUKASA, AND CAROLIN PENKE

equal to zero if A has an eigenvalue equal to zero. So A = WS is well-defined
because A has only real nonzero eigenvalues. The principal matrix square root S =
(M−1A∗MA)

1
2 exists and is uniquely defined because all eigenvalues of M−1A∗MA

are positive real. W is given as

W = A(M−1A∗MA)−1/2 = A(A2)−1/2 = sign(A) .

3. Connections between LDLT factorizations and hyperbolic QR de-
compositions.

3.1. The hyperbolic QR factorization. A matrix Σ = diag(σ1, . . . , σn),
where σi ∈ {+1,−1} for i = 1, . . . , n, is called a signature matrix. We search for
a way to compute (Σ, Σ̂)-orthogonal bases, which span a given subspace. While Σ is
a given signature matrix, Σ̂ can be another arbitrary signature matrix. Matrices that
are (Σ, Σ̂)-orthogonal are also called hyperexchange matrices [27] and can be used to
solve indefinite least square problems [10].

The methods presented in this section take a rectangular matrix A ∈ Km×n and
signature matrix Σ as input and deliver two outputs. These are another signature
matrix Σ̂ and H ∈ Km×n, which spans the same subspace as the column space of A
and is (Σ, Σ̂)-orthogonal. Subspace representations of this kind will be used in the
computation of generalized polar decompositions (section 5). A classic method for
computing such a subspace representation uses the hyperbolic QR decomposition.

Theorem 3.1 (the hyperbolic QR decomposition [17]). Let Σ ∈ Rm×m be a
signature matrix, A ∈ Km×n, m ≥ n. Suppose all the leading principal submatrices
of A∗ΣA are nonsingular. Then there exists a signature matrix Σ̂ = PTΣP , where P
is a permutation, a (Σ, Σ̂)-orthogonal matrix H ∈ Km×m (i.e., H∗ΣH = Σ̂), and an
upper triangular matrix R ∈ Rn×n, such that

A = H

[
R
0

]
.

The hyperbolic QR decomposition is unique when the diagonal values of R are
restricted to be positive real [50].

Remark 3.2. The hyperbolic QR decomposition can be truncated to form a thin
hyperbolic QR decomposition

A = H0R, H0 ∈ Km×n, R ∈ Kn×n, H∗
0ΣH0 = Σ̂0.

H0 contains the first n columns of H and Σ̂0 contains the n× n leading submatrix of
Σ̂, where H and Σ̂ are given in Theorem 3.1.

The hyperbolic QR decomposition can be computed by accumulating transfor-
mations that introduce zeros below the diagonal, similar to the standard QR decom-
position. We give a quick idea on how these elimination matrices are computed. For
a more formal treatment, see, e.g., [54]. For a given vector x and a given signature
matrix Σ, we look for a transformation H such that H−1x = de1, where d ∈ K, e1 de-
notes the first unit vector and H∗ΣH = Σ̂ is another signature matrix. The two kinds
of transformations used are orthogonal Householder transformations and hyperbolic
Givens rotations. For illustrative purposes suppose x ∈ C2n and Σ = diag(In,−In).
Let
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COMPUTATION OF GENERALIZED POLAR DECOMPOSITIONS 1063

H1 =

[
H+

H−

]
,

where H+ and H− are Householder transformations of dimension n × n, such that
H−1

1 x = ae1 + ben+1, where a, b ∈ C. We have HH
1 ΣH1 = Σ. The b entry in position

n + 1 is annihilated by a hyperbolic Givens rotation acting on row 1 and n + 1. We
achieve G−1[ ab ] = [ d0 ] by defining

G−1 =

[
c −s
−s c

]
,(3.1)

where

{
c = |a|/

√
|a|2 − |b|2, s = eiϕ|b|/

√
|a|2 − |b|2 if |a| > |b|,

c = |a|/
√
|b|2 − |a|2, s = eiϕ|b|/

√
|b|2 − |a|2 if |a| < |b|,

with ϕ = arg a− arg b.
G is given as G = [ c s

s c ]. For the |a| > |b| case we have

GH

[
1 0
0 −1

]
G =

[
1 0
0 −1

]
.(3.2)

For |a| < |b| there is a sign switch in the signature matrix,

GH

[
1 0
0 −1

]
G =

[
−1 0
0 1

]
.(3.3)

If a and b are real, then G is also real. Embedding G into a larger matrix H2

(equal to the identity except in rows and columns 1 and n + 1) gives the sought-
after transformation H = H1H2, such that HHΣH = Σ̂ is another signature matrix,
in which +1 at diagonal position 1 and −1 at diagonal position n + 1 have been
interchanged if (3.3) takes effect. If (3.2) takes effect, the signature matrix does not
change: Σ = Σ̂.

The presented method works not only for the specific signature matrix Σ =
diag(In,−In). For an arbitrary signature matrix Σ, a matrix taking over the role
of H+ acts on the rows corresponding to positive entries of Σ. A matrix in the role of
H− acts on the remaining rows. A first full-size Householder transformation (H1 in
the example above) is set up as a combination of the two smaller matrices. A matrix,
embedding a Givens rotation (given as H2 in the example above), then acts on the
remaining two entries and may or may not introduce a sign switch in the signature
matrix. In (3.1), the case |a| = |b| is not covered and in this case no suitable matrix
G exists. The assumptions in Theorem 3.1 prevent this from happening, but if a and
b are close, G becomes ill-conditioned. This can lead to an instability in algorithms
employing this kind of column elimination.

In order to overcome these potential instabilities, we once again take a look at
the standard QR decomposition. Here, we can find Cholesky-QR as an alternative
computational approach, explained below. It has been rarely considered because
its unmodified variant is less stable than the classical approach using Householder
transformations.

The orthogonal QR decomposition is connected to a Cholesky factorization in the
following way [55]. If A = QR is a QR decomposition, then A∗A = R∗R is a Cholesky
factorization of A∗A. Conversely, if the Cholesky factorization A∗A = R∗R with
nonsingular R is given, Q = AR−1 is the orthogonal factor of the QR decomposition.

In the indefinite setting an analogous connection exists between the hyperbolic
QR factorization (Theorem 3.1) and a scaled variant of the LDLT factorization given
in [25, Theorem 4.1.3].
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Lemma 3.3. Let A ∈ Km×n have a decomposition A = HR, H ∈ Km×n, R ∈
Kn×n. Then

H∗ΣH = Σ̂ ⇔ A∗ΣA = R∗Σ̂R.(3.4)

Remark 3.4. If the right side of the equivalence in (3.4) with nonsingular R is
given, H = AR−1 can be recovered from A and R. In the case of signature matrices,
the right side can be computed from an LDLT decomposition A∗ΣA = LDL∗, where
L is unit lower triangular D is real diagonal. Then R := |D| 12L∗ and Σ̂ := sign(D)
(containing the signs of the diagonal values in D) fulfill A∗ΣA = R∗Σ̂R.

The LDLT factorization with a strictly diagonal D is typically not used in modern
algorithms, as it becomes unstable when small diagonal values appear [2]. Instead,
D is allowed to be block-diagonal with 1× 1 and 2× 2 blocks, and a pivoting scheme
is employed [16]. This yields an LDLT factorization A = PLDL∗PT, where P is
a permutation matrix, L is unit lower triangular, and D is block-diagonal. We call
this factorization “LDLT factorization with pivoting” or “block LDLT factorization”
in order to distinguish it from the “diagonal LDLT factorization.” The additional
degrees of freedom destroy the uniqueness property, but allow for a more stable com-
putation. Several backward stable algorithms have been developed (see [14, 15]) and
well-established implementations are available in software packages such as LAPACK
and MATLAB [2, 23]. In the latter, the implementation is given as the ldl command.

Remark 3.4 points out how the hyperbolic QR decomposition can be computed
from the diagonal LDLT decomposition. If instead the LDLT decomposition with
pivoting is used, one obtains the (thin) indefinite QR decomposition, which is not
unique anymore.

Theorem 3.5 ((thin) indefinite QR decomposition [50]). Let Σ ∈ Km×m be a
signature matrix, A ∈ Km×n, m ≥ n. Suppose A∗ΣA is nonsingular. Then there
exists a decomposition

A = HRPT, H ∈ Km×n, R ∈ Kn×n, P ∈ Rn×n,

where P is a permutation matrix. There exists PΣ ∈ Rm×n which contains n columns
of an m×m permutation matrix and defines the signature matrix Σ̂ = PT

ΣΣPΣ. The

matrix H is (Σ, Σ̂)-orthogonal (i.e., H∗ΣH = Σ̂), and R is block-upper triangular
with blocks of size 1× 1 and 2× 2.

