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Forschungszentrum Jülich, 2017, ISBN 978-3-95806-224-5
http://www.cond-mat.de/events/correl17

http://www.cond-mat.de/events/correl17


16.2 Antonio Sanna

1 Introduction

Density functional theories (DFTs) have proved to be a very convenient approach to deal with
the many body problem in condensed matter. The original formulation of Hohenberg, Kohn,
and Sham [1, 2] as well as several of its extensions [3–7] are now largely applied to study
realistic systems and predict their properties with great success.

Density functional theories are all based on a Hohenberg-Kohn type of theorem that proves the
existence of a one-to-one mapping between a set of chosen densities and the relative external
potentials, implying that it is possible to achieve exact predictions of any observable without
having to deal with anything more complex than the density itself.

All the complexity of the many body problem is transferred to the construction of a (universal)
functional of the density. A DFT framework is practically useless until a good approximation for
the universal functional is available. Clearly the process of functional construction is far from
being straightforward. Also, for those used to diagrammatic methods, where approximations
are usually expressed in terms of including/excluding some specific process, DFT functionals
are sometimes rather obscure. Rarely one can deduce their domain of validity a priori from pure
theoretical considerations.

On the other hand the advantage of DFTs is that, once a valid approximation for the functional is
constructed, this functional is usually a simple object that can be easily evaluated implemented
and applied. DFT algorithms are quite simple, incredibly fast, and very little is required by the
user who can focus, instead, on the analysis of results.

Superconducting density functional theory (SCDFT) is an extension of DFT to account for the
very peculiar symmetry breaking that occurs in a superconductor [8, 9]. Proposed in 1988 [10]
by Oliveira Gross and Kohn it was later revisited [11, 12] to include the multi-component DFT
of Kreibich and Gross [13], adding in this way the effect of nuclear motion.

In this lecture it is assumed that the reader has already a basic knowledge of superconductivity
and the fundamentals of Green functions and field theory. There are excellent introductions to
superconductivity, like DeGennes [9] who discusses in great details BCS theory and the physics
of superconducting materials, while the book of Fetter and Walecka [14] is a great reference for
the many body formalism.

For what concerns the superconducting state and the topic of this lecture the main references that
have been used are the book of Vonsovsky, Izyumov, and Kurmaev [15] and for the SCDFT the-
ory the original research papers [10–12] as well as the PhD theses of Kurth [16], Lueders [17],
and Marques [18].
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2 Derivation of SCDFT

2.1 Hamiltonian

The starting point of SCDFT is the non relativistic Hamiltonian for interacting electrons and
nuclei.

H = He + Hen + Hn + Hext, (1)

where e stands for electrons, n for nuclei and ext for external fields.

He =
∑
σ

∫
dr ψ†σ (r)

[
−

1
2
∇2 − µ

]
ψσ (r) +

1
2

∑
σσ′

∫
drdr′ψ†σ (r)ψ†σ′

(
r′

) 1
|r − r′|

ψσ′
(
r′

)
ψσ (r)

(2)
where ψ are the electronic field operators, µ the chemical potential, and dr is an abbreviation
for the 3D volume differential.
Nuclei need to be considered explicitly (not just as source of an external potential like in con-
ventional DFT [1]) because in most known superconductors the ionic dynamics provides an
essential part of the superconducting coupling

Hn = −

∫
dRΦ† (R)

∇2

2M
Φ (R) +

1
2

∫
dRdR′Φ† (R)Φ†

(
R′

) Z
|R −R′|

Φ
(
R′

)
Φ (R) (3)

Hen = −
1
2

∑
σ

∫
dRdr ψ†σ (r)Φ† (R)

Z
|R − r|

Φ (R)ψσ (r) (4)

where Φ are ionic field operators, M the mass, and Z the atomic number (assuming a single
atom type to keep it simple).
The Hamiltonian still includes an external field that is necessary to break the phase symmetry
and allow for a superconducting condensation [9]. In fact the normal state is a stationary point,
and unless a continuous symmetry is broken in some way any perturbative approach based on
this Hamiltonian will not lead to a superconducting state in perfect analogy with the theory
of magnetism. From the knowledge of BCS [8, 19] and Eliashberg theory [15, 19, 20] it is
expected that the most convenient way to introduce a symmetry breaking term that leads to
superconductivity is to couple the system to an external superconductor1 that can tunnel Cooper
pairs in and out

H∆ext =

∫
drdr′ ∆∗ext (r, r) ψ↑ (r)ψ↓

(
r′

)
+ h.c. (5)

This form of the symmetry breaking field has the great advantage of being extremely simple
(involving only two field operators) and will prove also to be theoretically quite convenient. At
the same time it has the disadvantage of introducing in the original Hamiltonian a Cooper pair
source and sink such that the particle number is not fixed anymore.
In addition to the symmetry breaking external field in Eq. (5) one should also add an external
field coupling to the electronic density

Hvext =

∫
dr vext (r)

∑
σ

ψ†σ (r)ψσ (r) (6)

1The symmetry breaking will be assumed of singlet type throughout this lecture.
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and an external field that couples to the nuclei

HWext =

∫
Wext ({Ri})

∏
j

dR j Φ
†
(
R j

)
Φ

(
R j

)
. (7)

Unlike the electronic external potential, the ionic one couples all nuclei with each other (as
it depends on the set of positions {Ri}). This, not obvious, choice is made in order to be able,
eventually, to construct a non interacting system of ions that actually behave like phonons under
an external potential.

2.2 Hohenberg Kohn theorem

The SCDFT was introduced by Oliveira, Gross, and Kohn [10] as a generalization of finite
temperature DFT to include the extra density (χ – called anomalous or superconducting) that
couples with the proximity field ∆ext. In its modern form [11, 12] SCDFT is based on the three
densities

ρ (r) = Tr

%0

∑
σ

ψ†σ (r)ψσ (r)

 (8)

χ
(
r, r′

)
= Tr

[
%0 ψ↑ (r)ψ↓

(
r′

)]
(9)

Γ ({Ri}) = Tr

%0

∏
j

Φ†
(
R j

)
Φ

(
R j

) (10)

where %0 is the grand canonical density matrix (not to be confused with the electron density
ρ (r))

%0 =
e−β(H−µN)

Tr
[
eβ(H−µN)] , (11)

N being the particle number operator.
SCDFT is based on a generalized Hohenberg-Kohn theorem at finite temperature, that states

1. There is a one-to-one mapping between the set of densities ρ (r), χ (r, r′), and Γ ({Ri})
onto the set of external potentials vext (r), ∆ext (r, r′), and Wext ({Ri})

2. There is a variational principle so that it exists a functional Ω that

Ω
[
ρ0, χ0, Γ0

]
= Ω0 (12)

Ω
[
ρ , χ , Γ

]
> Ω0 for ρ, χ, Γ , ρ0, χ0, Γ0

where ρ0, χ0, and Γ0 are the ground state densities and Ω0 the grand canonical potential.

