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Abstract

Circular dichroism spectroscopy is a structural biology technique frequently
applied to determine the secondary structure composition of soluble proteins.
Our recently introduced computational analysis package SESCA aids the
interpretation of protein circular dichroism spectra and enables the valida-
tion of proposed corresponding structural models. To further these aims, we
present the implementation and characterization of a new Bayesian secondary
structure estimation method in SESCA, termed SESCA bayes. SESCA bayes
samples possible secondary structures using a Monte Carlo scheme, driven by
the likelihood of estimated scaling errors and non-secondary-structure con-
tributions of the measured spectrum. SESCA bayes provides an estimated
secondary structure composition and separate uncertainties on the fraction
of residues in each secondary structure class. It also assists efficient model
validation by providing a posterior secondary structure probability distribu-
tion based on the measured spectrum. Our presented study indicates that
SESCA bayes estimates the secondary structure composition with a signif-
icantly smaller uncertainty than its predecessor, SESCA deconv, which is
based on spectrum deconvolution. Further, the mean accuracy of the two
methods in our analysis is comparable, but SESCA bayes provides more ac-
curate estimates for circular dichroism spectra that contain considerable non-
SS contributions.
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PROGRAM SUMMARY
Program Title: SESCA bayes
CPC Library link to program files: (to be added by Technical Editor)
Developer’s repository link: https://www.mpibpc.mpg.de/sesca
Code Ocean capsule: (to be added by Technical Editor)
Licensing provisions: GPLv3
Programming language: Python
Supplementary material:
Nature of problem:
The circular dichroism spectrum of a protein is strongly correlated with its sec-
ondary structure composition. However, determining the secondary structure from
a spectrum is hindered by non-secondary structure contributions and by scaling er-
rors due the uncertainty of the protein concentration. If not taken properly into ac-
count, these experimental factors can cause considerable errors when conventional
secondary-structure estimation methods are used. Because these errors combine
with errors of the proposed structural model in a non-additive fashion, it is diffi-
cult to assess how much uncertainty the experimental factors introduce to model
validation approaches based on circular dichroism spectra.
Solution method:
For a given measured circular dichroism spectrum, the SESCA bayes algorithm
applies Bayesian statistics to account for scaling errors and non-secondary struc-
ture contributions and to determine the conditional secondary structure probability
distribution. This approach relies on fast spectrum predictions based on empirical
basis spectrum sets and joint probability distribution maps for scaling factors and
non-secondary structure distributions. Because SESCA bayes estimates the most
probable secondary structure composition based on a probability-weighted sample
distribution, it avoids the typical fitting errors that occur during conventional spec-
trum deconvolution methods. It also estimates the uncertainty of circular dichroism
based model validation more accurately than previous methods of the SESCA anal-
ysis package.
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1. Introduction

Circular dichroism (CD) spectroscopy in the far ultraviolet (UV) range
(175-260 nm) is an established method to study the structure of proteins
in solution [1, 2], because of the conformation-dependent characteristic CD
signal of peptide bonds that comprise the backbone of all proteins and oligo-
peptides. In particular, the CD spectrum is known to change with the sec-
ondary structure (SS) of proteins, and markedly different spectra are ob-
served for proteins rich in α-helices, β-sheets, and disordered regions [3, 4].
Because of these characteristic signals, it is common to interpret CD spec-
tra by decomposing them into a set of basis spectra that each represent the
average CD signal of pure (secondary) structure elements.

The CD analysis package SESCA (Structure-based Empirical Spectrum
Calculation Approach) [5] allows for using several empirical basis spectrum
sets in two methods. The first method predicts a theoretical CD spectrum
from a proposed SS composition, which is typically obtained from a model
structure or structural ensemble. The second method fits a measured CD
spectrum to estimate the protein SS composition. Both methods can be
used to validate protein structural models. The accuracy and precision of
validation methods is mainly limited by scaling errors due to the uncertainty
of the measured protein concentration and non-SS contributions that are not
represented in the basis spectra. We have quantified the uncertainty caused
by these deviations between measured CD spectra and their predicted SS
signals previously [6].