The difference between the indefinite QR decomposition (Theorem 3.5) and the
hyperbolic QR decomposition (Theorem 3.1) is that pivoting is introduced, which
results in the second permutation matrix P . Blocks of size 2 × 2 appear on the
diagonal of R, and the assumption on A∗ΣA is weaker. This decomposition can
be computed via the successive use of transformation matrices, as described in [49],
similar to the hyperbolic QR decomposition (Theorem 3.1).

A perturbation analysis for the computation of the hyperbolic QR factorization
(Theorem 3.1), i.e., the triangular case of the indefinite QR factorization in Theorem
3.5, is given in [50] and more recently in [35].

Computing the indefinite QR factorization via the LDLT factorization proceeds
as follows.

1. Compute an LDLT factorization A∗ΣA = PLDL∗PT, where D is block-
diagonal.

2. Diagonalize D, i.e., compute unitary V , diagonal Λ, s.t. V ΛV ∗ = D. V has
the same block-diagonal structure as D.

3. Set R = |Λ|
1
2V ∗L∗, H = APR−1.
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3.2. LDLIQR2: Computing the indefinite QR factorization via two
LDLT decompositions. Up to now, we have explored how the indefinite QR de-
composition is computed from an LDLT factorization when exact arithmetic is as-
sumed. Due to rounding errors, this method may not yield results with a satisfying
accuracy. In this section, we describe an additional step serving as a remedy in this
case.

In [55], the CholeskyQR2 algorithm is formulated and following these ideas we
derive the indefinite variant (see also [7]). We call the algorithm LDLIQR2, stand-
ing for LDLT-based computation of the indefinte QR decomposition, applied twice.
It computes a (Σ, Σ̂)-orthogonal basis of the subspace spanned by a matrix A. A
signature matrix is given as Σ and Σ̂ is another signature matrix determined by the
algorithm. It starts by computing the indefinite QR factorization A = H1R1P

T
1 via

the LDLT factorization with pivoting as described in the previous section. Then as
a second step, the indefinite QR decomposition H1 = HR2P

T
2 is computed using the

same method. This yields a factorization

A = HR2P
T
2 R1P

T
1 , with R1, R2 upper triangular,

P1, P2 permutation matrices.
(3.5)

In exact arithmetic, the second step is redundant, as the hyperbolic QR decom-
position of a (Σ, Σ̂)-orthogonal H is H = HI. In floating point arithmetic, however,
performing the second step provides improvements regarding the accuracy of the com-
puted factorization. P2 will in practice often be the identity matrix. In this case, we
have computed an instance of the indefinite QR factorization given in Theorem 3.5
with R := R2R1 and P := P1. For our application we are just interested in a (Σ, Σ̂)-
orthogonal basis, so the exact shape of R in a decomposition A = HR does not
matter. The method is formulated in Algorithm 3.1.

Algorithm 3.1. LDLIQR2: Compute (Σ, Σ̂)-orthogonal basis via double LDLT

factorization with pivoting.

Input: A ∈ Km×n, with full column rank, Σ ∈ Rn×n is a signature matrix.
Output: (Σ, Σ̂)-orthogonal H ∈ Km×n and R1, P1, R2, P2 ∈ Kn×n as in (3.5).

// First pass:
1: [L1, D1, P1]← ldl(A∗ΣA)
2: [V1,Λ1]← eig(D) ▷ V1 is block-diagonal.

3: H1 ← AP1L
−∗
1 V1|Λ1|−

1
2

4: R1 ← |Λ1|
1
2V ∗

1 L
∗
1

// Second pass:
5: [L2, D2, P2]← ldl(H∗ΣH)
6: [V2,Λ2]← eig(D) ▷ V2 is block-diagonal.

7: H ← H1P2L
−∗
2 V2|Λ2|−

1
2

8: R2 ← |Λ2|
1
2V ∗

2 L
∗
2

// Compute new signature matrix:
9: Σ̂← Λ2|Λ2|−1

If one is only interested in computing H and Σ̂, then steps 4 and 8, computing
R1 and R2, can be omitted.

4. The QDWH algorithm for computing the standard polar decompo-
sition. Methods for the computation of the polar decomposition of a matrix A = UH
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1066 PETER BENNER, YUJI NAKATSUKASA, AND CAROLIN PENKE

(1.1) have been studied extensively in recent years. Once the orthogonal polar factor
is computed, the symmetric factor can be recovered via H = U∗A. In floating point
arithmetic, the symmetric factor is not symmetric due to rounding errors and thus
H := (H +H∗)/2 can be performed to guarantee numerical symmetry.

A current state-of-the-art iterative method for computing the polar factor is the
QDWH algorithm [41]. It is based on the well-known Halley iteration which is a
member of the Padé family of iterations [33]. The DWH iteration introduces the
weights ak, bk, ck ∈ R+ and is given as

Xk+1 = Xk(akI + bkX
∗
kXk)(I + ckX

∗
kXk)

−1, X0 =
1

∥A∥2
A.(4.1)

Convergence is globally guaranteed with an asymptotic cubic rate, provided A has
full column rank. In order to choose the weights in an optimal fashion, iteration (4.1)
is understood as an iteration acting on the singular values of the iterate Xk. Let
Xk = USΣkVS

∗ be the SVD of Xk. Then one step of iteration (4.1) yields

Xk+1 = USgk(Σk)VS
∗,(4.2)

where

gk(x) = x
ak + bkx

2

1 + ckx2
.(4.3)

The singular value σi,k+1 of Xk+1 is hence given by a rational function acting on the
singular value σi,k of Xk,

σi,k+1 = gk(σi,k).(4.4)

The singular values converge to 1 as Xk approaches the polar factor. Let ℓ(=: ℓ0) be
a lower bound to the singular values of X0. Due to the initial scaling with 1/∥A∥2
the singular values of X0 lie between 0 and 1. A successful strategy for accelerating
convergence can be developed by minimizing the distance of ℓk, a lower bound on the
singular values of Xk, to 1 in each iteration. This line of thought leads to weights
chosen as

ak = h(ℓk), bk = (ak − 1)2/4, ck = ak + bk − 1, ℓk+1 = gk(ℓk),(4.5)

where

h(ℓ) =
√
1 + d+

1

2

√
8− 4d+

8(2− ℓ2)

ℓ2
√
1 + d

, d =
3

√
4(1− ℓ2)

ℓ4
.(4.6)

The weights in (4.5) are the solutions of an optimization problem, which is how they
were introduced in [41]. Another derivation considers the best rank-(3,2) rational ap-
proximation of the sign function, leading to the same weights given in (4.5). The lat-
ter approach can be extended to rational approximations of higher order (Zolotarev’s
functions); see [42].

For matrices A with condition number κ2(A) < 1016, convergence within six
iterations can be guaranteed using these weights [41]. A simple rewrite of the iteration
(4.1)

Xk(akI + bkX
∗
kXk)(I + ckX

∗
kXk)

−1

=
bk
ck

Xk +

(
ak −

bk
ck

)
Xk(I + ckX

∗
kXk)

−1
(4.7)
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COMPUTATION OF GENERALIZED POLAR DECOMPOSITIONS 1067

leads to two distinct implementation variants: (I + ckX
∗
kXk) is a symmetric positive

definite matrix and its linear solve can be done using a Cholesky factorization.{
Zk = I + ckX

∗
kXk, Wk = chol(Zk),

Xk+1 = bk
ck
Xk +

(
ak − bk

ck

)
XkW

−1
k W−∗

k .
(4.8)

It can also be shown that Xk(I + ckX
T
kXk)

−1 is equivalently computed via a QR
decomposition, which leads to the actual QDWH iteration

[√
ckXk

I

]
=

[
Q1

Q2

]
R,

Xk+1 = bk
ck
Xk + 1√

ck

(
ak − bk

ck

)
Q1Q

T
2 .

(4.9)

This variant entirely avoids inversion and is proven to be backward stable [43], but
it has a higher operation count than the Cholesky variant (4.8). This is why in
practice the algorithm carries out the QR-based variant (4.9) in the first iterations
and switches to the Cholesky variant (4.8) as soon as a reasonably conditioned iterate
Xk is guaranteed. This way, numerical stability of the iteration is not compromised.

The two forms of the iteration represent the connection between the QR decom-
position and the Cholesky factorization described in the previous section. They are
two sides of the same coin. Either the QR decomposition of A = [

√
ckX
I

] is com-
puted (leading to iteration (4.9)), or the Cholesky factorization of A∗A = I + ckX

∗X
(iteration (4.8)) is computed and used for a linear solve.

5. Generalized polar decompositions.

5.1. The generalized QDWH algorithm. Iterative methods for computing
the generalized polar factor can be constructed from a connection to the matrix sign
function.