The proof is a generalization of the finite temperature DFT proof of Mermin [7]. It is still worth
to sketch it here. One defines the grand canonical functional as

Ω
[
%
]

= Tr
[
%

(
H − µN +

1
β

ln %
)]

(13)
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Fig. 1: Correspondence between potentials (v, ∆,W) and densities (ρ, χ, Γ) in SCDFT.

where % are density matrices. If % is the grand canonical density matrix (% → %0) then Ω
[
%0

]
is

in fact the grand canonical potential of the system − 1
β

ln
{
Tr

[
e−β(H−µN)

]}
≡ Ω0. From this, it is

straightforward to prove that, independently of the specific form of H, Ω
[
%0

]
< Ω

[
%
]

for any
% , %0 (refer to appendix A in Ref. [7]).
A second step is to prove by reductio ad absurdum that one set of densities can minimize two

different sets of external potentials. So let us assume that both vext, ∆ext,Wext and v′ext, ∆
′
ext,W

′
ext

lead to the same densities ρ, χ, Γ. Clearly H and H′ the two Hamiltonians corresponding to the
two sets of external potentials are different2 as are the corresponding density matrices % and %′.
By using the minimum principle one can write the following set of relations

Ω′ ≡Tr
{
%′0

[
H′ − µN

1
β

ln
(
%′0

)]}
< Tr

{
%0

[
H′ − µN

1
β

ln (%0)
]}

= Ω + Tr
{
%0

[(
Hv′ext

− Hvext

)
+

(
HΓ′ext

− HΓext

)
+

(
H∆′ext

− H∆ext

)]}
(14)

where the last equation uses the assumption that the two systems have the same densities. The
argument can be repeated starting from Ω, i.e., swapping primed and un-primed quantities,
leading to another inequality

Ω < Ω′ + Tr
{
%′0

[(
Hvext − Hv′ext

)
+

(
HΓext − HΓ′ext

)
+

(
H∆ext − H∆′ext

)]}
. (15)

Summing Eq. (14) and (15) and inconsistency emerges

Ω′ + Ω < Ω + Ω′. (16)

This implies that the assumption was absurd and two different sets of potentials can not lead to
the same set of densities. Establishing the one-to-one mapping between densities and potentials
is the first part of the Hohenberg-Kohn theorem for SCDFT.
To prove the second part one has to notice that, since all observables are obviously functionals of
the external potentials, they are also functionals of the densities (due to the one-to-one relation).
Since this includes the thermodynamic potential Ω, one can rewrite the minimum principle
proved above in terms of the densities (instead of using the density matrix) that is the second
and last point of the Hohenberg-Kohn theorem for SCDFT.

2This is because the external potentials couple differently with the field operators. With this in mind one can
easily extend the theorem to add extra densities and potentials [21, 22].
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The fact that all observables are functional of the densities and that H is the sum of internal
interactions (Eq. (1)) and couplings with external fields (Eqs. (5), (6), and (7)) allows to write
Ω

[
ρ, χ, Γ

]
as

Ω
[
ρ, χ, Γ

]
=F

[
ρ, χ, Γ

]
+

∫
dr vext (r) ρ (r) (17)

+

∫
Γ ({Ri}) Wext ({Ri})

∏
j

dR j +

∫
drdr′ ∆∗ext

(
r, r′

)
χ
(
r, r′

)
+ c.c.

which defines the universal functional F
[
ρ, χ, Γ

]
. This functional is called universal because,

not depending on the external potentials, it is system independent and uniquely fixed by the
choice of the Hamiltonian and the chosen set of densities. Still, one retains an explicit depen-
dence on the external potentials, because this coupling is necessary to bind the minimization to
a specific physical problem.

2.3 The Kohn-Sham system

As for conventional DFT, in order to move from an exact one-to-one mapping derived in the
previous section to a useful computational framework one needs to introduce the Kohn-Sham
system [2], a non-interacting system with external potentials such that it is minimized by the
same densities as the physical (interacting) one.
The thermodynamic potential of this support system is defined as

Ωs
[
ρ, χ, Γ

]
=Ts,e

[
ρ, χ, Γ

]
+ Ts,n

[
ρ, χ, Γ

]
−

1
β

S
[
ρ, χ, Γ

]
+

∫
dr vs (r) ρ (r) (18)

+

∫
Γ ({Ri}) Ws ({Ri})

∏
j

dR j +

∫
drdr′ ∆∗s

(
r, r′

)
χ
(
r, r′

)
+ c.c.

where T are kinetic energy functionals and S is the entropy functional; the Kohn-Sham “exter-
nal” potentials must be chosen as

vs (r) = vext (r) + vH (r) + vxc (r) (19)

∆s
(
r, r′

)
= ∆ext

(
r, r′

)
+ ∆xc

(
r, r′

)
Ws ({Ri}) = Wext ({Ri}) + WH ({Ri}) + Wxc ({Ri})

where the subscript H stands for Hartree terms3 and xc are the exchange-correlation potentials
defined as

vxc
[
ρ, χ, Γ

]
=
δFxc

[
ρ, χ, Γ

]
δρ

(20)

∆xc
[
ρ, χ, Γ

]
=
δFxc

[
ρ, χ, Γ

]
δχ

Wxc
[
ρ, χ, Γ

]
=
δFxc

[
ρ, χ, Γ

]
δΓ

3An Hartree contribution to ∆s is not included because such a term does not exist in perturbation theory [15,19].
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where
Fxc

[
ρ, χ, Γ

]
= F

[
ρ, χ, Γ

]
− Ts,n

[
ρ, χ, Γ

]
− Ts,n

[
ρ, χ, Γ

]
+

1
β

S
[
ρ, χ, Γ

]
. (21)

With these definitions, it is easy to see by functional differentiation of Eq. (18) and (17) that
they are minimized by the same densities.
Having defined the Kohn-Sham potentials one can now write the Kohn-Sham equations for
SCDFT. The ionic equation has the familiar form∑

j

∇2
j

2M j
+ Ws ({Ri})

Φn ({Ri}) = EnΦn ({Ri}) , (22)

where M j is the mass of the atom with label j, En the eigenvalues and Φn the ionic eigenstates.
The electronic equations are obtained from the electronic Hamiltonian

Hs =
∑
σ

∫
dr ψ†σ (r)

[
−∇2

2
+ vs (r) − µ

]
ψσ (r) +

∫
drdr′

[
∆∗s

(
r, r′

)
ψ↑ (r)ψ↓

(
r′

)
+ h.c.

]
.