The same study also revealed a potential caveat in the current SS es-
timation method used in SESCA. In this deconvolution method, a linear
combination of selected basis spectra is used to approximate a measured CD
spectrum of the protein of interest. The coefficients of the approximation
with the smallest deviation are used to estimate the fraction of SS elements
in the protein under the measurement conditions. Unfortunately, the in-
terference caused by non-SS contributions may increase the deviation from
the measured spectrum for some SS compositions and decrease it for others,
which may lead to significant errors in deconvolution-based SS estimates.

To alleviate this problem, we developed and implemented a new SS esti-
mation method for SESCA. The Python module, SESCA bayes determines
the likelihood of putative SS compositions using a Bayesian inference frame-
work for a given measured CD spectrum and a basis spectrum set. This
method uses the expected joint probability distribution of deviations caused
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by scaling errors and non-SS contributions, and thus fully accounts for the
uncertainty caused by these two experimental factors. Here, we describe the
theoretical background, general workflow, as well as input and output pa-
rameters of this implementation. Further, we will assess the accuracy and
precision of this method through a series of sample applications.

2. Theory: Bayesian SS probabilities

Our goal using this method is to determine the conditional probability
P (SS|CD) of SS compositions given a previously measured CD spectrum.
According to Bayes’ rule [7], this probability can be inferred according to

P (SSj|CD) ∝ P (CD|SSj) · P (SSj), (1)

where P (CD|SSj) is the probability of observing the measured spectrum for
a protein with a given SS composition j (i.e, the likelihood function) and
P (SSj) is the prior probability of the given SS composition of the protein.

As shown in Fig. 1 (top), the likelihood P (CD|SSj) is determined in five
steps. First, the SS signal is predicted from the SS composition of interest
(Cji) using an appropriate basis spectrum set (Bil), as discussed in our pre-
vious study [5]. Second, if the basis set provides side chain corrections based
on the protein sequence, they are added to the predicted spectrum. Third,
the measured CD spectrum is rescaled to minimize the root-mean-square
deviation (RMSD) from the predicted spectrum using

min RMSDj(αj) =

√∑L
i=1(S

comp
jl − αj · Sexp

l )2

L
, (2)

where Sexp
l and Scomp

jl are CD intensities of the measured CD spectrum and
the spectrum computed for SSj at wavelength l, respectively. The obtained
scaling factor αj quantifies and eliminates deviations from scaling errors of
the measured spectrum, whereas the RMSD from the rescaled spectrum
(RMSDj) quantifies the average deviation due to unaccounted non-SS con-
tributions. Once RMSDj and αj (collectively CD deviations) are computed,
the likelihood of such deviations is determined from the joint probability dis-
tribution (PRMSD,α, see below) to estimate the likelihood of observing the
measured CD spectrum for the given SS composition P (CD|SSj). Finally,
to compute the posterior probability P (SSj|CD) of SS composition j, the
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CD spectrum likelihood is multiplied by the prior SS probability.

Figure 1: Secondary structure probability calculation scheme. The figure depicts the
algorithm to compute the posterior probability of a given secondary structure j, based
on its prior probability, and the deviations between its predicted CD signal and a given
measured CD spectrum. Input data are depicted as blue parallelograms, operations as
white rectangles, and decisions as white diamonds.
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3. Methods

3.1. Joint probability distributions

We computed discrete joint-probability distribution functions for SESCA bayes
that can be used to determine CD spectrum likelihoods. These probability
distributions were computed from CD deviations extracted from SS estima-
tions of previously measured CD spectra. Reference CD spectra were taken
from the SP175 reference set [8], which contains 71 synchrotron radiation CD
(SR-CD) spectra of globular proteins with varying SS compositions. The CD
spectrum of Jacalin (SP175/41) was discarded from the data set due to is-
sues reported during the measurement and its unusually large estimated CD
deviations.

The joint probability distribution functions of CD deviations were con-
structed as the sum of 70 two-dimensional Gaussian functions, each repre-
senting the estimated scaling factors and non-SS contributions of a reference
spectrum from the SP175 set. The mean and the variance of these Gaussian
functions was determined by averaging over multiple RMSDj and αj values
obtained for each CD spectrum from SS estimations using four different basis
spectrum sets. This approach yielded likelihood functions that were defined
for a wide range of possible CD deviations, and took the uncertainty due to
discretization errors of the basis spectrum determination into account.