Theorem 5.1 (computation of the canonical generalized polar decomposition,
Theorem 5.1 in [29]). Let A = WS be a matrix with an existing canonical generalized
polar decomposition with respect to the orthosymmetric pair M,N . Let

Xk+1 = g(Xk) = Xkh(X
2
k)(5.1)

be an iteration that converges to sign(X0), assuming it exists. g(·) and h(·) are matrix
functions. Let g(0) = 0 and for sesquilinear forms assume that g(X⋆N ) = g(X)⋆N

holds for all X in the domain of g. Then the iteration

Yk+1 = Ykh(Y
⋆M,N

k Yk), Y0 = A,

converges to W with the same order of convergence as iteration (5.1) converges to
sign(X0).

Iterations for the matrix sign function of the form (5.1) are very common and
well-studied [28, Chapter 5]. They include the class of Padé iterations devised in [32].
Here, the iteration is given as a rational function of the form

Xk+1 = Xkplm(I −X2
k)qlm(I −X2

k)
−1, X0 = A,

where plm(·) and qlm(·) are explicitly given polynomials, yielding the Padé approxi-
mant of degree (l,m).
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1068 PETER BENNER, YUJI NAKATSUKASA, AND CAROLIN PENKE

Choosing l = m = 1 leads to the Halley iteration, which also forms the basis of
the QDWH algorithm presented in section 4. In the context of the generalized polar
decomposition, the DWH iteration follows from applying Theorem 5.1 and is given as

Xk+1 = Xk(akI + bkX
⋆M,N

k Xk)(I + ckX
⋆M,N

k Xk)
−1, X0 = sA,(5.2)

where s ∈ R is an arbitrary scaling factor, as any sA has the same polar factor W . A
discussion on how to choose a beneficial s follows later. More explicitly, using (2.1),
iteration (5.2) is given as

Xk+1 = Xk(akI + bkN
−1X∗

kMXk)(I + ckN
−1X∗

kMXk)
−1, X0 = sA.

The generalization of the DWH algorithm given in the previous paragraphs is
straightforward. We now investigate whether this iteration has attractive numerical
properties and under which circumstances it can lead to an accelerated convergence.
The key observation in the standard setting is that one iteration step acts as a ratio-
nal function on the singular values of the iterate Xk (see (4.2) to (4.4)). A similar
observation helps in the indefinite setting.

Corollary 5.2. Let the canonical generalized polar decomposition A = WS exist
and be computed via an iteration Xk+1 = Xkh(X

⋆M,N

k Xk), X0 = A, as given in
Theorem 5.1. Then Xk has a canonical generalized polar decomposition

Xk = WSk.

The series of self-adjoint factors Sk satisfies

Sk+1 = Skh(S
2
k).(5.3)

Proof. See proof of Theorem 5.1 in [30].

Using the Jordan canonical form S = ZJZ−1, we see that (5.3) is equivalent to

Sk+1 = Zg(Jk)Z
−1 = ZJk+1Z

−1

with g(x) = xh(x2). Essentially, one iteration step for computing the generalized
polar decomposition acts as a rational function on the eigenvalues of the self-adjoint
factor S, such that they converge toward 1 (or stay 0 in the rank-deficient case).

Note that all nonzero eigenvalues of S have positive real part and S = (A⋆M,NA)
1
2 by

definition.
In the standard setting outlined in section 4, i.e., the case M = Im, N = In, the

matrix S is symmetric (respectively, Hermitian) and has only real eigenvalues. These
eigenvalues are the singular values of A. This property does not hold in the general
case. Only the convergence of the real eigenvalues of S is guaranteed to benefit from
choosing the weighting parameters as in the standard case. Complex eigenvalues also
converge (see the numerical results of Example 2 in section 7 in Table 1) but a concise
description of the convergence behavior is left as future research.

The reason we are interested in developing this method further lies in its possible
applications laid out in section 1. In the application in quantum physics, the relevant
eigenvalues are in fact often real. This follows from physical constraints and does not
follow directly from the given matrix structure. To be more specific, ΣA is Hermitian
and positive definite in this case. We call a matrix with this property a definite
pseudosymmetric matrix. This property leads to A having only real eigevalues (see,
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COMPUTATION OF GENERALIZED POLAR DECOMPOSITIONS 1069

e.g., [6, Theorem 5]), such that the pseudosymmetric polar factor has only positive
real eigenvalues. In this case, we expect great benefits from choosing the weighting
parameters as in (4.5) and (4.6).

The scaling factor s in (5.2) should be chosen in the following way. Let sA = WSs

be the generalized polar decomposition of X0 = sA. The polar factor W is the same
as for A. The pseudosymmetric factor Ss = sS is the scaled pseudosymmetric factor
of A = WS and s should be chosen such that its eigenvalues lie between 0 and 1, i.e.,

s ≤ (λmax(S))
−1 = (λmax((ΣA

∗ΣA)
1
2 ))−1.(5.4)

The value ℓ should be a lower bound on the smallest eigenvalue of Ss, i.e.,

ℓ ≤ λmin(Ss) = sλmin((ΣA
∗ΣA)

1
2 ).(5.5)

Computing values fulfilling (5.4) and (5.5) seems nontrivial, as computing S (after
computing W via the iteration) is the goal of the algorithm and S is not known
a priori. The following lemma gives a remedy for square matrices.

Lemma 5.3. Let A ∈ Kn×n and Q1, Q2 be unitary. Then

|λmax((Q1A
∗Q2A)

1
2 )| ≤ σmax(A), |λmin((Q1A

∗Q2A)
1
2 )| ≥ σmin(A).

Proof. Because the spectral norm is submultiplicative, we have

|λmax(Q1A
∗Q2A)| ≤ σmax(Q1A

∗Q2A) ≤ σmax(Q1A
∗Q2)σmax(A) = σmax(A)2,

|λmin(Q1A
∗Q2A)| ≥ σmin(Q1A

∗Q2A) ≥ σmin(Q1A
∗Q2)σmin(A) = σmin(A)2.

The lemma follows immediately.

Lemma 5.3 for Q1 = Q2 = Σ implies that s and ℓ0 can be chosen as

s ≈ 1/σmax(A), ℓ0 ≈ sσmin(A) = 1/cond2(A)(5.6)

in order to fulfill (5.4) and (5.5) in the case of square matrices.
Additionally to favorable convergence properties guaranteed for certain matrices,

generalizing the ideas from QDWH leads to a new class of inverse-free iterations for
computing the generalized polar factor. In the case of self-adjoint matrices, this polar
factor coincides with the matrix sign function, which is relevant in many application
areas. Avoiding the inverse opens up the possibility of more stable methods. How
exactly this is done is described in the following.

Here, the role of the orthogonal representations in QDWH is played by (M,N)-
orthogonal matrices defined via two inner products given by two matrices M and N .
The following lemma provides a tool for substituting the inverse (I + ckX

⋆M,N

k Xk)
−1

in iteration (5.2).

Lemma 5.4. Let M ∈ Km×m, N ∈ Kn×n be nonsingular, and M2 := [M N ].

For X ∈ Km×n, η ∈ K, let [ ηX
I
] = V R with V = [ V1

V2
] ∈ K(m+n)×n, R ∈ Kn×n

nonsingular, be a decomposition. Then

ηX(I + |η|2X⋆M,NX)−1 = V1(V
⋆M2,NV )−1V ⋆N

2 .

Proof. We have

ηX(I + |η|2X⋆M,NX)−1 = ηX

([
ηX
I

]⋆M2,N
[
ηX
I

])−1

= V1((V R)⋆M2,NV )−1 = V1(V
⋆M2,NV )−1V ⋆N

2 .

In the last step we used V2 = R−1.
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1070 PETER BENNER, YUJI NAKATSUKASA, AND CAROLIN PENKE

For M = Im, N = In, and V with orthonormal or unitary columns, we have the
known result

ηX(I + |η|2X∗X)−1 = V1V
∗
2 ,

given, for example, as Theorem 4.1 in [41]. The original QDWH algorithm is based
on this result. A straightforward idea to generalize this approach would be to choose
V to be (M2, N)-orthogonal, i.e., V ⋆M2,NV = I. The next lemma shows how we can
relax this condition, while keeping the inverse easy to compute.

Lemma 5.5. Let M ∈ Km×m and N ∈ Kn×n both be nonsingular, M2 = [M N ],

and V = [ V1

V2
] ∈ K(m+n)×n be (M2, N̂)-orthogonal for a matrix N̂ ∈ Kn×n, i.e.,

V ∗M2V = N̂ . Then

V1(V
⋆M2,NV )−1V ⋆N

2 = V1V
⋆N,N̂

2 .