(23)
This Hamiltonian is non diagonal in the field operators because of the coupling induced by the
anomalous potential ∆∗s. It is diagonalized by a Bogoliubov-Valatin transformation [9]

ψσ (r) =
∑

i

[
ui (r) γiσ − sgn (σ) vi (r) γ†iσ

]
(24)

leading to the diagonalization conditions[
−
∇2

2
+ vs (r) − µ

]
ui (r) +

∫
∆s

(
r, r′

)
vi

(
r′

)
dr′ =Eiui (r) (25)

−

[
−
∇2

2
+ vs (r) − µ

]
vi (r) +

∫
∆∗s

(
r, r′

)
ui

(
r′

)
dr′ =Eivi (r) (26)

that are the electronic Kohn-Sham equation for SCDFT. Their mathematical form is well known
in superconductivity literature as the Bogoliubov-deGennes (BdG) equations [9] mostly used,
within the BCS model, to describe superconducting structures in real space. In SCDFT these
equations become exact for the calculation of the total energy and the densities

ρ (r) = 2
∑

i

[
|ui (r)|2 f (Ei) + |vi (r)|2 f (−Ei)

]
(27)

χ
(
r, r′

)
=

∑
i

ui (r) v∗i
(
r′

)
f (−Ei) − v∗i (r) ui

(
r′

)
f (Ei) . (28)

In absence of superconductivity both χ and ∆ are zero and Eq. (25) becomes the conventional
Kohn-Sham equation of DFT4[

−
∇2

2
+ vs (r) − µ

]
ϕnk (r) = ξnkϕnk (r) , (29)

In the same limit Eq. (26) would be a DFT Kohn-Sham like equation with inverted eigenvalues,
that can be seen as an equation for holes instead of electrons. The non-particle-conserving type
of superconducting coupling, as a matter of fact, connects these two equations.

4Actually slightly more general because it would still include the full effect of temperature and ionic motion
since it is still coupled with Eq. (22) via the potentials in (19) and (20).
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2.3.1 Transformation to momentum space

Eq. (29) can be solved in the superconducting state (i.e., keeping the non-zero χ in the functional
vs[ρ, χ, Γ]), introducing the corresponding eigenfunctions ϕnk (r). These would be different
from the conventional KS orbitals, but can be used as a basis set to express the BdG equations
in k space. Introducing the expansion

ui (r) =
∑
nk

ui,nk ϕnk (r) (30)

vi (r) =
∑
nk

vi,nk ϕnk (r) (31)

∆s
(
r, r′

)
=

∑
nn′kk′

∆s,nn′kk′ ϕnk (r)ϕn′k′
(
r′

)
(32)

inserting into Eqs. (25), (26) and using the orthogonality of the basis set gives

ξnk ui,nk +
∑
n′k′

∆s,nn′kk′ vi,n′k′ = Ei ui,nk (33)

−ξnk vi,nk +
∑
n′k′

∆∗s,nn′kk′ ui,n′k′ = Ei vi,nk

a form of the BdG equations particularly useful for introducing approximations.

2.4 Decoupling approximations

The SCDFT formalism developed so far is exact but useless unless one is able to derive a
valid approximation for the exchange correlation functional Fxc entering Eq. (20). However
the problem introduced in Sec. 2.1 is a very complicated one and cannot be tackled without
introducing key approximations to strip it to the bone. The goal of an ab-initio approach is
to introduce controlled (or at least controllable) approximations. Luckily in the problem of
interacting electrons and nuclei there is a lot of experience and many established approximations
that can be introduced give results of broad validity.
The most important approximations, that will be discussed in this section, are meant to decouple
as much as possible the many degrees of freedom (and densities) of the problem

1. Decouple electrons from ions separating the static and dynamic parts of the interaction,
including the latter in a perturbative fashion.

2. Decouple the high energy chemical scale (responsible for bonding) from low energy pair-
ing interactions (responsible for superconductivity).

2.4.1 Phonons and electron-phonon interaction

The formalism so far describes a set of interacting electrons and ions. This correlated electron-
nuclear dynamics is enormously complex and far from being satisfactorily solved. However,
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if one considers only systems close to their equilibrium it is reasonable to assume that atoms
are locked to a lattice position and only small oscillations can occur. The assumption allows to
treat ionic oscillations as a perturbation on a static field, greatly simplifying the problem. There
is some excellent literature (like [23–25]) discussing these issue in great detail. Here the focus
will be on the main approximations that are presently used in implementations of SCDFT.
A key approximation is to ignore the effect of superconductivity on the lattice dynamics and
on the electron-phonon interaction. This, as the superconducting transition is usually of second
order, is exact close to the critical temperature, where the superconducting density becomes
infinitesimally small. This allows to study the lattice dynamics in the normal state.
To compute phonons and the electron-phonon interaction one usually relies on conventional
Kohn-Sham density functional theory and the electron-phonon scattering matrix elements are
defined as

gνmk+q,nk =

√
~

2ωqν

〈
ϕmk+q

∣∣∣∣∆Vqν
sc f

∣∣∣∣ϕnk

〉
(34)

where k and q are the electron and phonon momenta, m and n Kohn-Sham band indices, ϕnk the
Kohn-Sham states, ν is the phonon branch, ωqν the phonon frequency and ∆Vqν

sc f the variation
in the Kohn-Sham potential due to the ionic displacement corresponding to the phonon mode.
By means of density functional perturbation theory [25] these matrix elements can be computed
accurately and at a reasonable computational cost for any bulk superconductor. The electron-
phonon interaction of the Kohn-Sham system reads

H̃e−ph =
∑
mnσ

∑
νkq

gνmk+q,nk

∑
σ

ψ†
σmk+q

ψσnkbνq =
∑
νq

√
~

2ωqν

∫
dr ∆Vqν

sc f (r)ψ†σ (r)ψσ (r) bνq ,

(35)
where ψ†

σnk and ψσnk are creation and destruction operators for Kohn-Sham states and bνq is a
phonon operator.
The step of approximating the dynamic part of Hen with H̃en can certainly be justified empir-
ically by its success in applications [26, 25] but is theoretically not very rigorous. The main
supporting argument is essentially that if the Kohn-Sham band structure is close to the inter-
acting one so will likely be their response to a lattice motion. Clearly if Kohn-Sham bands are
far off from the interacting ones (like in strongly correlated systems) the Kohn-Sham electron-
phonon coupling is also expected to be a poor approximation to the real one.

2.4.2 Band decoupling approximation

The electronic BdG Kohn-Sham equations (33) can be enormously simplified by assuming that
the superconducting condensation will be a small perturbation to the non-superconducting sys-
tem. As already pointed out in the previous section, since the superconducting transition is
usually of second order the assumption becomes exact close to TC so that it will not affect the
estimation of TC itself.
This assumption, first of all, implies that the superconducting transition will not induce a struc-
tural one, therefore ∆s (r, r) should maintain the original lattice periodicity and the k quantum
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number in Eq. (29) must be conserved [16, 17]. In other words the summations in equation
Eqs. (30) and (31) should only run over the band index n and not over k.

The summation over n means that the superconducting transition can still induce an hybridiza-
tion between different bands corresponding to the same k-point. However, unless bands are
degenerate (or close to degeneracy with respect to the energy scale set by ∆s that is of the order
10 meV) this hybridization must be extremely small. Therefore, apart for anomalous cases, one
can introduce a second and stronger approximation by ignoring this superconductivity induced
band hybridization effect. Then Eqs. (30) and (31) reduce to

ui (r) ≡ unk (r) = unkϕnk (r) (36)

ui (r) ≡ vnk (r) = vnkϕnk (r) ,

which implies ∆s,nn′kk′ → δnk,n′k′∆s,nk.

