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Topological Hall signatures of magnetic hopfions
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Magnetic hopfions are topologically protected three-dimensional solitons that are constituted by a tube which
exhibits a topologically nontrivial spin texture in the cross-section profile and is closed to a torus. Here we
show that the hopfion’s locally uncompensated emergent field leads to a topological Hall signature, although the
topological Hall effect vanishes on the global level. The topological Hall signature is switchable by magnetic
fields or electric currents and occurs independently of the anomalous and conventional Hall effects. It can
therefore be exploited to electrically detect hopfions in experiments and even to distinguish them from other
textures like skyrmion tubes. Furthermore, it can potentially be utilized in spintronic devices. Exemplarily, we
propose a hopfion-based racetrack data storage device and simulate the electrical detection of the hopfions as
carriers of information.
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I. INTRODUCTION

In recent years, noncollinear spin textures have attracted
an enormous amount of research interest. In particular, the
small whirls called magnetic skyrmions [1,2] have outstand-
ing properties which arise from their integer topological
charge [3]

Nsk = 1

4π

∫
m(r) ·

(
∂m(r)
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∂y

)
d2r (1)

[m(r) is the normalized magnetization density]. In nature,
the quasi-two-dimensional skyrmions elongate as strings or
tubes along the magnetic field direction. For these textures,
the occurrence of an additional contribution to the Hall effect
of electrons [4,5] has been observed. Due to the accumulation
of a Berry phase upon reorientation of their spin with respect
to the locally varying texture, the electrons behave as if they
would interact with an emergent magnetic field [3,6]

Bem,α = 1

2
εαβγ m(r) ·
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)
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This effective field can be gigantic compared to experimen-
tally realizable magnetic fields and it points always along the
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string direction. The topological Hall effect can in principle
be used to electrically detect individual magnetic skyrmions
that move in between two leads [7,8].

A related object is the magnetic hopfion [9–14]. It can
be understood as a skyrmion tube that is closed to a torus
[Fig. 1(a)]; this brings about another layer of topological
protection, since a torus cannot be transformed to a string con-
tinuously. Recently, magnetic hopfions have been stabilized in
micromagnetic simulations [11–13]. While considering cross-
section textures with higher topological charges or strings
that are twisted before forming the closed torus can lead to
increased Hopf numbers [15,16]

NH = − 1

(4π )2

∫
Bem(r) · A(r)d3r, (3)

here we consider the fundamental hopfions (cf. Fig. 1) charac-
terized by a Hopf number of 1, as stabilized in Refs. [11–13].
The Hopf number is calculated from the texture’s emergent
field Bem and its corresponding vector potential,1 fulfilling
∇ × A = Bem.

To be precise, in order to be geometrically compatible
with the magnetic surrounding, the cross-section profile of
the torus is not a conventional skyrmion but an in-plane
skyrmion [cf. Figs. 1(b) and 1(c)], also called a bimeron
[17,18]. The texture along every cut that includes the z axis
resembles the same two bimerons, but due to the deformation
of the string upon forming the torus, the magnetization points
along different directions [different colors in the two cuts

1The vector potential can be constructed directly from the emergent
field in terms of elementary integrals, as shown in Ref. [14].
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FIG. 1. Magnetic hopfion. (a) Isosurface mz = −0.2 and selected magnetic moments. Cuts of the texture are shown at (b) x = 0, (c)
y = 0, and (d) z = 0. The color represents the in-plane spin orientation. White and black represent +z and −z orientations, respectively. The
topological charges of the magnetic objects in these two-dimensional cuts are indicated. These quantities can be related to the emergent field
perpendicular to the respective cut (cf. Fig. 3).

in Figs. 1(b) and 1(c)]. This is also visible in the z = 0
cross-section profile in Fig. 1(d) that resembles a Bloch-type
skyrmionium, a skyrmion that is positioned in the center of a
second skyrmion with mutually reversed spins [19,20].

In the following, we calculate the topological contribution
to the Hall effect of electrons in different measurement setups
by means of Landauer-Büttiker simulations. We find that hop-
fions exhibit a local topological Hall signature due to a locally
uncompensated emergent field, which cancels only on a global
level. Based on these findings, we discuss consequences for
the electrical detection and for the spintronic applicability of
magnetic hopfions.

II. MODEL AND METHODS

We consider a cuboid-shaped region of a cubic lattice,
in which the hopfion is located, and add semi-infinite leads
attached to the surfaces of the cuboid, in order to simu-
late currents and charge accumulations. Depending on the
measurement geometry, the six leads either cover the whole
cuboid or border only parts of it [cf. blue and red detecting
leads in Figs. 2(a) and 2(c)] to locally probe the topological
Hall signature.