In SESCA there are two types of basis sets, those that are solely based on
SS compositions, and those that also include side chain corrections. Because
the average size of CD deviations differs for these two basis set types, we
determined two probability distributions shown in Fig. 2. The joint proba-
bility distribution function for basis set without side-chain corrections (left)
was calculated from CD deviations estimated using the basis sets DS-dT,
DSSP-1, HBSS-3, and DS5-4. For basis sets including side-chain corrections,
the joint probability of CD deviations (right) were computed using the basis
sets DS-dTSC3, DSSP-1SC3, HBSS-3SC1, and DS5-4SC1. For clarity, the
Figure shows both a linear (top row) as well as logarithmic (bottom row)
representation of the CD deviation likelihood. For both likelihoods, the one-
dimensional probability distribution of RMSDj was also calculated, which
can be used to estimate the secondary structure from CD spectra without
regards to the applied scaling factors, albeit these estimates naturally have
a lower precision.
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Figure 2: The panels depict the heat map representation of two likelihood functions pro-
vided for Bayesian SS estimation with SESCA. The estimated joint-probability distri-
butions are shown for basis spectra that A) predict CD signals solely from SS informa-
tion (left) and B) also include CD corrections from sequence-based side-chain information
(right). Panels on the top and bottom show the same probability distributions using a
linear and logarithmic color scale, respectively.

3.2. Synthetic spectra

To test the accuracy of the Bayesian SS estimation method, eight syn-
thetic CD spectra were created using a linear combination of the three basis
spectra from the DS-dT basis set (as discussed in our previous study [5]).
To this aim, the coefficients shown in Table 1 for the basis spectra α-helix,
β-strand, and Other for each spectrum were used. For five of eight synthetic
spectra (k= 1 to 5), random coefficients were generated from uniformly dis-
tributed random numbers between zero and one, subsequently normalized to
sum up to one. For the sixth synthetic spectrum (k= 6), the coefficients 0.3,
0.4, and 0.3 as well as the non-SS contributions (see below) were adopted
from our previous study [6] for comparison. Synthetic spectra seven and
eight were generated using low α-helix and β-strand contents respectively to
represent intrinsically disordered proteins (IDP).

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2021. ; https://doi.org/10.1101/2020.12.02.408302doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.02.408302
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1: SS compositions and CD deviations of model proteins. Columns
show the index and name of the respective model protein, the fraction of its
amino acids assigned to the SS classes α-helix, β-strand, and Other, as well
as scaling factors αk and root-mean squared intensities RMSIk of non-SS
signals to quantify scaling errors and non-SS contributions in the protein CD
spectrum, respectively. Synth denotes synthetic spectrum in the proteins
name, whereas Lysm, Dqd-1, Sub-C, and MeV-Nt abbreviate Lysozyme, De-
hydroquinate dehydratase I, Subtilisin Carlsberg, Measles Virus Nucleopro-
tein C-terminal domain respectively. Note that SS fractions, scaling factors,
and non-SS contributions for all synthetic proteins (k= 1-8) were parameters
used to generate their CD spectrum, whereas for reference proteins (k= 9-
12), all values were computed based on their measured spectra and protein
data bank structures (193L, 2DHQ, 1KU8, and 1SCD, respectively).For the
disordered Mev-Nt, the reference parameters were determined from the CD
spectrum by Longhi et al. and a molecular dynamics ensemble by Robustelli
et al. [9]

k protein α-helix β-strand Other αk RMSIk
1 Synth-1 0.11 0.40 0.49 1.0 0.0
2 Synth-2 0.41 0.20 0.39 1.0 0.4
3 Synth-3 0.43 0.10 0.47 1.2 2.0
4 Synth-4 0.27 0.26 0.47 1.6 2.7
5 Synth-5 0.00 0.33 0.67 1.4 0.7
6 Synth-6 0.30 0.40 0.30 1.0 3.6
7 Synth-7 0.11 0.00 0.89 1.1 2.3
8 Synth-8 0.00 0.08 0.92 1.3 1.3
9 Lysm 0.35 0.03 0.62 1.1 1.0
10 Dqd-1 0.43 0.18 0.39 1.1 2.9
11 Jacalin 0.01 0.28 0.71 0.3 3.2
12 Sub-C 0.30 0.12 0.58 0.4 1.2
13 MeV-Nt 0.08 0.03 0.89 1.7 1.8
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To model the effects of experimental deviations from the ideal SS signal,
the CD spectra were modified by adding non-SS signals and scaling errors.
The size of these CD deviations for each synthetic spectrum was quantified
by the scaling factors αk and the root-mean-squared intensities of non-SS
signals RMSIk listed in Table 1. Synthetic spectrum 1 (k= 1) was a positive
control without any CD deviations (αk= 1.0, RMSDIk= 0.0 kMRE), spectra
2 and 6 included small (0.4 kMRE) and large (3.5 kMRE) non-SS deviations,
respectively, but no scaling errors. CD deviations for spectra 3, 4, 5, 7 and
8 were drawn from the marginal distributions of experimentally observed
scaling factors and non-SS contributions using rejection sampling.