Inserting Eq. (36) into (33) one can formally solve these equations obtaining

unk =
1
√

2
sgn (Enk) eφnk

√
1 +

ξnk

|Enk|
(37)

vnk =
1
√

2

√
1 −

ξnk

|Enk|
(38)

with eφnk = ∆s (nk) / |∆s (nk)| and Enk = ±

√
ξ2

nk + |∆s (nk)|2. While the densities in Eq. (27)
and (28) take on the simple form

ρ (r) =
∑
nk

[
1 −

ξ2
nk

|Enk|
tanh

(
β |Enk|

2

)]
|ϕnk (r)|2 (39)

χ
(
r, r′

)
=

1
2

∑
nk

∆s (nk)
|Enk|

tanh
(
β |Enk|

2

)
ϕnk (r)ϕ∗nk

(
r′

)
. (40)

The whole superconducting problem is now reduced to the construction of the matrix elements
of the Kohn-Sham potential ∆s (nk) that are defined by the solution of Eq. (20). The explicit
dependence on χ in that equation can be substituted with a dependence on ∆s (using Eq. (40))

∆xc =
δFxc

[
ρ, χ

[
∆s, ρ, Γ

]
, Γ

]
δχ

(41)

The above equation is a closed (self-consistent) equation for the Kohn-Sham potential and is
usually called the SCDFT gap equation.

At this stage one needs some approximation for the Fxc
[
ρ, χ, Γ

]
functional. A simple functional

will be derived in the following sections by first creating a link between SCDFT and many body
perturbation theory.
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3 Connection between SCDFT and Eliashberg theory

A DFT exchange-correlation functional contains information on the interacting behavior of the
many body system. This type of information can be extracted from different approaches like
models, solvable exact limits of the theory, empirical data, perturbative methods and more. Per-
turbation methods have the advantage of allowing for a systematic improvement, it is formally
possible to reach arbitrary high accuracy, although in reality one is usually strongly limited by
computational costs and convergence issues.
Nevertheless it is nice to construct an exchange correlation functional starting from many body
perturbation theory and to keep exact control on what type of physics the functional will de-
scribe and what would be its limits.
It will be shown in Sec. 3.2 how to set up a link between many body perturbation theory and
SCDFT. The focus will be on a specific many body approximation for superconductivity that
goes under the name of Eliashberg theory and will be briefly reviewed in Sec. 3.1. Eventually,
in Sec. 3.3, the exact link will be studied for a model superconductor.

3.1 A survey on Eliashberg theory of superconductivity

This section gives a formal introduction to Eliashberg theory of superconductivity that is the
most popular theory used for superconductivity predictions, especially in the simplified form of
the McMillan equation [27].
One can start from the Hamiltonian, Eq. (1). After decoupling the lattice dynamics as discussed
in Sec. 2.4.1 only the electronic part and the electron-phonon interaction part H̃en introduced in
Sec. 2.4.1 are retained

H → He + Hee + H̃en + Hext (42)

where now Hext contains the anomalous coupling in Eq. (5) as well as the static electron-ion
coupling (as in normal DFT).5

H is then split in a zero-approximation H0 plus an interaction part HI . A convenient choice for
the zero approximation is Hext plus the Kohn-Sham Hamiltonian entering in Eq. (29)

Hs =
∑
σ

∫
dr ψ†σ (r)

[
−
∇2

2
+ vs (r) − µ

]
ψσ (r) , (43)

while everything else goes into HI . So

H0 = Hs + Hext (44)

HI = Hee + H̃en − HDC (45)

where the last term removes extra xc effects already included in Hs, therefore avoiding any
double counting

HDC =
∑
σ

∫
dr ψ†σ (r) vs (r)ψσ (r) . (46)

5Often in the literature on Eliashberg theory the external potential ∆ext (r, r′) is taken to be local (∆ext (r)) here
is introduced as non-local to be consistent with the SCDFT formalism.
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The reference Kohn-Sham system to which we refer here is that of normal DFT and not of
SCDFT (alternatively one could consider vs as the SCDFT limit for χ = 0, i.e., formally retain-
ing the effects of the multi-component formalism and its dependence on Γ).
Unfortunately conventional many body perturbation theory [14] can not be directly applied to
H0 + HI because the particle source in Eq. (5) introduces new processes forbidden in a particle
conserving theory.
There is a trick that allows to transform H back into a standard form: the Nambu-Gor’kov
formalism. One defines two new electronic field operators

ψ̄ (r) =

 ψ↑ (r)
ψ†
↓

(r)

 (47)

ψ̄† (r) =
(
ψ†
↑

(r) ψ↓ (r)
)
. (48)

that still obey Fermionic commutation rules. With these two-component fields ψ̄ one can rewrite
H0 and HI as

H0 =

∫
dr ψ̄† (r) H̄0

(
r, r′

)
ψ̄

(
r′

)
(49)

HI =

∫
dr ψ̄† (r)

∑
νq

√
~

2ωqν

∫
dr∆Vqν

sc f (r) σ̄3bνq − vs (r)

 ψ̄ (r)

+
1
2

∫
drdr′

[
ψ̄† (r) σ̄3ψ̄ (r)

] 1
|r − r′|

[
ψ̄†

(
r′

)
σ̄3ψ̄

(
r′

)]
. (50)

where σ̄3 is the Pauli matrix
 1 0

0 −1

 and H̄0 is defined as

H̄0
(
r, r′

)
=


[
−∇

2

2 + vs (r) − µ
]
δ (r − r′) ∆ext (r, r′)

∆∗ext (r, r′) −
[
−∇

2

2 + vs (r) − µ
]
δ (r − r′)

 . (51)

The Hamiltonian in this new form does not feature anymore source terms for the new field ψ̄,
therefore the perturbative expansion for HI will have exactly the same contributions (diagrams)
as in conventional perturbation theory. The difference is that Green functions and self energy
will have a 2× 2 matrix structure and vertices will carry the extra σ̄3 terms. The Green function
is defined as

Ḡ
(
τr, τ′r′

)
:= −


〈
TψH,↑ (τr)ψ†H,↑ (τ′r′)

〉 〈
Tψ†H,↑ (τr)ψH,↓ (τ′r′)

〉〈
Tψ†H,↓ (τr)ψ†H,↑ (τ′r′)

〉 〈
Tψ†H,↓ (τr)ψH,↓ (τ′r′)

〉 , (52)

where the H subscript refers to the Heisenberg picture, T is the time ordering operator for the
imaginary time coordinate τ and the 〈...〉 is used as short notation for the thermodynamic average
as in Eq. (8). Comparing with Eq. (8) one can show that normal and anomalous densities can
be easily extracted from Ḡ

ρ (r) = lim
τ′→τ+

lim
r′→r

Ḡ(11) (τr, τ′r′) = lim
r′→r

1
β

∑
i

Ḡ(11) (r, τ′r′, ωi
)

(53)

χ
(
r, r′

)
= lim

τ′→τ+
Ḡ(12) (τr, τ′r′) =

1
β

∑
i

Ḡ(12) (r, τ′r′, ωi
)

(54)
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where the (i j) superscript indicates the matrix component of Ḡ, and the second equality comes
from the transform from imaginary time to Matsubara frequencies (ωi) according to the standard
relation6 Ḡ (r, r′, ωi) =

∫
dτ eiωnτḠ (0, r, τr′).