Proof. From V ∗M2V = N̂ , it follows that V ⋆M2,NV = N−1N̂ and therefore

V1(V
⋆M2,NV )−1V ⋆N

2 = V1N̂
−1V ∗

2 N = V1V
⋆N,N̂

2 .

5.2. Realizing the ΣDWH iteration. When a practical method for comput-
ing the (M2, N̂)-orthogonal matrices in Lemma 5.5 is available, we can formulate a
generalized QDWH algorithm. If N−1 is trivial to compute, this leads to an inverse-
free computation, if the computation of the (M2, N̂)-orthogonal matrix avoids inver-
sion. We now leave the general framework and restrict ourselves to inner products
induced by signature matrices.

Section 3 laid the groundwork for several options in the algorithm design realizing
the iteration for the canonical generalized polar decomposition of A ∈ Km×n (5.2) with
respect to the signature matrices Σm and Σn. As signature matrices are involutory,
the iteration is given as

Xk+1 = Xk(akI + bkΣnX
∗
kΣmXk)(I + ckΣnX

∗
kΣmXk)

−1, X0 = sA.(5.7)

We call (5.7) the ΣDWH iteration. The naive approach is to implement the iteration
straightforwardly, using a linear solve employing the MATLAB backslash operator.
However, there is a better way to exploit the structure at hand. To see this, we rewrite
(5.7) as

Xk(akI + bkΣnX
∗
kΣmXk)(I + ckΣnX

∗
kΣmXk)

−1

=
bk
ck

Xk +

(
ak −

bk
ck

)
Xk(Σn + ckX

∗
kΣmXk)

−1
Σn.

This is the indefinite analogue to (4.7). In the standard case, the Cholesky fac-
torization is employed to exploit the symmetric structure in iteration (4.8). In the
indefinite case, this role is played by the pivoted LDLT factorization. Analogous to
(4.8), iteration (5.7) is equivalently given as{

Zk = Σn + ckX
∗
kΣmXk, [Lk, Dk, Pk] = ldl(Zk),

Xk+1 = bk
ck
Xk +

(
ak − bk

ck

)
XkPkL

−∗
k D−1

k L−1
k PT

kΣ.
(5.8)

This approach is already more promising than the naive one because the structure of
the involved matrices is exploited. This way, less computational work is needed and
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we may expect better accuracy. We employ Lemmas 5.4 and 5.5 to find an equivalent
formulation of the DWH iteration (5.7), which in principle does not rely on computing
inverses. The role of N̂ in Lemma 5.5 is played by another signature matrix Σ̂n of
size n× n. The formulation

[√
ckXk

I

]
=

[
H1

H2

]
R, where

[
H1

H2

]∗ [
Σm

Σn

] [
H1

H2

]
= Σ̂n,

Xk+1 = bk
ck
Xk + 1√

ck

(
ak − bk

ck

)
H1Σ̂nH

∗
2Σn

(5.9)

is the analogue to the QR-based iteration (4.9) in the standard case. Instead of
an orthogonal basis (using the QR decomposition), a ([Σm

Σn
], Σ̂n)-orthogonal basis

is computed. This can be done by computing the hyperbolic QR decomposition
(Theorem 3.1) or the indefinite QR decomposition (Theorem 3.5). Here, methods
exist that are based on successive column elimination and do not perform any matrix
inversions. Computing the indefinite QR decomposition via an LDLT factorization
(i.e., employing Lemma 3.3) gives exactly the LDLT based iteration (5.8).

In exact arithmetic, there would be no difference between the versions, but
LDLIQR2 might be helpful in avoiding rounding errors in floating point arithmetic.
The resulting stability for an iteration employing these different approaches is exam-
ined experimentally in the numerical experiments of section 7.

6. Subspaces in the ΣDWH iteration.

6.1. Permuted graph bases for general matrices. Looking at Lemma 5.4,
we see that the factor R of the V R decomposition is in fact not referenced in order
to rewrite part of the DWH iteration. This suggests the idea to employ a well-
conditioned basis of the subspace spanned by [

√
ckX
In

]. The linear solve in one iteration
step is not avoided completely but we hope to invert a better-conditioned matrix.

In the following we use A ∼ B to indicate that the columns of the two matrices A
and B span the same subspace. A good candidate for providing a basis with desirable
properties is a permuted graph basis. An n-dimensional subspace U is said to be
represented in a permuted graph basis, determined by a permutation P and a matrix
X ∈ K(m−n)×n, if

U = colspan

(
PT

[
In
X

])
.(6.1)

It is shown in [40] that, for any U , a permutation P exists, such that the entries of
X are all smaller than 1. This leads to much better numerical properties when using
this representation in numerical algorithms.

The actual computation of the entry-bound representations (6.1) is an NP-hard
problem. However, in [40] heuristic methods are presented that compute representa-
tions, where, for a given threshold value τ > 1, the matrix entries ofX fulfill |xi,j | < τ .
This can be done with a reasonable amount of computational effort, which in the worst
case is O(n3 logτ n) [46]. In practice, it is typically much lower, in particular when
good starting guesses for P are available.

The following lemma is a reformulation of Lemma 5.4, where M = Σm and
N = Σn are signature matrices and V is attained via representation (6.1).

Lemma 6.1. Let Σm ∈ Rm×m, Σn ∈ Rn×n be signature matrices. For X ∈ Kn×n,
η ∈ K let [ I

ηX ] ∼ V = [ V1

V2
] = PT[ I

X̂
] ∈ K2n×n, where P is a permutation. Let
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1072 PETER BENNER, YUJI NAKATSUKASA, AND CAROLIN PENKE

P

[
Σn

Σm

]
PT =

[
Σ̂n

Σ̂m

]
.

Then

ηX(I + |η|2ΣnX
∗ΣmX)−1 = V2(Σ̂n + X̂∗Σ̂mX̂)−1V ∗

1 Σn.

Proof. Let Σ2 := [Σn

Σm
]. We follow the lines of the proof of Lemma 5.4. As

[ I
ηX ] and V span the same subspace, there exists a nonsingular matrix R such that[

I
ηX

]
= V R.

Exactly as in the proof of Lemma 5.4 (with the roles of V1 and V2 switched) it
can be shown that

ηX(I + |η|2ΣnX
∗ΣmX)−1 = V2(V

⋆Σ2,ΣnV )−1V
⋆Σn
1

= V2(Σ̂n + X̂∗Σ̂mX̂)−1V ∗
1 Σn.

Algorithm 6.1 presents the details on how permuted graph bases can be used in
the computation of generalized polar decomposition via the DWH iteration.

Algorithm 6.1. Compute the generalized polar decomposition with respect to sig-
nature matrices, using permuted graph bases.

Input: A ∈ Km×n,
Σm ∈ Rm×m Σn ∈ Rn×n: signature matrices, s.t. the canonical generalized polar
decomposition of A exists (according to Theorem 5.1),

s: estimate on |λmax((ΣnA
∗ΣmA)

1
2 )|−1,

ℓ: estimate on s|λmin(ΣnA
∗ΣmA)

1
2 |,

τ > 1: threshold value for permuted graph basis.
Output: A = WS is the canonical generalized polar decomposition with respect to

Σm and Σn.
1: W ← sA.
2: for k = 1, 2, . . . do
3: Compute weighting parameters a, b, c and update ℓ from (4.5) and (4.6).

4: Compute entry-bound permuted graph bases of colspan

([
I√
cW

])
, i.e.,

[
I√
cW

]
∼ PT

[
I

Ŵ

]
=:

[
V1

V2

]
,

|Ŵij | < τ for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.

5:

[
Σ̂n

Σ̂m

]
← P

[
Σn

Σm

]
PT.

6: Compute LDLT factorization Σ̂n + Ŵ ∗Σ̂mŴ = PLDL∗PT.
7: W ← b

cW + (a− b
c )V2PL−∗D−1L−1PTV ∗

1 Σn.
8: end for
9: Compute pseudosymmetric factor and ensure pseudosymmetry numerically

S ← ΣnW
∗ΣmA, S ← (S +ΣnS

∗Σn)/2.

Lemma 6.1 states that in exact arithmetic the iterates computed by Algorithm
6.1 are the same as in the original iteration (5.7). As with the iteration employing
LDLIQR2, the algorithm is an alternative attempt to improve floating point accuracy.
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6.2. Permuted Lagrangian graph bases for pseudosymmetric matrices.
As pointed out in section 1, we are in particular interested in computing the gener-
alized polar decomposition (with respect to a signature matrix) of pseudosymmetric
matrices. A way to exploit this structure in the iteration can be found by considering
Lagrangian subspaces, to which pseudosymmetric matrices can be linked.