Non-SS signals were generated as sums of Gaussian functions using

SnonSS
kl =

G∑
g=1

Ig√
2πσ2

g

· e
− (λl−µg)

2

2σ2g , (3)

where the non-SS signal SnonSS
kl of spectrum k at wavelengths λl from 178

to 269 nm was computed from the following randomly chosen parameters.
The number of Gaussians G was chosen from the range 1 to 5, the relative
peak intensity for Gaussian g Ig was chosen between -20.0 and 20.0, with a
peak position µg chosen from 178 to 241 nm, and peak half-widths σg chosen
between 2 and 37 nm. Once the parameters were determined, the non-SS
signal at every wavelength (using 1 nm spacing) was calculated, and the non-
SS signal intensity was rescaled to match the previously defined RMSI values
in Table 1.

The final synthetic spectra were computed by determining the SS signals
first, by adding the appropriately scaled non-SS signal contributions in a
second set, and finally by rescaling the resulting CD spectrum according to
the indicated scaling factor.

4. Algorithm overview

Our newly implemented Python module SESCA bayes.py performs a
Monte-Carlo (MC) sampling in SS space to determine the most probable
SS composition of a protein based on its measured CD spectrum. Figure
3 shows the flowchart of the algorithm that is divided into three phases:
preparation, sampling, and evaluation.
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Figure 3: Schematic workflow of the Bayesian secondary structure estimation module in
SESCA. The scheme depicts input data files as blue parallelograms, data on the sampled
SS compositions are shown as a red parallelogram. Operations are depicted as white
rectangles, and decisions are shown as white diamonds. Posterior probability calculation
operations (see Fig. 1) are highlighted as yellow rectangles on the scheme.
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4.1. Preparation and input parameters
In the preparation phase, input, output, and run parameters are read

based on the user-provided command line arguments. If SESCA bayes.py is
used as a Python module, an array of arguments can be processed by the
function Read Args and passed to the Main function to run the algorithm.
Arguments in SESCA are identified by preceding command flags (marked by
the ”@” character in the first position. There are four input files – shown
as blue parallelograms in Fig. 3 – that SESCA bayes accepts, each read in
white-space separated data blocks stored as simple ascii text files.

The CD spectrum file (specified using the @spect flag) should contain
two columns, wavelength in nanometers (nm) and CD signal intensity in
1000 mean residue ellipticity (kMRE) units. This file must be specified for
SESCA bayes, and if no command flags are provided, the first argument is
automatically recognized as a CD spectrum file.

The side-chain correction file (specified by @corr) is an optional file to
add baseline or sequence-dependent side-chain correction to the predicted CD
spectrum, which are independent of the SS composition. If the basis spec-
trum set has basis spectra to calculate side-chain contributions, these signals
can be computed before running SESCA bayes, and added as a correction.

The Bayesian parameter file (@par) contains several data blocks, most
importantly, the binned probability distribution function of CD deviations
PRMSD,α (likelihood function), prior SS probability distributions for the SS
composition P (SSj) and scaling factors P (αj), as well as the MC step param-
eters. If no parameter file is provided by the user, SESCA bayes.py uses one
of two default parameter files (Bayes 2D SC.dat and Bayes 2D noSC.dat)
found in the ”libs” sub-directory of SESCA, depending on whether a side
chain correction file was provided or not. These files contain one of the two
likelihood functions shown in Fig. 2, and uniform prior SS probability dis-
tributions. A more detailed description of the parameter blocks is provided
in the examples sub-directory (examples 5).