Ḡ is obtained by solving the Dyson equation

Ḡ
(
r, r′, ωi

)
= Ḡ0

(
r, r′, ωi

)
+ Ḡ0

(
r, r′, ωi

)
Σ̄

(
r, r′, ωi

)
Ḡ

(
r, r′, ωi

)
, (55)

where Ḡ0 (r, r′, ωi) is the Green function corresponding to the non interacting Hamiltonian H0.
What is now left is to introduce an approximation for the self energy Σ̄. Leaving aside (for the
moment) contributions stemming from the double counting term HDC, the first order contribu-
tion is

Σ̄(1) = , (56)

where wavy lines are phonon propagators, dashed lines the (bare) Coulomb interaction and
arrowed lines are the Green functions. The first term is an Hartree-like phonon driven electron-
electron interaction. A careful analysis of this diagram shows that its contribution is rather
small, essentially introducing a shift (of the order of the phononic energy scale) on the eigen-
values of H0. Conventionally this contribution is not included in Eliashberg theory because it is
irrelevant in comparison to the intrinsic error one commits computing the eigenvalues of H0.7

The second term is the conventional Hartree diagram. It is exactly cancelled by a corresponding
term in vs since one assumes that the Kohn-Sham Hamiltonian leads to the same density of the
interacting system.
The third and forth terms are exchange-like diagrams that contain those electron-electron scat-
tering processes that are essential to superconductivity.
Quite clearly the first order set of diagrams in Σ̄(1) would not be sufficient to obtain any rea-
sonable result. Consider that electrons are now interacting only with the bare Coulomb inter-
action while in real materials (especially in metals) the electronic interaction is very effectively
screened. Like in GW theory [28, 29] it is possible to boost the order of the approximation
by dressing propagators and Green functions (the phonon propagator is already dressed as it is
computed externally). Therefore defining the following approximation

Σ̄ = ︸                                          ︷︷                                          ︸
Σ̄xc

− Σ̄DC (57)

where Σ̄DC is simply τ̄3vxc.
6To keep the formalism as simple as possible convergence factors eiωiη will be omitted [14].
7In the multi-component formalism discussed in Sec. 2.3 this term would be already included in vs (since in

Eq. (20) there is a functional dependence on the ionic density). However, Eliashberg theory usually starts from the
conventional Kohn-Sham Hamiltonian where vs is only a functional of the electronic density and ions only appear
as a static external potential.
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The computational cost to apply the approximation above would still be too expensive. Just
looking at the Coulomb diagram essentially corresponds to a self consistent GW approach in
the 2×2 Nambu-Gor’kov space! One should instead rely on the same approximations discussed
in Sec. 2.4.2, assuming that the electronic states are already well described by the Kohn-Sham
Hamiltonian and neglect inter-band hybridization. Essentially the self energy still is that of
Eq. (57) but the diagonal part of the second diagram is removed together with Σ̄DC (that was
inserted in the first place to avoid the double counting of xc terms).
In the basis of Kohn-Sham states this self energy then takes the form

Σ̄ (nk, ωi) = −
1
β

∑
j

∑
mq′

σ̄3Ḡ (nk, ωi) σ̄3

∑
ν

gνmk+q,nkDν

(
q, ωi − ω j

)
+ σ̄1W (nk,mk + q)

 ,
(58)

where ωi are the Matsubara frequencies, σ̄1 is the Pauli matrix
 0 1

1 0

, Dν

(
q, ωi − ω j

)
=

−2ωνq/
[(
ωi − ω j

)2
+ ω2

νq

]
is the phonon propagator and W the screened Coulomb interaction.

Ḡ (nk, ωi) is the Nambu-Gor’kov Green function that in momentum space is

Ḡ (nk, ωi) =

∫ β

0
dτ e−iωi(τ−τ′)

∫
drr′ ϕ∗nk (r) Ḡ

(
τr, τ′r′

)
ϕnk

(
r′

)
(59)

and is the solution of the Dyson equation

Ḡ (nk, ωi) = Ḡ0 (nk, ωi) + Ḡ0 (nk, ωi) Σ̄ (nk, ωi) Ḡ (nk, ωi) , (60)

where Ḡ (nk, ωi) is the Green function corresponding to the non interacting Hamiltonian H0.
The above equation is Eliashberg theory of superconductivity. Its solution is usually achieved
by first expanding this matrix equation into Pauli matrices and separating it into components.
The decomposition has the advantage to lead to a more explicit form of Ḡ and help the physical
interpretation. Ḡ is expressed as

Ḡ (nk, ωi) =

 iωiZ (nk, ωi) +
[
ξnk + χχ (nk, ωi)

]
φ (nk, ωi)

φ (nk, ωi) iωiZ (nk, ωi) −
[
ξnk + χχ (nk, ωi)

] 
[iωiZ (nk, ωi)]2

−
[
ξnk + χχ (nk, ωi)

]2
− φ2 (nk, ωi)

, (61)

where χχ (not to be confused with the superconducting order parameter) shifts the non interacting
energies, Z behaves as a mass term, and φ/Z is the function giving the superconducting gap (this
interpretation is evident by analytically continuing Ḡ to the real frequency axis iωi → ω). These
are now scalar functions and here they are assumed to be real valued.8

The interested reader can refer to more specialized literature with extra focus on application and
numerical implementation, like the classic Review of Carbotte [31] or the excellent review of
Ummarino in this same lecture series [32].

8One can show that for the Hamiltonian (1) the φ, Z and χχ functions satisfy a set of equations with real co-
efficients. In spite of this the solution could still be non trivially complex, as in the famous three crystal experi-
ment [30], but this unusual situation will be neglected.
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3.2 The Sham Schlüter connection

In Sec. 2 the SCDFT framework was derived and a set of quite general approximations was
introduced in order to decouple the superconducting and the normal state problem. In the pre-
vious section the Eliashberg theory of superconductivity was reviewed and derived in the same
approximations assumed for SCDFT.
Following the work of Marques [18], this section is devoted to set up a formal connection
between the two theories, by extending the Sham Schlüter connection to SCDFT.
The connection is based on a Dyson equation similar to Eq. (60), however instead of using the
normal state Kohn-Sham Hamiltonian H0 (Eq. (49)) as reference Hamiltonian for the perturba-
tion expansion, one should use the SCDFT Kohn-Sham system

H̄s
(
r, r′

)
=


[
−∇

2

2 + vs (r) − µ
]
δ (r − r′) ∆s (r, r′)