For simplicity, we consider a single orbital tight-binding
model with a hopping term and a Hund’s coupling term
[6,21,22]

H = t
∑
〈i, j〉

c†
i c j + m

∑
i

mi · (c†
i σci ). (4)

Here c†
i and ci are the spin-dependent creation and annihila-

tion operators of an electron at lattice site i. The parameter
t = 1 eV quantifies the nearest-neighbor hopping and m the
coupling of electron spins (σ vector of Pauli matrices) and the
magnetic texture {mi}. If not stated otherwise, we consider
the case close to the adiabatic limit, m = 10t , where spin
parallel and antiparallel states are separated in energy. The
texture for an NH = 1 hopfion is taken from Ref. [10]. For
a cylindrical region with radius and height L (cylindrical

coordinates ρ =
√

x2 + y2, polar angle φ, and height z), the
hopfion is described by [10]

m(r) =

⎛
⎜⎜⎝

4
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⎞
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with

� = tan(πz/L),


 = [1 + (2z/L)2] sec(πρ/2L)/L,

� = 
2ρ2 + �2/4. (6)

Outside this specified region, the magnetization is assumed to
point along z.

In a periodic sample, the band structure of such a single-
orbital model without considering a texture gives a spin
degenerate band that ranges from −6t to +6t in energy.
Accordingly, in our system, when the coupling to the texture is
considered, the density of states is finite for energies between
−m − 6t and +m + 6t . For m = 10t , the relevant energy
range is from −16 to 16 eV, with a gap between −4 and 4 eV
due to the considered strong-coupling limit.

To calculate the Hall resistivity, we use a Landauer-
Büttiker method, as presented in Refs. [8,23] for skyrmions.
The six leads i are characterized by currents Ii and voltages Ui

that are related by the transmission matrix T ,

Ii = e2

h

∑
j

Ti jUj . (7)

For the numerical calculation we use the program package
KWANT [24]. The Hall resistance Ri j and the Hall angle θi j

are given by

Ri j = �Uj

Ii
, θi j = �Uj

�Ui
, (8)

respectively, with i, j = x, y, z and i �= j.
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FIG. 2. Topological Hall signal using asymmetric leads. (a) The hopfion is positioned such that the asymmetrically placed detecting leads
(red and blue) enclose one vertically cut half of the hopfion so that the average emergent field is pointing along −y (cf. arrows in Fig. 3). The
evoked deflection of the current electrons (gray) is indicated by the red arrows. The resulting Hall voltage is detected by the red and blue leads;
it gives rise to the corresponding resistance tensor elements shown in (b). The brighter curves show the signal for symmetric leads that cover
the whole cube for comparison. (c) and (d) The hopfion is reoriented, as indicated.

In general, each Hall resistance tensor element Ri j is deter-
mined by several contributions. For skyrmionic textures, one
typically considers the conventional Hall effect, the anoma-
lous Hall effect, and the topological Hall effect [4,5] of
electrons. The conventional Hall effect is proportional to an
externally applied magnetic field [25] along the perpendicular
direction and the anomalous Hall effect [26] arises due to
spin-orbit coupling (SOC) and (typically)2 due to a net mag-
netization [30]. The topological Hall resistance is proportional
to the average emergent field 〈Bem〉 along the perpendicular
direction. This effect arises purely due to the existence of a
topologically nontrivial spin texture [31], even in the absence
of SOC. In order to isolate this fundamental contribution, we
do not consider SOC or an external magnetic field.

III. RESULTS AND DISCUSSION

A. Vanishing topological Hall effect on a global level

First, we consider a cube of size (2L + 1) × (2L + 1) ×
(2L + 1) sites with a hopfion in its center (here modeled
by L = 10). Six leads border the whole cube to simulate a

2There are recent reports that also coplanar textures without a net
magnetization can exhibit an anomalous Hall effect [27–29].

symmetric measurement. We model an applied current along
the x direction by adding a small bias voltage V−x = −V+x =
1 mV and are interested in the charge accumulation at the
other terminals. Therefore, the currents are set to zero I−y =
I+y = I−z = I+z = 0. Solving Eq. (7) gives Rxz = 0 for this
geometry3 [cf. the light red curve in Fig. 2(b)].