A subspace U = colspan(U), U ∈ K2n×n, is called Lagrangian if U∗JU = 0, where
J = [ 0 In

−In 0 ].
A Lagrangian subspace can be represented by a permuted Lagrangian graph (PLG)

basis

U = colspan

(
ΠT

[
I
X

])
,(6.2)

where X = X∗. Π denotes a symplectic swap matrix [4]. A symplectic swap matrix
is defined by a Boolean vector v ∈ {0, 1}n and its complement v̂ ∈ {0, 1}n, where
v̂i = 1− vi, as

Πv =

[
diag(v) diag(v̂)
−diag(v̂) diag(v)

]
.(6.3)

It is shown in [40] that each Lagrangian subspace admits a representation (6.2),
where X has no entries with modulus larger than

√
2.

As for general subspaces, there exist heuristics for computing a basis, such that
the entries of X are bounded, within a reasonable amount of time. In this case
|xi,j | < τ , where τ >

√
2 is a given threshold value.

A Lagrangian subspace could of course be treated as a general subspace and
admits a representation (6.1), with even smaller entries than in (6.2). However, the
structural property, i.e., the subspace being Lagrangian, is not encoded anymore in
this representation. It is encoded in the symmetry of X, which can easily be enforced
and preserved in the course of computations. This has numerical benefits, which
typically outweigh the slightly larger entries in X.

The following lemma draws a connection between self-adjoint matrices and La-
grangian subspaces.

Lemma 6.2. Let M ∈ Kn×n, M = M∗ be a nonsingular matrix. Let X ∈ Kn×n

be self-adjoint with respect to the inner product induced by M . Then [MX ] spans a
Lagrangian subspace.

The following lemma is a variant of Lemma 5.4 applied to square matrices, where
the positions of the two matrix blocks are switched. The goal is to get to a formulation
in which the subspace given in Lemma 6.2 appears.

Lemma 6.3. Let M,N ∈ Kn×n be nonsingular, N be M -orthogonal, i.e.,
N⋆MN = I. M2 := [M M ] and X ∈ Kn×n. Let [ N

ηX ] = V R with V = [ V1

V2
] ∈ K2n×n,

R ∈ Kn×n nonsingular be a decomposition. Then

ηX(I + |η|2X⋆MX)−1 = V2(V
⋆M2,MV )−1V ⋆M

1 N.

Proof. We observe[
N
ηX

]⋆M2,M
[
N
ηX

]
= N⋆MN + |η|2X⋆MX = I + |η|2X⋆MX.

Following the proof of Lemma 5.4, we get
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1074 PETER BENNER, YUJI NAKATSUKASA, AND CAROLIN PENKE

ηX(I + |η|2X⋆MX)−1 = V2(V
⋆M2,MV )−1(R−1)⋆M = V2(V

⋆M2,MV )−1V ⋆M
1 N.

In the last step we used R−1 = N−1V1 = N⋆MV1.

Let us go back to the specific case of an inner product induced by a signature
matrix, i.e., M := Σ. In this case Lemmas 6.2 and 6.3 come together. Σ is symmetric,
so Lemma 6.2 holds. So does Lemma 6.3 by setting N := Σ. The subspace in question
can be represented by PLG bases. The situation is summarized in the following
lemma.

Lemma 6.4. Let Σ ∈ Rn×n be a signature matrix. Let Σ2 := [Σ Σ ], and let
X ∈ Kn×n be self-adjoint with respect to the inner product induced by Σ and η ∈ K.
Let [

Σ
ηX

]
∼ ΠT

[
I

X̂

]
=: V =

[
V1

V2

]
be a PLG basis, i.e., Π is a symplectic swap matrix and X̂ = X̂∗. Then

ηX(I + |η|2ΣX∗ΣX)−1 = V2(Σ + X̂ΣX̂)−1V ∗
1 .

Proof. Note that

V ⋆Σ2,ΣV = Σ
[
I2n X̂T

]
ΠΣ2Π

T

[
I2n
X̂

]
= I2n +ΣX̂∗ΣX̂ = I2n +ΣX̂ΣX̂.

We have used ΠΣ2Π
T = Σ2, which holds because Π = [ V V̂

−V̂ V
] is a symplectic swap

matrix as given in (6.3):

ΠΣ2Π
T =

[
V V̂

−V̂ V

] [
Σ

Σ

] [
V V̂

−V̂ V

]T
=

[
V ΣV + V̂ ΣV̂ −V ΣV̂ + V̂ ΣV

−V̂ ΣV + V ΣV̂ V̂ ΣV̂ + V ΣV

]
= Σ2.

The equalities V ΣV + V̂ ΣV̂ = Σ and −V ΣV̂ + V̂ ΣV = 0 hold because V and V̂ pick
up complementing rows and columns of Σ. Now, applying Lemma 6.3 gives

ηX(I + |η|2X⋆ΣX)−1 = V2(Σ + X̂∗ΣX̂)−1V ∗
1 .

Algorithm 6.2 is a variant of Algorithm 6.1 using PLG bases. It computes the
generalized polar decomposition of a pseudosymmetric matrix with respect to its
defining signature matrix.

In the update step (step 7 in Algorithm 6.1 and step 6 in Algorithm 6.2), the
structure of V1 and V2 should be taken into account for an efficient implementation.
The rows of the identity matrix are distributed in V1 and V2 according to the permu-
tation P or the symplectic swap Π. The remaining columns are given by Ŵ . If this is
taken care of, the matrix representing the subspace V = ΠT[ I

Û
] never has to actually

be formed. We can directly work on the matrices W and Ŵ .
However, we may need to form an n× 2n matrix if a good starting guess for the

permutation in the computation of the permuted graph basis is desired. For this task,
a heuristic is proposed in [40] that includes a modified version of the QR factorization
with column pivoting of an n× 2n matrix.
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Algorithm 6.2. Compute the generalized polar decomposition of a pseudosymmetric
matrix with respect to a signature matrix, using PLG bases.

Input: Signature matrix Σ ∈ Kn×n, A = ΣA∗Σ ∈ Kn×n, s.t. A has no purely
imaginary eigenvalues,
s: estimate on |λmax((ΣA

∗ΣA)
1
2 )|−1,

ℓ: estimate on the norm of the smallest eigenvalue of s(ΣA∗ΣA)
1
2 ,

τ >
√
2: threshold value for PLG bases.

Output: A = WS is the generalized polar decomposition with respect to Σ.
1: W ← sA.
2: for k = 1, 2, . . . do
3: Compute weighting parameters a, b, c and update ℓ from (4.5) and (4.6).

4: Compute entry-bound PLG bases of colspan

([
Σ√
cW

])
, i.e.,[

Σ√
cW

]
∼ ΠT

[
I

Ŵ

]
=:

[
V1

V2

]
, |Ŵij | < τ for i, j ∈ {1, . . . , n}.

5: Compute LDLT factorization Σ + Ŵ ∗ΣŴ = PLDL∗PT.
6: W ← b

cW + (a− b
c )V2PL−∗D−1L−1PTV ∗

1 .
7: end for
8: Compute pseudosymmetric factor and ensure pseudosymmetry numerically

S ← ΣW ∗ΣA, S ← (S +ΣS∗Σ)/2.

7. Numerical results. In this paper, we have developed several variants of
the ΣDWH iteration to compute the canonical generalized polar decomposition of a
matrix with respect to signature matrices.

In general, the existence of the decomposition is not guaranteed, which is why we
first examine pseudosymmetric matrices with respect to Σ. For these matrices, the
generalized polar decomposition exists if and only if A has no purely imaginary eigen-
values (note that this is also required for sign(A) to exist). For randomly generated
matrices this is typically the case, which is why we observe convergence most times.
Pseudosymmetric matrices represent an important class of matrices regarding the ap-
plication potential of the developed methods, as pointed out in section 1. For other
matrices, which are not pseudosymmetric but yield a generalized polar decomposition
with respect to Σ, similar results were observed in further tests. All experiments were
performed in MATLAB R2017a.

In light of the asymptotic cubic convergence of the iteration (see [28, section
4.9.2]) we use the stopping criterion

∥Xk+1 −Xk∥F ≤ (5ϵ)
1
3 ,(7.1)

where ϵ is the machine precision.
We take the same values for s and ℓ as in the QDWH algorithm [41], which are

given in (5.6). As explained there, this makes sense for definite pseudosymmmetric
matrices. The resulting convergence behavior is the same as in the standard setting.
Further investigation of the convergence behavior is needed to devise sensible values
for s and ℓ in the general case. Here, the iteration may act on complex values. This
consideration goes beyond the scope of this paper, and we use the same values as in
the definite case even when they are not completely justified.