The basis set file (@lib) contains several data blocks for CD spectrum
calculations, including a block where the CD intensity of 3-6 basis spectra
at each wavelength (175-269 nm) is provided. Several derived basis sets are
available in libs sub-directory, and a detailed description of the data blocks
is given in example 1.

In addition to the input files, SESCA bayes recognizes several additional
command flags to modify program behavior. The number of initial SS com-
positions for MC sampling phase is specified by @size. The number of MC
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steps per initial SS composition is set by @iter. The @scale flag allows the
user to control whether the measured CD spectrum is rescaled before deter-
mining the deviation from the predicted CD spectra or not. In the absence
of these command flags, the values 100, 500, and 1 (yes) are used for the SS
estimation.

Finally, three command flags control the output of SESCA bayes.py; pro-
viding a ”0” argument to any of these flags disables writing the associated
output. The command flag @write specifies the file name for the primary
output, and if no command flags are given, SESCA bayes automatically rec-
ognizes the second argument as primary output file. This file contains a
summary of the input parameters, binned posterior probability distributions
for the SS compositions and scaling factors, as well as the most probable
SS fractions and their uncertainties. The command flags @proj and @data
allows the user to print secondary output files. The @proj flag specifies a file
name for heatmap-style two-dimensional projection of the posterior SS dis-
tribution. The projection is made along two SS fractions selected using the
@pdim flag Finally, the flag @data specifies a file name for printing all the
sampled SS compositions the primary output is computed from, along with
their estimated CD deviations, prior and posterior probabilities. By default,
only the primary output file is printed into ’SS est.out’, and no secondary
output is written.

4.2. Monte Carlo sampling

To determine the most probable SS composition of the protein based
on its CD spectrum, sampling of the SS space is required. To this aim,
SESCA bayes uses a MC sampling scheme starting from N (set by @size)
initial SS compositions, drawn from the prior SS distribution using rejection
sampling. As the center part of Fig. 3 shows, at every step t of the MC sam-
pling phase, a change on each of the SS compositions (Cji,t) is attempted.
The change is realized by transferring a given SS fraction between two ran-
domly chosen SS classes, yielding a new SS composition (C ′ji,t). The amount
of the transferred SS fraction from the donor class to the acceptor class is
determined based on the distribution specified in the Bayesian parameter
file. If no distribution is provided, the fraction is drawn from a Gaussian
distribution with a mean of 0.05 and variance of 0.1. To remain in the space
of possible SS compositions, the transferred SS fraction cannot exceed the
current fraction assigned to the donor class, and classes that currently have
a fraction of zero assigned to them cannot be selected as donors.
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After the changes are attempted, the posterior probabilities P ′jt of the new
SS compositions are calculated (see Section 2) and compared to the posterior
probabilities (Pjt) of the SS compositions before the change. The attempted
change is accepted or rejected by applying the Metropolis criterion to the
ratio of posterior probabilities, i.e. the change is accepted if the ratio P ′jt/Pjt
is larger than a randomly generated number between zero and one. If the
change is accepted, C ′ji,t is added to the sampled SS distribution and used as
the initial SS composition Cji,t+1 in the next MC step, otherwise Cji,t is added
to the sampled SS distribution (again) and is used in the next MC step. This
procedure is repeated until the specified number of MC attempts is reached,
and yields N× tmax sampled SS compositions. The sampled SS compositions
resemble the prior SS distribution during the initial MC steps but converge
towards an SS distribution weighted by the posterior SS probabilities.

4.3. Sample evaluation

The sampled SS distribution is analyzed in the evaluation phase, as shown
in the bottom part of Fig 3. To avoid the over-representation of very low
posterior probability SS compositions, a fraction of the initially sampled SS
compositions may be discarded from final SS distribution. This fraction can
be set by the user through the @discard flag, otherwise, the initial 5% of SS
compositions is discarded. The remaining probability-weighted ensemble of
possible SS compositions is used to compute the estimated SS composition
Cest
ji for the protein, the estimated scaling factor αestj , as well as to approxi-

mate the discrete posterior probability distribution for both quantities.
The estimated SS composition is determined by computing the mean

