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We extend the two leading methods for the ab initio computational description of phonon-mediated super-
conductors, namely Eliashberg theory and density-functional theory for superconductors (SCDFT), to include
plasmonic effects. Furthermore, we introduce a hybrid formalism in which the Eliashberg approximation for
the electron-phonon coupling is combined with the SCDFT treatment of the dynamically screened Coulomb
interaction. The methods have been tested on a set of well-known conventional superconductors by studying how
the plasmon contribution affects the phononic mechanism in determining the critical temperature (TC). Our sim-
ulations show that plasmonic SCDFT leads to a good agreement between predicted and measured TC’s, whereas
Eliashberg theory considerably overestimates the plasmon-mediated pairing and, therefore, TC . The hybrid
approach, on the other hand, gives results close to SCDFT and overall in excellent agreement with experiments.
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I. INTRODUCTION

Superconductors that do not fit into the standard BCS
class, have opened interesting routes for alternative pairing
mechanisms, whose applicability is still under debate [1–3].
Developing a first-principles method for the accurate calcula-
tion of the critical temperature (TC) would not only clarify the
microscopic mechanisms of superconductivity but also con-
tribute to the search for higher-temperature superconductors.
It has long been suggested that the key to high-temperature su-
perconductivity might be a purely electronic mechanism, that
directly exploits the Coulomb repulsion between the electrons
to provide their pairing. Many investigations have addressed
the role of paramagnetic spin fluctuations in iron-based [4–6]
and copper-oxide high-temperature superconductors [2,7].
Other proposals, instead, have focused on the effective at-
traction [8] appearing in the dynamically screened Coulomb
interaction due to the exchange of excitons [9–12] or plas-
mons [13–15]. In particular, the plasmon mechanism has been
extensively investigated arguing that it could induce or signif-
icantly enhance superconductivity in many and very different
classes of systems. These include perovskitic oxides [16–18],
metalchloronitrides [19,20], organic superconductors [21,22],
and light-element systems such as lithium metal and high-
pressure hydride superconductors [23–26].

For conventional superconductors, calculations of TC are
commonly based on Eliashberg theory [27–30]. This is, in
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principle, a comprehensive theory of the superconducting
state, including both electron-phonon and Coulomb effects.
The usual application of Eliashberg theory to realistic sys-
tems is, however, oversimplified [31] in that the Coulomb
interaction is assumed not to favor Cooper-pair formation and
is reduced to a single parameter μ∗ [30–32]. The standard
Eliashberg framework, thus, is not suitable for a quantita-
tive description of superconductivity supported by electronic
mechanisms. Unlike this approach, the extension of density-
functional theory to superconductors (SCDFT) [33] does not
involve any semiempirical approximation for the Coulomb
interaction and enables calculations of TC entirely from first
principles. Nevertheless, SCDFT was formulated to address
conventional superconductivity [34,35], so that it employs a
static screening of the Coulomb repulsion [36]. Recently, a
generalization of SCDFT for applications to plasmonic su-
perconductivity has been proposed [23,37]. However, in this
theory plasmonic effects are included in the superconducting
state but neglected in the normal state.

In this work we extend Eliashberg theory (Sec. II) and
SCDFT (Sec. III) to provide ab initio calculations of plas-
monic effects on the superconducting properties of real
materials. In both frameworks retardation effects in the
phonon-mediated and screened Coulomb interactions are
treated on the same footing by keeping their characteristic fre-
quency dependence. By applying these methods in Sec. V, we
study how the plasmon contribution affects phonon-induced
superconductivity for a set of materials representing the main
families of conventional superconductors.

II. ELIASHBERG THEORY

Eliashberg theory is a many-body perturbative approach
for the description of conventional superconductors, where
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the pairing is driven by a phonon-induced attraction
[29,30,38,39]. The method employs the Nambu-Gor’kov’s
formalism, i.e., the diagrammatic expansion is formulated
in terms of an extended, 2 × 2, electron Green’s function
Ḡ with normal (diagonal, G) and anomalous (off-diagonal,
F ) components describing, respectively, single-particle elec-
tronic excitations and Cooper pairs. The matrix Green’s
function is determined via the Dyson’s equation:

Ḡ−1(k, iωn) = Ḡ−1
0 (k, iωn) − �̄(k, iωn), (1)

where Ḡ0 is the normal-state Green’s function of the non-
interacting electron system and �̄(k, iωn) = �̄c(k, iωn) +
�̄ph(k, iωn) is the electron self-energy associated with the
screened Coulomb and phonon-mediated interactions. Ḡ0 can
be constructed from the Kohn-Sham (KS) states |k〉 ≡ |kl〉
and eigenvalues εk of density-functional theory (DFT) in the
usual form

Ḡ0(k, iωn) = [iωnτ0 − εkτ3]−1, (2)

where τ{0,...,3} are the Pauli matrices and the energy εk is
measured relative to the chemical potential.