We first compare the algorithms in terms of their achieved residual for badly
conditioned matrices. We consider square matrices and their generalized polar
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1076 PETER BENNER, YUJI NAKATSUKASA, AND CAROLIN PENKE

decomposition for a given signature matrix Σ := [ In −In
] (M = N = Σ in Definition

2.1).
Example 1. A real pseudosymmetric matrix with a condition number κ = 10k

is generated as A := ΣQDQT. The matrix Q is orthogonal and generated randomly
(orth(rand(2*n))), and D is a diagonal matrix containing equally distributed val-
ues between 1 and 10k, with alternating signs. A polar decomposition A ≈ WS is
computed and the resulting residual ∥WS−A∥F /∥A∥F for matrices of size 200× 200
(n = 100) is given in Figure 1. The residuals were averaged over 10 runs with different
randomly generated matrices.

We see that a naive implementation of the ΣDWH iteration (5.7) leads to a highly
unstable method. The accuracy improves as the iteration is rewritten to employ the
LDLT decomposition (see (5.8)). This can be interpreted as exploiting structure that
is hidden and ignored in the original formulation. Again, the accuracy deteriorates
as the matrix becomes ill-conditioned. Surprisingly, for matrices with a condition
number higher than 1011, this trend is reversed and the method performs quite well
for extremely ill-conditioned matrices. A possible explanation is that MATLAB func-
tion ldl estimates the condition number of the input and acts differently, in our case
preferably, for ill-conditioned matrices. The LDLT-based iteration can be read as an
iteration based on the indefinite QR decomposition (see Theorem 3.5 and iteration
(5.9)) that has been computed via the pivoted LDLT decomposition. For computing
a hyperbolic QR decomposition directly, using a column elimination approach, we
used available MATLAB code [31], based on the works [1, 21, 26]. In our setting,
this does not perform well. For well-conditioned matrices, this approach delivers the
worst accuracy. For ill-conditioned matrices it yields better results than the naive
implementation, but is still highly dependent on the condition number. The two
remaining methods use the indefinite QR decomposition via a double LDLT decom-
position (LDLIQR2) and PLG. These give high accuracy, which is independent of
the condition number. For well-conditioned matrices, LDLIQR2 does not seem to be

100 101 102 103 104 105 106 107 108 109 101010111012101310141015
10−15

10−12

10−9

10−6

10−3

100

cond(A)

R
es
id
u
al
∥W

S
−
A
∥ f

ro
/
∥A
∥ f

ro Backslash
LDL
Hyperbolic QR
LDLIQR2
PLG

Fig. 1. Residuals for different iterations for computing the generalized polar decomposition of
pseudosymmetric matrices A ∈ R200×200 with a certain condition number. “Backslash” refers to
the naive implementation, “LDL” refers to iteration (5.8), “Hyperbolic QR” and “LDLIQR2” refer
to the variants of iteration (5.9). “PLG” refers to the variant using permuted Lagrangian graph
bases described in Algorithm 6.2.
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COMPUTATION OF GENERALIZED POLAR DECOMPOSITIONS 1077

preferable, as it yields a higher residual than even the naive implementation. However,
the residual stays at a consistently low order of magnitude as the condition number
increases. Using PLGs consistently delivers the best results regarding accuracy, in the
well-conditioned as well as in the ill-conditioned setting. The disadvantage of the PLG
approach is that it relies on very recently developed, fine-grained algorithms. There-
fore, no optimized implementations are available yet and the runtimes resulting from
a prototype MATLAB implementation are very high. Formulating the computation
of PLGs in a way that exploits current computer architectures is a challenge not yet
addressed. This method would need to be block-based in order to exploit the memory
hierarchy, to be parallelizable, and to avoid communication. The LDLIQR2 approach
on the other side is easily implemented and only relies on the LDLT factorization
for which highly optimized implementations are available. However, both approaches
rely on pivoting strategies, implying a considerable cost for communication if they are
to be deployed in a massively parallel setup.

In a practical implementation, a combination of the LDLT, LDLIQR2, and PLG
approaches should be considered, as it is possible for each iteration step to be per-
formed by a different method. For badly conditioned matrices, the first steps could
be performed via PLG. As soon as the condition number of the iterate has improved,
another method could be employed, which shows better performance.

We now compare the developed algorithms with other available methods, in par-
ticular concerning convergence properties. A standard approach for computing (gen-
eralized) polar decompositions is the scaled Newton iteration (see, e.g., [28]). For a
given signature matrix Σ, it is given as

Xk+1 =
1

2
(µkXk + µ−1

k ΣX−∗
k Σ), X0 = A.(7.2)

It is called the Newton iteration as it represents the Newton method for solving
A⋆A = I. See also [27] for details. For the DWH iteration, we have shown in
Corollary 5.2 that the iteration acts as a matrix sign function iteration on the self-
adjoint factor of the decomposition. This observation also holds for the Newton
iteration. Let Xk = WSk be a generalized polar decomposition of the iterate; then
(7.2) is equivalent to

Xk+1 = W

(
1

2

(
µkSk + µ−1

k S−1
k

))
, X0 = A.

The part in large parentheses is the Newton iteration for the matrix sign function
acting on Sk. In the standard setting, the self-adjoint factor is Hermitian and its
eigenvalues are real. This is exploited to devise scaled iterations which drive these
values closer to one and therefore accelerate convergence (see [28, 19, 41]). For the
generalized polar decomposition, the values are not necessarily real. In this case,
we can fall back on scaling strategies for the matrix sign function which show good
convergence properties in practice. In particular, we consider determinantal scaling
(DN) [18], where

µk := |detSk|−
1
n = |detXk|−

1
n .

The computation via the iterate Xk becomes possible because signature matrices and
automorphisms with respect to them have a determinant of ±1. Its computation is
cheap as it can be computed from the diagonal values of the LU factorization, which
is used to compute X−∗

k . For the next numerical example, we generate matrices for
which the generalized polar decomposition with respect to Σ is guaranteed to exist,
but where the eigenvalues of the self-adjoint factor are all complex.
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Example 2. For the generalized polar decomposition A = WS, we prescribe the
self-adjoint factor S with a condition number κ = 10k. The absolute values rj of
the eigenvalues λj = rj exp (iϕj) of H are uniformly distributed between 10−⌊k/2⌋

and 10⌈k/2⌉. The angles ϕj are uniformly distributed between −π/2 and π/2, i.e., all
eigenvalues lie in the right half plane. S is generated using two random orthogonal
matrices Q1, Q2 ∈ Rn×n, forming Q = [Q1 0

0 Q2
], as

S := QT



Re(λ1) − Im(λ1)
. . .

. . .

Re(λn) − Im(λn)
Im(λ1) Re(λ1)

. . .
. . .

Im(λn) Re(λn)


Q.

The polar factor W is prescribed as

W :=

[
Q3

Q4

] [
CW SW

SW CW

]
,

where Q3 and Q4 are random orthogonal matrices. The matrix [CW SW

SW CW
] describes a

series of hyperbolic Givens rotations, i.e.,

CW = diag(coshω1, . . . , coshω2n) , SW = diag(sinhω1, . . . , sinhω2n),

where ω1, . . . , ω2n are uniformly distributed angles between 0 and 1
4π. Averaged

results for 20 matrices of size 200× 200 (n = 100) are given in Table 1.
For the Newton iteration, we use the stopping criterion given in [28, Chapter 8]:

∥Xk++1 −Xk∥F ≦ (2ϵ)
1
2 ,(7.3)

where ϵ denotes the machine precision.
For the ΣDWH iteration, we employ permuted graph bases (Algorithm 6.1),

available in the pgdoubling package associated with [40]. It is compared to the
Newton iteration with DN and the Newton iteration with suboptimal scaling [19]
(SON). We generate 20 different random matrices and report the average number
of iterations and the resulting residual ∥A − W̃ S̃∥F /∥A∥F , where W̃ and S̃ are
the computed polar factors. We influence the condition number of A indirectly via
κ = cond(S). It is about twice as high as κ because of the used hyperbolic Givens
rotations.

In the standard setting, DWH and SON converge in 6 [41], respectively, 9 [19],
steps. Here, the iterations act as scalar iterations on the eigenvalues of the self-
adjoint factor, which happen to be real in the standard case, but not in the indefinite
setting. Still, we can observe that they converge significantly faster than the Newton
iteration with DN, in particular for ill-conditioned matrices. ΣDWH generally seems
to need about 2/3 as many iteration steps as SON. Whether the cost per iteration is
comparable depends on the chosen implementation method for the DWH iteration.
The simplest method is based on one LDLT decomposition (5.8) and the main cost
is a symmetric matrix inversion, just as in the Newton variants. If higher stability is
needed in the case of badly conditioned matrices, it can be obtained at the expense
of a higher cost per iteration. This can be done by employing the LDLIQR2 iteration
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Table 1
Convergence behavior for different methods computing the generalized polar decomposition with

respect to Σ of a 200× 200 matrix (Example 2).