and standard deviation (SD) of each SS fraction over the sampled SS com-
positions. Similarly, the most probable scaling factor is computed as the
mean and SD of scaling factors estimated for the sampled SS compositions.
The discrete probability distribution for both scaling factors and SS com-
positions are computed by binning all sampled SS compositions and scaling
factors using the parameters extracted from the prior distributions provided
in the Bayesian parameter file. The number of sampled SS compositions
and scaling factors in each bin is normalized by the final sample size to ob-
tain the discrete probability distributions. The computed estimates, their
uncertainties and the discrete probability distributions are all written in the
primary output file (defined by the @write flag) and returned as output by
the SESCA bayes module. If requested (@proj flag), the sampled SS com-
positions can be printed in a separate file. Finally, the two-dimensional
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projection of posterior SS distribution along two chosen SS fractions can also
written into a separate output file (@proj flag), formatted as a human read-
able heat map, that can be easily processed into images using e.g. Python’s
Matplotlib module [10] or external visualization programs.

5. Testing the Algorithm

5.1. Accuracy and precision

The accuracy and precision of the Bayesian SS estimation was tested us-
ing the 13 CD spectra listed in Table 1. Eight of these spectra (k= 1-8)
are synthetic spectra that were generated from a given SS composition, but
modified by adding artificial non-SS signals and scaling errors (see Section
3.2) to emulate CD deviations in real measured spectra. Four of the re-
maining five CD spectra (k= 9-12) are measured spectra from the SP175
set [8], for which the estimated SS compositions are compared to those ex-
tracted from the (protein data bank) structure of the reference protein. The
last CD spectrum (k=13) was measured for the intrinsically disordered C-
terminal domain of the Measles virus Nucleoprotein by Longhi et al [ref][11].
Because this domain is disordered, there was no experimental reference struc-
ture available for it, and therefore we used a molecular dynamics ensemble
of Robustelli et al [9] as reference. This ensemble was generated using the
Amber99SB-disp force field and was validated by small angle X-ray scatter-
ing (SAXS) and nucelar magnetic resonance (NMR) experiments. Table 1
lists the (estimated) CD deviations of all 13 CD spectra, quantified by the
scaling factors αk and the root-mean-square intensity (RMSIk) of non-SS
signals in each spectrum.

To test the accuracy of SESCA bayes, we estimated the SS composition
of the above 13 CD spectra using the same DS-dT basis set with three SS
classes (α-helix,β-strand, and Other) that was used to generate the synthetic
spectra. The obtained Bayesian estimates for the test set are summarized in
Table 2. This table includes the mean and SD (in parentheses) of SS fractions
of the sampled posterior distributions, as well as the total SS deviation from
the reference SS compositions, computed according to

∆SSk =
1

2

F∑
i=1

|Cest
ki − C

ref
ki |, (4)
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where Cest
ki are the estimated SS fractions and Cref

ki are the reference SS
fractions listed in Table 1.
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Table 2: Bayesian secondary structure estimates. The table lists the index
and name of the model protein, the estimated fraction of its amino acids
assigned to SS classes α-helix, β-strand, and Other, as well as the total SS
deviation ∆SSk from the reference SS compositions shown in Table 1. The
uncertainty (standard deviation) of each SS fraction and deviation is given
in parentheses. Estimates that are more than 2 SD away from their reference
value are highlighted in red.

k protein α-helix β-strand Other ∆SSk
1 Synth-1 0.14 (0.05) 0.44 (0.06) 0.43 (0.04) 0.06 (0.04)
2 Synth-2 0.49 (0.06) 0.19 (0.06) 0.32 (0.06) 0.08 (0.05)
3 Synth-3 0.45 (0.06) 0.12 (0.05) 0.43 (0.05) 0.03 (0.04)
4 Synth-4 0.22 (0.04) 0.21 (0.05) 0.57 (0.04) 0.09 (0.04)
5 Synth-5 0.03 (0.04) 0.26 (0.03) 0.71 (0.05) 0.07 (0.04)
6 Synth-6 0.36 (0.05) 0.32 (0.04) 0.31 (0.06) 0.08 (0.04)
7 Synth-7 0.15 (0.04) 0.01 (0.04) 0.84 (0.05) 0.05 (0.04)
8 Synth-8 0.03 (0.04) 0.12 (0.04) 0.85 (0.05) 0.07 (0.04)
9 Lysm 0.38 (0.05) 0.04 (0.05) 0.57 (0.05) 0.05 (0.04)
10 Dqd-2 0.48 (0.06) 0.06 (0.05) 0.47 (0.05) 0.12 (0.05)
11 Jacalin 0.01 (0.04) 0.31 (0.06) 0.68 (0.06) 0.03 (0.05)
12 Sub-C 0.26 (0.05) 0.13 (0.04) 0.61 (0.04) 0.04 (0.04)
13 MeV-Nt 0.07 (0.05) 0.13 (0.04) 0.80 (0.05) 0.10 (0.04)