This observation can be understood by considering the
emergent field of a hopfion (Fig. 3). For the cuts at x = 0
and y = 0, the spin texture resembles two in-plane skyrmions
[Figs. 1(b) and 1(c)]. Consequently, the emergent field points
along the perpendicular direction, i.e., along the torus. For
the cut at z = 0 [Fig. 1(d)], the profile is a skyrmionium
with a positive out-of-plane emergent field in the center and
a negative field for the outer ring. Consequently, the emergent
field forms a whirl-like vector field with +z components in the
center and opposite orientations near the hopfion’s edge [see
Fig. 3(b) for better visibility]. The emergent field is charac-
terized by a finite toroidal moment t ∝ ∫

r × Bem(r)d3r. The
field vanishes on average, and even on a discrete lattice its
average in-plane component vanishes perfectly by symmetry,
explaining Rxz = 0.

3The calculated values are within the order of magnitude of the
numerical precision.
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(a) (b)
z = 0

Bem Bem

FIG. 3. Emergent field. (a) The arrows visualize the emergent
field of a hopfion, where the gray level represents the magnitude.
The colored shell shows a part of the isosurface for mz = 0.75 for
the purpose of better visibility. (b) A cut at z = 0.

The other resistance tensor element Rxy is negligible for
most energies as well [light blue curve in Fig. 2(b)]. However,
finite values occur close to the band edge which originate from
the discrete lattice and the small hopfion size.4 All in all, a
hopfion does not exhibit a considerable Hall response in a
global measurement.

B. Local topological Hall signature

Even though a globally vanishing emergent field leads to a
compensated signal for symmetrically placed leads, the emer-
gent field does not vanish locally. For this reason, in a second
simulation, we apply asymmetric leads with respect to the
hopfions’s center. As shown in Figs. 2(a) and 2(c), the leads
parallel to the xy and xz planes are only L sites wide and cover
only one half of the cube. Consequently, the emergent field in
the volume between those leads predominantly determines the
magnitude of the topological Hall resistance. Here the field
points along −y on average.

This time, a pronounced Rxz signature is observed [red
curve in Fig. 2(b)], in agreement with the phenomenological
Lorentz-force argument: The force points along −z for an
average emergent field along −y and a current along x. Conse-
quently, the applied current (gray) is deflected along −z (red
arrow). The hopfion exhibits a considerable local topological
Hall effect, with Hall angles of up to 6% (shown in Fig. S1
in the Supplemental Material [32]). Likewise, if the contacts
are attached at the other half of the cube, the sign of Rxz is
reversed: Both contributions cancel in a global measurement.

The sign of the Rxz signal is energy dependent and deter-
mined by the carrier character and the local spin alignment
with respect to the texture. Therefore, it changes comparing
the positive- and negative-energy states (parallel vs antipar-
allel spin alignment) and at the energies ±m = ±10 eV,
where the predominant carrier concentrations changes from
electronic to holelike, similar to Ref. [21].

4A large angle between two neighboring magnetic moments effec-
tively leads to a decrease of the hopping amplitude. Consequently, for
energies near the band edge, the electrons are located predominantly
in areas with smaller angles between neighboring spins [8]. The
electrons effectively experience a small emergent field which is
oriented out of the hopfion plane and causes a finite Rxy signal.

In another simulation, we rotated the hopfion as shown in
Fig. 2(c). In this configuration, the relevant emergent field
vanishes on average, which is why the numerical simulations
return vanishing Hall coefficients [Fig. 2(d)].

Following from our results, hopfions can even be distin-
guished from skyrmion strings in a sample which is magne-
tized along z: For skyrmions, the Hall response is limited to
the xy resistance tensor element. The xz element is zero since
the emergent field of a skyrmion string points always along
z. Another noteworthy property that can be concluded from
these results is that for a hopfion the predominant topological
Hall voltage arises parallel to the net magnetization and the
stabilizing magnetic field; the Rxz tensor element is nonzero.
Therefore, if a current is applied within the hopfion plane,
as in Fig. 2(a), this particular locally detected topological
Hall signal is not superimposed by the anomalous Hall effect
and the conventional Hall effect that both have only finite xy
elements. This makes hopfions unique and allows for a pure
detection of the topological Hall effect.

The above findings are not restricted to the adiabatic limit.
A local topological Hall signature arises even for a weak
coupling of electron spins and the magnetic texture (m = 2t/3
in Fig. S2 in the Supplemental Material [32]), even though the
validity of the emergent field interpretation is limited in that
case.

C. Hopfion-based racetrack storage device

A potential spintronic device that can exploit the locally
occurring topological Hall effect is a hopfion-based racetrack
data storage device. Similar to the initially proposed race-
tracks based on domain walls [33–35] or the later proposed
racetracks based on skyrmions [36], a hopfion-based racetrack
is a nanostripe, where the bits of information are encoded
by the presence or absence of hopfions at specific positions.
Therefore, the hopfions need to be written, deleted, moved,
and read. Recently, the current-driven motion of hopfions by
spin-transfer and spin-orbit torques has been simulated [13].
The hopfions, which are oriented in the xy plane, move along
the track, without any transverse deflection, like in Fig. 4(a).
This is highly desirable for a racetrack storage device and
can be considered a great advantage for the applicability
of hopfions compared to skyrmions. Our finding provides
a method to detect the bits in such a geometry by adding
detecting leads, similar to the case of skyrmions presented
in Refs. [7,8] [cf. Fig. 4(a)]; however, here the leads are
positioned perpendicular to z (red).