∆∗s (r, r′) −
[
−∇

2

2 + vs (r) − µ
]
δ (r − r′)

 (62)

leading to the following form of the Dyson equation

Ḡ (nk, ωi) = Ḡs (nk, ωi) + Ḡs (nk, ωi) Σ̄s (nk, ωi) Ḡ (nk, ωi) , (63)

that differs from Eq. (60) as Ḡs is the Green function of the SCDFT Kohn-Sham system and
Σ̄s (nk, ωi) is the self energy in which the double counting correction refers to SCDFT (not to
DFT as in Eq. (57))

Σ̄s = Σ̄xc − Σ̄
S C
DC , (64)

where Σ̄S C
DC reads

Σ̄S C
DC (nk) =

 vxc (nk) ∆xc (nk)
∆∗xc (nk) −vxc (nk)

 . (65)

Then one uses the fact that both Ḡ and Ḡs when inserted into Eq. (53) provide the exact density
of the system. It is easy to see that in the Kohn-Sham basis this implies∑

i

∑
nk

Ḡ(11) (nk, ωi) =
∑

i

∑
nk

Ḡ(11)
s (nk, ωi) ≡

∑
i

∑
nk

− (iωi + ξnk)
ω2

i + ξ2
nk + ∆2

s (nk)
(66)

∑
i

Ḡ(12) (nk, ωi) =
∑

i

Ḡ(12)
s (nk, ωi) ≡

∑
i

−∆s (nk)
ω2

i + ξ2
nk + ∆2

s (nk)
, (67)

where the second equality uses the explicit form of Gs that, belonging to a non interacting
system, is simply 1

iωi Ī−H̄s
, with Ī being the 2x2 identity matrix. These constraints used in Eq. (63)

lead obviously to a set of conditions for vxc and ∆xc.
However, if Σxc is assumed in the Eliashberg approximation, the diagonal part of Eq. (65) should
be dropped, as discussed in Sec. 3.1, and one single scalar condition is sufficient (all other matrix
components would be redundant)∑

i

[
Σ̄(11)

xc (nk, ωi) Ḡ(11)
s (nk, ωi) Ḡ(12) (nk, ωi) + Σ̄(11)

xc (nk, ωi) Ḡ(12)
s (nk,−ωi) Ḡ(11) (nk, ωi)

−Σ̄(21)
xc (nk, ωi) Ḡ(12)

s (nk, ωi) Ḡ(12) (nk, ωi) + Σ(12)
xc (nk, ωi) Ḡ(11)

s (nk,−ωi) Ḡ(11) (nk, ωi)
]

=
∑

i

[
∆xc (nk) Ḡ(11)

s (nk, ωi) Ḡ(11) (nk, ωi) − ∆∗xc (nk) Ḡ(12)
s (nk,−ωi) Ḡ(12) (nk, ωi)

]
. (68)



16.16 Antonio Sanna

This can be further simplified by the assumption that the order parameter and the gap functions
are real, which is usually the case even for unconventional superconductors, leading to the
following form of the connection

∆∗xc (nk) = 1
Ξ(nk)

1
β

[ ∑
i

Σ̄(11)
xc (nk, ωi) Ḡ(11)

s (nk,+ωi) Ḡ(12) (nk, ωi)

+
∑

i

Σ̄(11)
xc (nk, ωi) Ḡ(12)

s (nk,−ωi) Ḡ(11) (nk, ωi)

−
∑

i

Σ̄(21)
xc (nk, ωi) Ḡ(12)

s (nk,+ωi) Ḡ(12) (nk, ωi)

+
∑

i

Σ̄(12)
xc (nk, ωi) Ḡ(11)

s (nk,−ωi) Ḡ(11) (nk, ωi)
]
, (69)

where

Ξ (nk) =
1
β

∑
i

[
Ḡ(11)

s (nk, ωi) Ḡ(11) (nk, ωi) − Ḡ(12)
s (nk,−ωi) Ḡ(12) (nk, ωi)

]
. (70)

Equation (69) above is the Sham-Schlüter connection for SCDFT as derived by Marques [18].
For any given many body self energy it returns the anomalous Kohn-Sham potential of SCDFT
(∆xc) that, by construction, leads to the same anomalous density of the interacting system de-
scribed by that self energy (in this work always assumed in the Eliashberg approximation).
Note that the equation has to be seen as a self-consistent equation for ∆xc because it also enters
the right hand side in the definition of Ḡs (see Eq. (66)–(67)), this equation is equivalent to
Eq. (41), the gap equation of SCDFT, and its right hand side is therefore the functional deriva-
tive of Fxc with respect to the anomalous density. At the present stage it is not, however, an
explicit function but expressed numerically in terms of Matsubara frequencies as it depends on
Σ̄ and is not useful for material studies. On the other hand it is a perfect tool to get more insights
on the properties of the SCDFT Kohn-Sham system. This will be the topic of the next section
where the Sham-Schlüter connection will be analyzed numerically for a model system.

3.3 Analysis of a model

In this section Eliashberg equations and Sham-Schlüter connection will be solved numerically
for a simple system of electrons interacting only via an isotropic (momentum independent)
electron-phonon coupling provided by a single Einstein phonon mode.

gνmk+q,nk =

√
λωph

NF
, (71)

where NF is the density of states at the Fermi level, ωph is the energy of the Einstein mode and
λ is the BCS-like electron-phonon coupling. For this example it will be assumed that λ = 1 and
ωph = 60 meV . It is also assumed that the density of non-interacting states is constant

N (ξ) =
∑
n,k

δ (ξ − ξnk) = NF . (72)
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Fig. 2: Exact anomalous potential ∆ (ξ) corresponding to the Eliashberg approximation to
the self energy computed for a model pairing interaction. Colors encode the temperature as
indicated in the right-most panel.

Fig. 3: Exact Kohn-Sham anomalous potential ∆xc (ξ) corresponding to the Eliashberg approx-
imation to the self energy computed for a model pairing interaction.

This model is completely isotropic meaning that Green functions and potentials will loose their
dependence on nk and will only depend on ξnk the non interacting Kohn-Sham eigenenergy.
Via Eq. (58) the coupling defined above enters the Sham-Schlüter connection (69) that can be
solved numerically.9

The critical temperature TC of the model is 80 K. The interacting Green function (see Eq. (61)
is uniquely defined by the two functions ∆ (nk, ωi) and Z (nk, ωi), while in this particle hole
symmetric model χχ is zero. Furthermore, since the pairing in Eq. (71) is just a constant, Z and
∆ do not depend on ξnk either but only on ωi.
The superconducting gap ∆ (nk, ωi) is plotted in Fig. 2 as a function of the Matsubara frequency
ωi and temperature. This function decreases monotonically with |ωi| a fact that is directly linked
with the experimental evidence that the superconducting gap has its maximum close to the
Fermi level. Together with TC the gap at the Fermi level (∆ (ξ = 0, ω = 0)) is the most impor-
tant property of a superconductor because it is connected with the superconductor excitation
spectrum and therefore with its unique response properties. The temperature dependence of ∆
is show in the right panel of Fig. 2 and has a standard BCS-like behavior.
In conventional DFT we are used to assume that the single particle spectrum of the Kohn-Sham
system is quite similar to the interacting one and only in some pathological cases, like strongly
correlated materials, the differences are really large. However, in SCDFT the properties of ∆xc