The obtained SS fractions show a fairly consistent 0.03 to 0.06 uncertainty.
As expected, 35 of 39 SS fractions are within two SD of their reference value,
with no significant difference in accuracy between synthetic and measured
CD spectra, or globular and disordered protein models. In addition, the
calculated total SS deviations (∆SS) from the reference structures range
between 0.03 and 0.12, and ten of thirteen values are also smaller than the
estimated uncertainty of the estimation (two SD) that was calculated from
the individual SD of SS fractions (σki) according to

σk =
1

2

√√√√ F∑
i=1

σ2
ki. (5)
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5.2. Comparison to deconvolution

Next, we compare the accuracy and precision of the Bayesian estimates
to that of SS estimates obtained through spectrum deconvolution. To this
aim, we estimated SS compositions with the deconvolution module of SESCA
(SESCA deconv) for the same 13 CD spectra (Table 1), using the same DS-
dT basis spectrum set. The deconvolution was carried out using the most
accurate protocol (method D2) tested previously [6]. This method constrains
the basis spectrum coefficients to positive values, but normalizes them to
unity only after the search for the best approximation. The SS compositions
obtained using SESCA deconv are listed in Table 3, along with the total SS
deviations from reference SS compositions (found in Table 1). The total SS
deviation of deconvolution estimates (∆SSk) ranges from 0.0 to 0.29. The
mean SS deviation for the whole set (0.07) is similar to that of the Bayesian
estimates (0.07), but shows a significantly larger scatter (0.09 vs. 0.04). All
three CD spectra with larger than average SS deviations (k= 3,4,10) have
large non-SS contributions (2.0-2.9 kMRE), which is in line with our previous
findings that non-SS contributions may be detrimental to the accuracy of
deconvolution methods.

Table 3: Secondary structure estimates based on spectrum deconvolution.
The table lists the index and name of the model protein, the estimated frac-
tion of its amino acids assigned to SS classes α-helix, β-strand, and Other,
as well as the total SS deviation ∆SSk from the reference SS compositions
shown in Table 1. The values in parentheses after ∆SSk show the mean and
SD of the estimated total SS deviation computed from the rescaled RMSD
between the measured (generated) CD spectrum and predicted spectrum of
the SS estimate.
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k protein α-helix β-strand Other ∆SSk
1 Synth-1 0.11 0.40 0.49 0.00 (0.00 ± 0.02)
2 Synth-2 0.41 0.20 0.39 0.00 (0.05 ± 0.03)
3 Synth-3 0.72 0.03 0.24 0.29 (0.16 ± 0.09)
4 Synth-4 0.19 0.22 0.59 0.12 (0.08 ± 0.05)
5 Synth-5 0.01 0.33 0.66 0.01 (0.06 ± 0.04)
6 Synth-6 0.31 0.31 0.37 0.08 (0.14 ± 0.09)
7 Synth-7 0.14 0.00 0.86 0.03 (0.13 ± 0.08)
8 Synth-8 0.02 0.03 0.95 0.06 (0.07 ± 0.04)
9 Lysm 0.34 0.06 0.60 0.03 (0.07 ± 0.05)
10 Dqd-2 0.51 0.04 0.45 0.14 (0.09 ± 0.06)
11 Jacalin 0.00 0.35 0.65 0.07 (0.20 ± 0.09)
12 Sub-C 0.25 0.13 0.62 0.05 (0.07 ± 0.05)
13 MeV-Nt 0.09 0.10 0.81 0.08 (0.07 ± 0.04)