As expected from our prior findings, the calculated signal
Rxz [Fig. 4(b)] is antisymmetric with respect to the hopfion
displacement �x = 0 and exhibits two significant peaks when
the hopfion is displaced by approximately �x = ±0.4L. In
these cases, the space-dependent emergent field between the
leads

〈Bem〉 =
∫ L/4

x=−L/4

∫ L

y=−L

∫ L/2

z=−L/2
Bem(r − �r)d3r

(blue dashed curve) has its extremum as well. The rel-
evant emergent field points along ±y, respectively. The
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FIG. 4. Local detection of hopfions in a nanostripe. (a) The
considered geometry with the displacement �x of the hopfion with
respect to the detecting leads, as indicated. A current, flowing be-
tween the gray contacts (along x), leads to a Hall voltage between the
two red contacts (along ± z). (b) Calculated Hall resistance signal
(red). For the orange curve, disorder has been taken into account
(see the text). The average emergent field between the two red
leads is shown as a blue dashed curve. The simulated racetrack has
the dimension of (6L + 1) × (2L + 1) × (L + 1) sites (here L = 16
sites), which allows us to simulate displacements between −2L and
+2L. The red leads have a width of 9 sites and the Fermi energy is
EF = −14.0 eV.

good agreement of both curves implies that the Hall resis-
tance is proportional to the relevant emergent field, like in
Ref. [37].

For a more realistic simulation, we considered also dis-
order by adding site-dependent random on-site energies that
range between −t/2 and +t/2 [38], which corresponds to a
mean free path of 128 lattice constants. An average over 600
impurity configurations has been taken. The calculated signal
still features two antisymmetric peaks, even though disorder
decreases their magnitudes [cf. orange curve in Fig. 4(b)]. The
Rxz signal is robust compared to the finite-size mediated Rxy

that decreases by more than 60% when disorder is taken into
account (cf. Fig. S3 in the Supplemental Material [32]).

IV. CONCLUSION

In summary, we have shown that magnetic hopfions exhibit
a local topological Hall signature which is compensated on

a global level. As long as the applied current is not perpen-
dicular to the hopfion plane, the toroidal emergent field of
the hopfion leads to a local deflection of electrons along the
out-of-plane direction. This direction coincides with the net
magnetization of a hopfion host and the stabilizing magnetic
field. Consequently, this topological Hall signature is expected
to be detectable in a pure manner, i.e., without anomalous or
conventional Hall effects. It allows one to detect hopfions in
experiments and to distinguish them from skyrmion strings.

This fundamental finding can be utilized in spintronic
devices. Exemplarily, we have discussed a racetrack storage
device. Here the hopfion is a highly promising carrier of
information, since its globally compensated emergent field
leads to the absence of a skyrmion Hall effect. Therefore, our
work not only contributes to the fundamental understanding of
three-dimensional magnetic solitons but also opens avenues
towards the realization of innately three-dimensional spin-
tronic applications.

Furthermore, we have shown that the local topological
Hall signature depends on the hopfion’s orientation, which
in micromagnetic simulations is controlled by the stabilizing
magnetic field. For this reason, electrical currents can be
controlled by tilting an external field. Conversely, if hopfions
were found to be stable without magnetic fields in different
samples, our results imply that the application of an electrical
current would lead to a reorientation of the hopfion: By
analogy with skyrmionic systems, a topological Hall effect is
accompanied by a torque that manipulates the texture itself.
Without a stabilizing field, the application of a current in the
setup of Fig. 2(a) would rotate the hopfion to the state in
Fig. 2(c), since the torque would have opposite signs for the
two sides of the hopfion.5 As long as a considerable stabilizing
field is present, however, this effect is suppressed.6
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5By analogy with the local topological Hall effect of electrons, the
two sides of the hopfion would move oppositely to the red arrows in
Fig. 2(a).

6For example, in the simulations of Ref. [13] the effect was not ob-
served. Furthermore, even for very small stabilizing fields for which
the competition of forces could lead to an intermediate orientation
of the hopfion between Figs. 2(a) and 2(c), the hopfion would rotate
back to the initial configuration once the current is tuned off again.
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