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SELF-CONSISTENT DETERMINATION OF THE HUBBARD U TERM IN ACBN0

METHOD

In the present work, to determine the Hubbard U term self-consistently, we used the

scheme suggested by Agapito, Curtarolo, and Nardelli, hereafter abbreviated by ACBN0 [1–

3]. Here, we summarize key components of the ACBN0 formulation, which can be easily

extended to our case of multiatomic orbital. For a given ortho-normalized orbital basis set

φ, the renormalized occupation number (N̄kσ
ψi

) and reduced density matrix (P̄ σ
µυ) [1–3] are

defined as follow:

N̄σ
ψk
i
≡ Nψk

i

∑
µ∈{m}

∣∣ckσµi ∣∣2,
P̄ σ
µυ = 1√

Nk

∑
i,k

N̄kσ
ψi
ckσ∗µi c

kσ
υi ,

(1)

where ck,σµi =
〈
φµ | ψkσ

i

〉
is inner product between generalized basis (φµ) and Kohn-Sham

state (ψkσ
i ). The reduced occupation number, which presents occupation of generalized

orbital in subspace, is defined as:

Nσ
m =

1√
Nk

∑
k,i

fk,i

∣∣∣ck,σm,i∣∣∣2. (2)

The unrestricted Hartree-Fock Coulomb and exchange energy in the correlated subspace

can be reformulated in terms of reduced density matrix P̄ as follows:

E
{j}
HF = 1

2
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{j}

[
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jj′P̄

α
j′′j′′′ + P̄α

jj′P̄
β
j′′j′′′ +P̄ β

jj′P̄
α
j′′j′′′ + P̄ β

jj′P̄
β
j′′j′′′

]
(jj′|j′′j′′′)

+1
2

∑
{j}

[
P̄α
jj′P̄

α
j′′j′′′ + P̄ β

jj′P̄
β
j′′j′′′

]
(jj′′′|j′′j′),

(3)

where the two-body integral is

(jj′|j′′j′′′) ≡
∫
φ∗j (r1)φj′ (r1) 1

|r1−r2|φ
∗
j′′ (r2)φj′′′ (r2) dr1dr2. (4)

From the comparison between the Hubbard U energy (eq. 2 in ref. [1]) and Hartree-Fock

energy (eq. 3), the U and J value can be derived as:
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{j}
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∑
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(5)

To evaluate the electron repulsion of isolated localized orbitals under the periodic bound-

ary condition, in addition, we employed truncated Coulomb potential method [4] that is

defined as follow:

(jj′|j′′j′′′) = 4π
Ω

∑
G

[
1
2
R2
cYjj′ (G)Y ∗j′′j′′′ (G) +

∑
G6=0

Yjj′ (G)Y ∗
j′′j′′′ (G)

|G|2 (1− cos (|G|Rc))

]
,

Yjj′ (G) =
∫
Ω

e−iG·rφ∗j (r)φj′ (r) dr,

(6)

where Ω is the cell volume and the Rc =
(

3Ω
4π

)1/3
is the cut-off radius. This truncated

Coulomb potential method uses the modified 1/r potential as follow:

vmodi =

 1/ |r| for |r| ≤ Rc

0 otherwise
, (7)

which removes the long-range interaction beyond the cut-off radius and thus avoids the

divergence incurred by the infinite sum of the long-range term under the periodic boundary

condition.

REVIVAL OF THE DERIVATIVE DISCONTINUITY ON APPLICATION OF THE

HUBBARD U TERM TO THE GENERALIZED BASIS SET

Here, we summarize that the lost derivative discontinuity in DFT and DFT+U for the

molecular orbital states can be restored by using the DFT+GOU. We start with the exam-

ple of O2 molecule. We varied the electron numbers in the O2 molecule (see Fig. S1(a)),

and we calculated the Hubbard energies with given the U parameter of 7 eV applied onto

the molecular orbital, which is denoted by PBE+GOU(7eV), as presented in Fig. S1(b).

In exact analogy with the simplified model system shown in Fig. 1(b), the self-consistently

obtained Hubbard energy for O2 molecular orbitals, calculated with the PBE+GOU, clearly

produces kink structures in the Hubbard energy at the point of integer electron numbers. In
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contrast, the conventional scheme with the atomic orbital projector (PBE+U(7eV)) makes

the Hubbard energy decreases almost monotonically, which clearly lose the derivative dis-

continuity.

The first derivatives of the total energy (Etot) with respect to the electron number

(dEtot/dN) are summarized in Fig. S1(c). The calculation of PBE+GOU provides a sharp

discontinuous change of the derivative at integer charge (−1). For comparison, we also cal-

culated the same derivative discontinuity with the hybrid functional PBE0, as shown in Fig.

S1(c). The same inspection is performed for the charge state of the bulk 1T-TaS2. We tested

with the two values of the Hubbard energy parameters: U = 0.3eV and U = 0.6eV. Starting

from the integer charge, the first derivative values (dEtot/dN) with PBE+GOU(0.3eV) pro-

duce rather discontinuous changes, whereas the dEtot/dN obtained with PBE and PBE+U

leads to very smooth variations near the integer number of electrons.

GENERATION OF THE GENERALIZED ORBITAL BASIS SET

Here we describe the generation scheme for the multiatomic basis orbital to which the

Hubbard potential is applied. For the molecular system, such as O2 described in the main

text, the known molecular orbital can be used for this purpose, and the procedure is rather

straightforward. To deal with localized states in solid states, a closer inspection of the

electronic structure is required. In our example of the double layer supercell of the bulk

1T-TaS2, there are four CDW states, one for each spin state in each layer. To obtain the

generalized orbital basis for these four CDW states, we first performed the SCF procedure for

the monolayer 1T-TaS2. In this case, the flat band CDW state (ψCDW
σ ) in the monolayer well

isolated and clearly distinguished with the gap region. On each Bloch point, we extract the

Kohn-Sham orbital of the flat band, as shown in Fig. S2(a). We performed the calculation

of the bulk 1T-TaS2 with the Hubbard potential applied onto the extracted orbital. For

example, in our double layer unit cell for the bulk 1T-TaS2, we have four basis orbitals :

φCDW
σ,upper(r,k) = ψCDW

σ (r,k) and φCDW
σ,lower(r,k) = ψCDW

σ (r,k) for each spin state σ.

Instead, the Wannier orbital of the flat band can be used in the construction of the

generalized basis orbital. In particular, when the flat band is not isolated within the gap

region, the wannierization can lead to a straightforward procedure. The Wannier orbital
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ϕR(r) is defined in terms of Bloch state ψk(r) in the Brillouin zone as follows:

ϕR(r) =
1√
N

∑
k

e−k·Rψk(r) (8)

when R, k and N are Bravais lattice vector, Bloch vector and number of primitive cells.

respectively. Once we prepared the set of Wannier orbitals, we restart the self-consist field

calculation by applying the GOU parameter onto the basis orbital at each Bloch point

(φk(r)), defined as

φk(r) =
1√
N

∑
k

ek·RϕR(r). (9)
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FIG. S1: (a) Schematic diagram of the molecular orbitals of the triplet of O2. (b) The

Hubbard energies calculated with the self-consistentby the DFT+GOU and DFT+U

methods with respect to the variable charge of O2. (c) The first derivative of total energy

with respect to the charge of O2 molecule. For the exchange-correlation, PBE-type

generalized gradient approximation is used.

FIG. S2: (a) Band structure of monolayer 1T-TaS2. The first derivative of total energy

with respect to the charge variation of the bulk 1T-TaS2 with (b) PBE+GOU(0.3eV) and

(c) PBE+GOU(0.6eV).
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