κ 10 105 1010 1015

cond(A) 2.15e+01 1.98e+05 1.98e+10 2.02e+15

# iterations
ΣDWH 8.70 9.70 10.65 10.60
DN 12.30 20.00 32.95 44.13 1

SON 14.05 15.45 16.45 16.74 2

residual
ΣDWH 5.06e-15 7.68e-15 9.88e-15 3.00e-15
DN 2.98e-15 2.98e-15 2.93e-15 2.96e-15
SON 3.00e-15 2.98e-15 2.96e-15 2.89e-15

rel. error W
ΣDWH 1.35e-14 9.45e-12 5.35e-08 8.01e-03
DN 1.18e-14 3.96e-11 1.53e-06 7.83e-02
SON 1.32e-14 3.12e-11 2.24e-07 5.22e-03

rel. error S
ΣDWH 1.05e-14 2.76e-14 3.51e-14 4.51e-14
DN 9.98e-15 9.00e-12 8.52e-07 6.65e-02
SON 1.43e-14 2.42e-14 2.33e-14 2.83e-14

∥ΣWTΣW − I∥F
ΣDWH 1.16e-15 1.23e-15 1.07e-15 1.25e-15
DN 3.19e-15 3.19e-15 3.13e-15 3.12e-15
SON 3.21e-15 3.18e-15 3.16e-15 3.09e-15

1 5 out of 20 runs did not converge. 2 1 out of 20 runs did not converge.

or by improving the corresponding subspace via Lagrangian graph bases (Algorithm
6.1).

ΣDWH displays the lowest backward error for the Σ-orthogonal factor W, which
deteriorates for all methods as matrices become ill-conditioned. All methods yield
a factor W that shows a good Σ-orthogonality. SON and ΣDWH both do a much
better job than DN at recovering the self-adjoint factor S with backward errors of
order 10−14 instead of 10−2. DN and SON sometimes fail to converge for badly
conditioned matrices.

We see that ΣDWH can compete with standard methods, even if no definite
pseudosymmetric structure is given. Note that ΣDWH is the only one of the three
methods that can directly be applied to nonsquare matrices, in order to compute the
canonical generalized polar decomposition.

The results of Example 2 should be seen as preliminary, as the scaling factors and
the stopping criterion (7.1) are not completely justified in the nondefinite case. They
do, however, motivate further research to devise iterations based on rational functions
acting on complex values.

Example 3. We generate pseudosymmetric matrices as in Example 1, but addi-
tionally ensure the definiteness of ΣA by choosing only positive values for D. We
compare the same methods as in Example 2 with respect to convergence properties.
Twenty matrices were generated and averaged results are reported in Table 2.

As expected, we see the convergence of ΣDWH and of the Newton iteration with
SON within 6, respectively, 9, iterations.

8. Conclusions. In this paper, we have presented a generalization of the QDWH
method to compute the canonical generalized polar decomposition of a matrix with
respect to a signature matrix Σ. If Σ is chosen as the identity, the hyperbolic QR
decomposition becomes the standard QR decomposition and can safely be computed
with the column elimination approach. This yields the well-known QDWH iteration.

D
ow

nl
oa

de
d 

09
/1

9/
22

 to
 1

93
.1

75
.5

3.
21

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1080 PETER BENNER, YUJI NAKATSUKASA, AND CAROLIN PENKE

Table 2
Convergence behavior for different methods computing the generalized polar decomposition with

respect to Σ of definite pseudosymmetric matrices of size 200× 200 (Example 3).

κ 10 105 1010 1015

# iterations
ΣDWH 4.00 5.00 6.00 6.00
DN 6.00 15.10 30.50 44.50
SON 6.00 7.00 8.00 9.00

residual
ΣDWH 1.38e-15 4.47e-14 2.34e-14 2.85e-14
DN 8.11e-16 2.46e-14 5.30e-14 1.05e-14
SON 8.14e-16 3.20e-14 3.03e-14 1.04e-14

∥ΣWTΣW − I∥F
ΣDWH 1.26e-15 1.95e-13 2.03e-13 6.92e-14
DN 7.31e-16 6.87e-14 5.66e-14 3.13e-14
SON 7.16e-16 6.94e-14 5.64e-14 3.09e-14

Several options were provided on how to realize the iterations. While the column
elimination based hyperbolic QR decomposition forms the most natural generalization
of QDWH, it does not yield the best results regarding stability. LDLIQR2 (section 3.2)
or employing permuted (Lagrangian) graph bases (Algorithms 6.1 and 6.2) perform
better in this regard.

Using these variants, a stability similar to Newton methods can be observed,
but fewer iterations are needed. For the important class of definite pseudosymmet-
ric matrices, the convergence behavior corresponds to the standard QDWH method.
Convergence up to machine precision can be guaranteed in six steps for reasonably
conditioned matrices.

The theoretical results we gave, in particular Lemma 5.4, provide a greater flex-
ibility in the algorithmic design for DWH-based iterations, which might be utilized
further than the scope of this paper permits. Other methods for computing well-
conditioned bases could also yield good results. Being more flexible in algorithmic
design becomes increasingly important in view of modern computer architectures. In
general these become more heterogeneous. They employ different levels of parallelism
on various scales and have restrictions on available memory or use numerous accelera-
tors and GPUs. Our framework provides the flexibility to find solutions, which could
exploit the architecture at hand to its full potential.

Our main motivation came from computing the matrix sign function of large
definite pseudosymmetric matrices. Here, the iteration acts as a rational function
on what can be understood as generalized singular values. Hence, further devel-
opments using ideas from [42] are possible. Using Zolotarev’s functions as best-
approximations to the sign function of higher degree, yields an iteration that converges
in two steps. The individual steps take more work but are embarrassingly parallel and
well-suited for large-scale high performance computations. In the field of computa-
tional quantum physics this is exactly what is needed, making this research direction
promising.

For matrices which are not definite, our numerical experiments have shown that
the proposed methods still converge but no theoretical convergence results are given
yet. Further research in this direction may close this gap.

Computing the hyperbolic QR decomposition is useful in many applications,
which could benefit from the analysis given in section 3. In particular the LDLIQR2
method (Algorithm 3.1) is a promising technique to tackle problems associated with
the stability of the hyperbolic or indefinte QR decomposition.

D
ow

nl
oa

de
d 

09
/1

9/
22

 to
 1

93
.1

75
.5

3.
21

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMPUTATION OF GENERALIZED POLAR DECOMPOSITIONS 1081

REFERENCES

[1] E. Anderson, Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem, LA-
PACK Working Note 150, 2000, http://www.netlib.org/lapack/lawnspdf/lawn150.pdf.

[2] C. Ashcraft, R. G. Grimes, and J. G. Lewis, Accurate symmetric indefinite linear equation
solvers, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 513–561, https://doi.org/10.1137/
S0895479896296921.

[3] Z. Bai and J. W. Demmel, Design of a Parallel Nonsymmetric Eigenroutine Toolbox, Part
I, Tech. Report UCB/CSD-92-718, EECS Department, University of California, Berkeley,
1993, http://www2.eecs.berkeley.edu/Pubs/TechRpts/1993/6014.html.

[4] P. Benner, Symplectic balancing of Hamiltonian matrices, SIAM J. Sci. Comput., 22 (2001),
pp. 1885–1904, https://doi.org/10.1137/S1064827500367993.

[5] P. Benner, V. Khoromskaia, and B. N. Khoromskij, A reduced basis approach for calcu-
lation of the Bethe-Salpeter excitation energies using low-rank tensor factorizations, Mol.
Phys., 114 (2016), pp. 1148–1161, https://doi.org/10.1080/00268976.2016.1149241.

[6] P. Benner and C. Penke, Efficient and accurate algorithms for solving the Bethe-Salpeter
eigenvalue problem for crystalline systems, J. Comput. Appl. Math., 400 (2022), 113650.

[7] P. Benner and C. Penke, GR decompositions and their relations to Cholesky-like factoriza-
tions, Proc. Appl. Math. Mech., 20 (2021), e202000065, https://doi.org/10.1002/pamm.
202000065.

[8] P. Benner and E. S. Quintana-Ort́ı, Solving stable generalized Lyapunov equations with the
matrix sign function, Numer. Algorithms, 20 (1999), pp. 75–100, https://doi.org/10.1023/
A:1019191431273.