9One can either proceed in two steps solving first the Dyson-Eliashberg equation (60) and then insert the
resulting components of Σ̄ and Ḡ into Eq. (69) that is eventually solved for ∆xc. Alternatively, one can also directly
solve Eq. (69) self consistently until convergence is achieved both for Σ̄, Ḡ, and Ḡs.
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are quite different from those of ∆ although formally ∆xc also plays the role of a superconducting
gap for the SCDFT Kohn-Sham system. Like ∆, ∆xc shows a sharp feature at low energy. The
width of this peak is broader but one should consider that the energy width on the imaginary
axis is not quite the same as on the physical axis. Moreover, and this is the most important
aspect, the Kohn-Sham gap has a dip close to the Fermi energy, showing a non-monotonic
behavior in energy. The dip is lower at low temperature so that in the zero temperature limit the
superconducting gap at the Fermi level is actually zero. A completely unphysical property.
Not a conceptual problem as such, but just a reminder of the limitations of the Kohn-Sham
system: the excitation spectrum of the superconducting Kohn-Sham system is not like that of
the real interacting superconductor. The correct way to obtain the superconducting gap (or any
other observable apart from density and total energy) in SCDFT is by constructing the functional
of the densities for that observable. In this case the gap functional ∆

[
ρ, χ, Γ

]
. This was done for

SCDFT [33, 34] but its construction would go beyond the goals of this lecture.

3.4 A simple SCDFT functional

As proved by Marques [18], the Sham-Schlüter connection can be used to derive a valid SCDFT
functional (LM2005 [11, 12]). The main conceptual step is that G and Gs, while in general
quite different, are connected by the sum rules (66) and (67) and it is likely not completely
inaccurate to perform the substitution G → Gs into the Sham-Schlüter connection, both on
explicit occurrences and on those coming from the G dependence of the self energy Σ̄xc in
Eq. (57). In this way the Sham-Schlüter connection becomes a closed equation in ∆xc, i.e., an
approximation for the SCDFT gap equation (41). In other word the substitution leads directly
to an explicit expression for Fxc (or rather its functional derivative ∆xc). The predictive power
of such a simple functional was then improved by a set of procedures the details of which
can be found in the original works [11, 12]. From a perturbative point of view this procedure
is equivalent to choosing a many body self energy in first order (like in Eq. (56)) not in the
non-interacting Green function Ḡ0 but in the SCDFT Kohn-Sham ones Ḡs.
It is extremely important to observe that upon this transformation of Eq. (69) all the Matsubara
summations can be carried out analytically. From this comes one of the main computational
advantages of the SCDFT scheme: it does not involve numerical Matsubara integrations. The
explicit form of ∆xc reads

∆xc (nk) = Z (nk)∆xc (nk) +
1
2

∑
n′k′
K

(
nk, n′k′

) tanh
(
β

2 En′k′
)

En′k′
∆xc

(
n′k′

)
, (73)

where the two kernels K andZ are

Z (nk) =
∑
n′k′

∑
ν

∣∣∣gνmk+q,nk

∣∣∣2 [
I′

(
ξnk, ξn′k′ , ωqν

)
+ I′

(
ξnk,−ξn′k′ , ωqν

)]
(74)

K
(
nk, n′k′

)
= W

(
nk, n′k′

)
−

∑
ν

∣∣∣gνn′k+q,nk

∣∣∣2 [
I (ξnk, ξn′k′ , ω) − I (ξnk,−ξn′k′ , ω)

]
tanh

(
β

2ξnk

)
tanh

(
β

2ξn′k′
) , (75)
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with k′ ≡ k + q, and where

I′
(
ξ, ξ′, ω

)
=

d
dξ

I(
(
ξ, ξ′, ω

)
(76)

I
(
ξ, ξ′, ω

)
= J

(
ξ, ξ′, ω

)
− J

(
ξ, ξ′,−ω

)
J
(
ξ, ξ′, ω

)
=

[
fβ (ξ) + bβ (ω)

] fβ (ξ′) − fβ (ξ − ω)
ξ − ξ′ − ω

fβ and bβ being Fermi and Bose functions. In Eq. (75) the screened Coulomb interaction W is
assumed to be static. More recent extension to this functional have included dynamical effects
as well [35]. Also this LM2005 functional is not particularly accurate in describing the effect of
the electron-phonon coupling, overestimating it at strong coupling and underestimating it in the
weak coupling limit, presently more accurate functionals exist [33]. However this functional
has the advantage of providing a gap function that does not feature the dip at the Fermi level
discussed in the previous section; instead ∆xc at the Fermi level is by experience quite close to
the physical superconducting gap.

It should be noted that Eq. (73) has the form of a BCS gap equation, however unlike the BCS
equation that relies on a model, this equation is derived from first principles and the kernels
are not adjustable parameters but functionals of the densities. This functional dependence is
implicit via a dependence on the Kohn-Sham orbitals and their matrix elements.

4 Example:
Superconductivity of a doped carbon-hydrogen nanotube

There is a relatively large literature presenting applications of SCDFT using different approxi-
mations and functionals. Ranging from the study of classic superconductors [12, 36], strongly
anisotropic systems [37–40], at high pressure [41, 34, 42], or investigations of different pairing
mechanisms [43, 44, 35, 45], to cite only a few.

As discussed in the first part of this lecture, an SCDFT investigation starts from the characteri-
zation of the normal state. The normal state information is then used to construct the exchange
correlation potential, or rather the kernels of the SCDFT gap equations (73). From the solution
of the gap equation it is then possible to extract a broad variety of observables and properties of
the superconductor.

To briefly exemplify this procedure it will be applied here to a realistic system, a crystal of hole
doped, hydrogenated, carbon nanotubes. The structure is shown in the center of Fig. 4. Similar
to graphane [46], it will be shown that this system also has a strong electron-phonon coupling
and that it features nicely inhomogeneous superconducting properties. The possibility of its
experimental synthesis however are not discussed here as neither the thermodynamic stability
nor the effect of zero point motion nor the physical doping mechanism will be addressed.
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Fig. 4: Left: Electronic bands (a) and density states (DOS - b) of an hydrogenated carbon nan-
otube. The colorscale in the band plot gives the atomic projection of the Kohn-Sham states on
atomic orbitals, from red (100% C) to green (65% H). The Fermi level of the undoped crystal
is at zero. A dashed line shows the position of the Fermi level used for the simulation, corre-
sponding to hole doping. Center (c): views of the nanotube structure, the dashed line indicates
the periodic unit cell of the crystal). Right: phonon density of states (d - also decomposed in H
and C components) and α2F (ω) function (e). The latter is an average of the electron-phonon
matrix elements (34) on the Fermi surface of the system (Eq. (77)).