Although the SESCA deconv module does not provide information on the
uncertainty of individual SS fractions, many SESCA basis sets (including
DS-dT) include a calibration curve to estimate the expected total SS devia-
tion if the true SS composition is unknown. This curve was computed from
4.9× 105 synthetic spectrum-structure combinations, which were binned ac-
cording to their estimated non-SS contributions (RMSDj), to provide an
expected mean and SD of SS deviations for a given (rescaled) RMSD. Com-
paring the true SS deviations of the deconvolution results with their esti-
mated values shows that these estimates correctly describe the precision of
the deconvolution method: 8 of 13 ∆SSk values are within 1 SD of the es-
timated total deviation, and all 13 fall within 2 SD. However, the average
uncertainty of the deconvolution (0.09) is again considerably larger than that
of the Bayesian SS estimates (0.04), and it increases with increasing non-SS
contributions.

In summary, Bayesian SS estimation and spectrum deconvolution pro-
vides SS estimates that – in most cases – have a similar accuracy. However,
Bayesian SS estimates are considerably more precise when significant non-SS
contributions are present in the measured spectrum. Further, the Bayesian
approach provides uncertainties for each individual SS fraction as well as
for the optimal scaling factor of the measured CD spectrum, which is an
additional advantage of the new method.
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5.3. Example spectrum analysis

To further investigate the differences between the two methods, we an-
alyzed the SS estimates for the CD spectrum with the largest difference
between the deconvolution and Bayesian SS estimates. Figure 4A shows
the obtained posterior SS probability distribution for synthetic spectrum 3,
which contains larger than average non-SS contributions (2.02 kMRE). The
heatmap shown in Fig. 4A illustrates that the most likely SS compositions
are indeed clustered around the SS composition the synthetic spectrum was
created from (shown as a red cross), with the highest posterior probability
regions (shown in dark green) located in the immediate (∆SSk < 0.05) vicin-
ity of correct SS composition. However, the SS composition determined by
deconvolution (purple cross) has a much higher α-helix content and it is not
in a high-probability region in the Bayesian SS estimation.
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Figure 4: SS estimation for a synthetic CD spectrum. The figure compares the true SS
composition (shown in red) with SS compositions obtained from Bayesian SS estimation
(in blue) and spectrum deconvolution (in purple). A) shows the posterior probability
distribution of sampled SS compositions in a heat map representation and indicates the
true SS composition and the deconvolution SS estimate as crosses. The SS compositions,
estimated scaling factors, and SS deviations are also listed in a tabulated format on the
top. The difference on how the two estimates are evaluated by B) the deconvolution and
C) Bayesian SS estimation is also shown. During deconvolution, the predicted CD signal
of SS estimates is rescaled to match the measured CD spectrum, and the measure of
quality is solely the RMSD. In the Bayesian approach, the measured spectrum is rescaled
to match the predicted SS signals, and both the RMSD-s and the scaling factors are used
to determine the most likely SS composition.
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To examine why the two algorithms evaluate the proposed SS composi-
tions differently, in Fig. 4B we computed the predicted CD signals of the
two estimated SS compositions, rescaled them, and compared them to the
synthetic spectrum, as is done during the deconvolution process. The figure
shows that with the proper scaling factor both SS compositions approximate
the synthetic spectrum well, but the deconvolution estimate (purple dashed
line, RMSDj : 1.31 kMRE) fits slightly better than the Bayesian estimate
(blue dashed lines, RMSDj : 1.71 kMRE).

In contrast, the Bayesian SS estimation rescales the synthetic CD spec-
trum to match the predicted spectra, and evaluates the likelihood of the SS
compositions based on the joint probability of their non-SS contributions
RMSDj and their scaling factors αj, as shown in Fig. 4C. Although the two
estimates have a comparable RMSD in this method as well, the deconvolu-
tion estimate requires a scaling factor (αj: 1.99) to achieve a good agreement
that is shown to be very unlikely according to the joint-probability map in
Fig. 2A. Comparing the two estimated SS signals (dashed lines) to the SS
signal of the true SS composition (in red) illustrates how considering scaling
factors improves the precision of the SESCA bayes. In this case, eliminating
SS compositions with unlikely scaling factors from the sampled distribution
allowed a fairly accurate (RMSD: 0.99 kMRE) approximation of the true SS
signal.
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