[9] X. Blase, I. Duchemin, D. Jacquemin, and P.-F. Loos, The Bethe-Salpeter equation for-
malism: From physics to chemistry, J. Phys. Chem. Lett., 11 (2020), pp. 7371–7382,
https://doi.org/10.1021/acs.jpclett.0c01875.

[10] A. Bojanczyk, N. J. Higham, and H. Patel, Solving the indefinite least squares problem
by hyperbolic QR factorization, SIAM J. Matrix Anal. Appl., 24 (2003), pp. 914–931,
https://doi.org/10.1137/S0895479802401497.

[11] Y. Bolshakov and B. Reichstein, Unitary equivalence in an indefinite scalar product: An
analogue of singular-value decomposition, Linear Algebra Appl., 222 (1995), pp. 155–226,
https://doi.org/10.1016/0024-3795(93)00295-B.

[12] Y. Bolshakov, C. V. M. van der Mee, A. C. M. Ran, B. Reichstein, and L. Rodman,
Polar decompositions in finite-dimensional indefinite scalar product spaces: General the-
ory, Linear Algebra Appl., 261 (1997), pp. 91–141, https://doi.org/10.1016/S0024-3795(96)
00317-5.

[13] I. Borg and P. J. F. Groenen, Modern Multidimensional Scaling: Theory and Applications,
Springer-Verlag, Berlin, 2005, https://doi.org/10.1007/0-387-28981-X.

[14] J. R. Bunch and L. Kaufman, Some stable methods for calculating inertia and solving sym-
metric linear systems, Math. Comp., 31 (1977), pp. 163–179, https://doi.org/10.1090/
S0025-5718-1977-0428694-0.

[15] J. R. Bunch, L. Kaufman, and B. Parlett, Decomposition of a symmetric matrix, Numer.
Math., 27 (1976), pp. 95–109, https://doi.org/10.1007/BF01399088.

[16] J. R. Bunch and B. N. Parlett, Direct methods for solving symmetric indefinite systems of
linear equations, SIAM J. Numer. Anal., 8 (1971), pp. 639–655, https://doi.org/10.1137/
0708060.

[17] W. Bunse and A. Bunse-Gerstner, Numerische Lineare Algebra, Teubner, Stuttgart, 1985.
[18] R. Byers, Solving the algebraic Riccati equation with the matrix sign function, Linear Algebra

Appl., 85 (1987), pp. 267–279.
[19] R. Byers and H. Xu, A new scaling for Newton’s iteration for the polar decomposition and

its backward stability, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 822–843, https://doi.
org/10.1137/070699895.

[20] M. Casida, Time-dependent density functional response theory for molecules, in Recent Ad-
vances in Density Functional Methods, World Scientific, Englewood Cliffs, NJ, 1995,
pp. 155–192, https://doi.org/10.1142/9789812830586 0005.

[21] S. Chandrasekaran and A. H. Sayed, Stabilizing the generalized Schur algorithm, SIAM J.
Matrix Anal. Appl., 17 (1996), pp. 950–983, https://doi.org/10.1137/S0895479895287419.

[22] J. J. Dongarra, J. R. Gabriel, D. D. Koelling, and J. H. Wilkinson, The eigenvalue
problem for Hermitian matrices with time reversal symmetry, Linear Algebra Appl., 60
(1984), pp. 27–42, https://doi.org/10.1016/0024-3795(84)90068-5.

[23] I. S. Duff, MA57—A code for the solution of sparse symmetric definite and indefinite systems,
ACM Trans. Math. Software, 30 (2004), pp. 118–144, https://doi.org/10.1145/992200.
992202.

D
ow

nl
oa

de
d 

09
/1

9/
22

 to
 1

93
.1

75
.5

3.
21

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

http://www.netlib.org/lapack/lawnspdf/lawn150.pdf
https://doi.org/10.1137/S0895479896296921
https://doi.org/10.1137/S0895479896296921
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1993/6014.html
https://doi.org/10.1137/S1064827500367993
https://doi.org/10.1080/00268976.2016.1149241
https://doi.org/10.1002/pamm.202000065
https://doi.org/10.1002/pamm.202000065
https://doi.org/10.1023/A:1019191431273
https://doi.org/10.1023/A:1019191431273
https://doi.org/10.1021/acs.jpclett.0c01875
https://doi.org/10.1137/S0895479802401497
https://doi.org/10.1016/0024-3795(93)00295-B
https://doi.org/10.1016/S0024-3795(96)00317-5
https://doi.org/10.1016/S0024-3795(96)00317-5
https://doi.org/10.1007/0-387-28981-X
https://doi.org/10.1090/S0025-5718-1977-0428694-0
https://doi.org/10.1090/S0025-5718-1977-0428694-0
https://doi.org/10.1007/BF01399088
https://doi.org/10.1137/0708060
https://doi.org/10.1137/0708060
https://doi.org/10.1137/070699895
https://doi.org/10.1137/070699895
https://doi.org/10.1142/9789812830586_0005
https://doi.org/10.1137/S0895479895287419
https://doi.org/10.1016/0024-3795(84)90068-5
https://doi.org/10.1145/992200.992202
https://doi.org/10.1145/992200.992202


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1082 PETER BENNER, YUJI NAKATSUKASA, AND CAROLIN PENKE

[24] A. Edelman and S. Jeong, Fifty Three Matrix Factorizations: A Systematic Approach, https:
//arxiv.org/abs/2104.08669, 2021.

[25] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins Stud. Math. Sci.,
4th ed., Johns Hopkins University Press, Baltimore, 2013.

[26] D. Henrion and P. Hippe, Hyperbolic QR factorization for J-spectral factorization of polyno-
mial matrices, in Proceedings of the 42nd IEEE International Conference on Decision and
Control, Vol. 4, 2003, pp. 3479–3484, https://doi.org/10.1109/CDC.2003.1271685.

[27] N. J. Higham, J-orthogonal matrices: Properties and generation, SIAM Rev., 45 (2003),
pp. 504–519, https://doi.org/10.1137/S0036144502414930.

[28] N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, 2008,
https://doi.org/10.1137/1.9780898717778.

[29] N. J. Higham, D. Mackey, N. Mackey, and F. Tisseur, Functions preserving matrix groups
and iterations for the matrix square root, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 849–
877, https://doi.org/10.1137/S0895479804442218.

[30] N. J. Higham, C. Mehl, and F. Tisseur, The canonical generalized polar decomposition, SIAM
J. Matrix Anal. Appl., 31 (2010), pp. 2163–2180, https://doi.org/10.1137/090765018.

[31] I. Houtzager, JQR/JRQ/JQL/JLQ factorizations, MATLAB Central File Ex-
change, https://www.mathworks.com/matlabcentral/fileexchange/50329-jqr-jrq-jql-jlq-
factorizations, 2015.

[32] C. Kenney and A. J. Laub, Rational iterative methods for the matrix sign function, SIAM J.
Matrix Anal. Appl., 12 (1991), pp. 273–291, https://doi.org/10.1137/0612020.

[33] C. Kenney and A. J. Laub, On scaling Newton’s method for polar decomposition and the
matrix sign function, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 688–706, https://doi.
org/10.1137/0613044.

[34] U. Kintzel, Procrustes problems in finite dimensional indefinite scalar product spaces, Linear
Algebra Appl., 402 (2005), pp. 1–28, https://doi.org/10.1016/j.laa.2005.01.004.

[35] H. Li, H. Yang, and H. Shao, Perturbation analysis for the hyperbolic QR factorization,
Comput. Math. Appl., 63 (2012), pp. 1607–1620, https://doi.org/10.1016/j.camwa.2012.
03.036.

[36] H. Ltaief, D. Sukkari, A. Esposito, Y. Nakatsukasa, and D. Keyes, Massively paral-
lel polar decomposition on distributed-memory systems, ACM Trans. Parallel Comput., 6
(2019), https://doi.org/10.1145/3328723.

[37] D. S. Mackey, N. Mackey, and F. Tisseur, Structured factorizations in scalar product spaces,
SIAM J. Matrix Anal. Appl., 27 (2005), pp. 821–850, https://doi.org/10.1137/040619363.

[38] C. Mehl, V. Mehrmann, and H. Xu, On doubly structured matrices and pencils that arise
in linear response theory, Linear Algebra Appl., 380 (2004), pp. 3–51, https://doi.org/10.
1016/S0024-3795(02)00455-X.

[39] C. Mehl, A. C. M. Ran, and L. Rodman, Polar decompositions of normal operators in
indefinite inner product spaces, in Operator Theory in Krein Spaces and Nonlinear Ei-
genvalue Problems, Oper. Theory Adv. Appl. 162, Birkhäuser, Basel, 2006, pp. 277–292,
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