4.1 Normal state properties

The first step to apply SCDFT is to compute the normal state properties of the system: its Kohn-
Sham eigenvalues and eigenstates, phonons, electron-phonon, and electron-electron coupling.
From the band structure plot in Fig. 4 one can see that the undoped system is an insulator. A
metallic state, a necessary precondition to superconductivity, could be realized, for example,
by introducing boron substitutional impurities at the carbon sites, however here the doping will
be simply induced by a rigid shift of the Fermi level (see Fig. 4a). While this over-simplified
approach will neglect important effects as Kohn anomalies [47], it is still expected to provide a
reasonable estimate of the superconducting coupling [46].
The phononic density of states is characterized by an high energy peak (350 meV) due to C-H
bond stretching modes, a mid-energy region of hydrogen rocking modes, and a low energy part
(below 150 meV) of C modes. The high-end of these carbon modes (C-C bond stretching) is
the most relevant for the electron-phonon coupling, as shown by the α2F(ω) function

α2F (ω) =
1

NF

∑
nkn′k′

∑
ν

∣∣∣gνnk,n′k′ ∣∣∣2 δ (ξnk) δ (ξn′k′) δ
(
ω − ωqν

)
(77)

with k′ ≡ k + q.
Electronic states and phonon matrix elements are computed on a regular grid in momentum
space, the size of which is set by convergence criteria and limited by the computational cost.
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Fig. 5: Left a): Temperature dependence of the average Kohn-Sham superconducting gap
(green line) and its distribution function P (∆) (red - arbitrary vertical scale). b) Density of
states (black), tunneling current (red - shifted upward, arbitrary units) and differential con-
ductance (green) as computed from Eq. (79). c) Difference of specific heat in the normal and
superconducting state as a function of temperature in isotropic and anisotropic approximation.
Center: real space anomalous potential ∆ (R, s) and order parameter χ (R, s) as a function of
the Cooper pair center of mass R. Top: xy cut of the tube, bottom: vertical cut of the tube.
Right f): the order parameter as a function of the electronic distance across the tube surface
(on the C layer). sz refers to the vertical distance on the tube and θ gives the position of the two
electrons on the xy plane as shown by the cartoon above the plot. The curve at the left of this
plot is the (R = 0, sz) cut highlighting the oscillatory behavior and its envelope function.

However Eq. (73) requires a very accurate sampling especially of the states close to the Fermi
level, because the kernels (74) are sharply peaked around ξ = 0. Therefore, an accurate inter-
polation scheme is necessary. As described in Ref [12] a convenient approach is to use a large
set of random k-points accumulated around the Fermi level and appropriately weighted. The
properties of the corresponding states are then obtained by interpolation from calculations on
regular grids: here a 10 × 10 × 20 grid is used for the electronic states, a 2 × 2 × 10 for the
convergence of the potential- and k-grids and a 1× 1× 2 for the q grid. Calculations were done
within the norm-conserving pseudopotential approximation [48,25]. Coulomb matrix elements
were computed with the Sham-Kohn approach [49], as described in Ref. [12].

4.2 Solution of the gap equation and superconducting properties

Solving the SCDFT gap equation (73) using the LM2005 functional gives a critical temperature
of 86 K. Fig. 5a) gives the temperature dependence of the average gap on the Fermi surface
(average of ∆xc (ξ = 0)) as well as its distribution function

P (∆) =
1

NF

∑
nk

δ (∆ − ∆xc (nk)) δ (ξnk) (78)
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showing that the Kohn-Sham gap is distributed on two peaks that at T = 0 are centered at about
12.8 and 18.5 meV. The larger gap corresponding to one band with higher C projection (easily
recognizable in Fig. 4) as a consequence of the fact that C modes have a stronger coupling than
H modes. This predicted multigap behavior is usually observable experimentally in different
ways [39, 50]. Tunneling spectroscopy, for example, probes rather directly the excitation spec-
trum: a tunneling current can be modeled as the convolution of the DOS of the superconductor
with that of the tip. In the simplest approximation [51]

I (V) ∼
∑
nk

[
fβ (ξnk) − fβ (ξnk + V)

]
Ns (ξnk + V) (79)

where Ns is the DOS in the superconducting state. It shown in Fig. 5b), where the current is
computed for T=10 K.
Although indirectly, thermodynamic measurements also give information about the gap distri-
bution function. This can be observed in the temperature dependence of the entropy or, more
conveniently, of the difference in specific heat

∆C = C −CN =
1
T

d
dT

(S − S N) , (80)

where the electronic entropy is

S = −2kB

∑
nk

{[
1 − fβ (Enk)

]
ln

(
1 − fβ (Enk)

)
+ fβ (Enk) ln

(
fβ (Enk)

)}
(81)

kB being the Boltzmann constant. S N is the corresponding quantity for the normal state (∆xc = 0).
∆C is shown in Fig. 5c), both for a completely anisotropic calculation and for an isotropic one.
In the anisotropic case ∆C tends to saturate towards TC.
A more fundamental property that can be extracted from the solution of Eq. (73) is the Kohn-
Sham potential ∆xc and especially χ, the superconducting order parameter (40), that is the central
object of theoretical superconductivity. These functions are discussed extensively in Ref. [38]
and are the most rigorous representation of the concept of a Cooper pair. Instead of the (r, r′)
dependence they are best plotted as a function of R = r+r′

2 and relative distance s = r − r′ as
these can be interpreted as center of mass coordinate and electron-electron distance of the pair.
The behavior of these functions is shown in the right side of Fig. 5. As discussed in Ref. [38] the
R dependence of ∆xc tends to highlight those regions in space most involved in the Coulomb
renormalization, in this case clearly the C–H bonding region. On the other hand χ is larger
where the phonon coupling is stronger, in the present case mainly involving the covalent C–C
bond of the tube surface.
As a function of s these function show a typical oscillatory behavior. The envelope of the
function has a maximum at s = 0 and slowly decreases on the scale of the superconductor’s
coherence length. Fig. 5f) shows χ for two electrons located on the surface of the carbon tube,
the oscillatory behavior is clearly visible as a function of sz, for vertical separation between the
two electrons.
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5 Summary and conclusion

SuperConducting Density Functional Theory was reviewed to focus on its relation to conven-
tional Eliashberg many body theory. Starting from the formal construction of the two theoretical
frameworks, a connection was set-up using the Sham-Schlüter method. This connection is used
to extract information on exact features of the Kohn-Sham system that reproduces the supercon-
ducting density in the Eliashberg approximation and to develop a simple functional for SCDFT.
The methodology was then applied to the study of a realistic system: a hole doped hydrogenated
carbon nanotube, that proves to be a strong superconductor with a critical temperature above
80 K. While this is the single most important number that characterizes the superconductivity,
there are many other properties that can be extracted from SCDFT at an affordable computa-
tional cost. In fact the theory gives access to a rich variety of observables as momentum and
position dependent properties like the gap distribution function or the local order parameter.
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