The pairing mechanism is dominated by the phonon-
mediated interaction that, being retarded, overcomes the
(almost instantaneous) Coulomb repulsion between the elec-
trons. Since the phonon energy scale, set by the Debye
frequency ωD, is much smaller than the electronic Fermi en-
ergy EF , the method relies on Migdal’s theorem to treat the
electron-phonon interaction accurately to order ωD/EF . The
key approximation consists in retaining for �̄ph(k, iωn) only
the diagram for the phonon exchange by the self-consistently
dressed electron propagator (ḠW ). More explicitly, the fol-
lowing graphs are included:

+ + =+ ...

where wavy lines are dressed phonon propagators and straight
single (double) lines are bare (full) electron Green’s functions.
Due to the absence of an analogous theorem, the treatment of
the Coulomb interaction is much harder. On the other hand,
the possibility of a Coulomb enhancement of the TC is ne-
glected. Coulomb effects are largely accounted for by normal
state parameters, i.e., the electron and phonon quasiparti-
cle energies, εk and ωqν , and the screened electron-phonon
coupling gkk′ν . In addition, there remains a static screened
Coulomb repulsion W (k, k′), which counteracts superconduc-
tivity. Within the Eliashberg approximation, the phonon and
Coulomb contributions to the electron self-energy read, re-
spectively, as

�̄ph(k, iωn) = T

N (0)

∑
k′n′

τ3Ḡ(k′, iωn′ )τ3 λk,k′ (iωn − iωn′ )

(3)
and

�̄c(k, iωn) = −T
∑
k′n′

τ3Ḡ(k′, iωn′ )τ3W (k, k′) − vxc
k τ3. (4)

Following the standard practice [30], the anisotropic electron-
phonon coupling λk,k′ (iνn) in Eq. (3) is defined by the spectral

representation

λk,k′ (iνn) =
∫ ∞

0
dω α2Fk,k′ (ω)

2ω

ν2
n + ω2

, (5)

in terms of the Eliashberg function

α2Fk,k′ (ω) = N (0)
∑

ν

|gkk′ν |2δ(ω − ωqν ), (6)

where N (0) is the electronic density of states at the Fermi
level. Equation (4) includes the subtraction of the exchange-
correlation potential of KS-DFT, vxc. This prevents one from
double counting Coulomb effects in the normal state, which
are already included in the KS band structure εk entering Ḡ0.

The total self-energy is more conveniently rewritten in
terms of three scalar functions given by the coefficients of the
Pauli matrix representation for �̄:

�̄(k, iωn) = iωn[1 − Z (k, iωn)]τ0 + [
χ (k, iωn) − vxc

k

]
τ3

+ φ(k, iωn)τ1. (7)

These are the mass renormalization function Z (k, iωn), the
energy shift χ (k, iωn), and the order parameter φ(k, iωn).
Through the Dyson’s equation (1), the calculation of Ḡ is
reduced to solving three coupled equations for Z , χ and φ. In
particular, the function �(k, iωn) = φ(k, iωn)/Z (k, iωn) plays
the role of the superconducting energy gap, whereas χ (k, iωn)
corrects the normal-state Kohn-Sham eigenvalues. In conven-
tional metals, where DFT bands are typically accurate, the
correction χ (k, iωn) − vxc

k turns out to be small. By neglecting
it, the equations of interest for the τ0 and τ1 components of the
Eliashberg self-energy take the form

Z (k, iωn) = 1 + T
∑
k′,n′

λk,k′ (iωn − iωn′ )

N (0)

ωn′Z (k′, iωn′ )

ωn
(k′, iωn′ )
, (8)

φ(k, iωn) = φph(k, iωn) + φc(k)

= T
∑
k′,n′

[
λk,k′ (iωn − iωn′ )

N (0)
− W (k, k′)

]

× φ(k′, iωn′ )


(k′, iωn′ )
, (9)

where


(k, iωn) = [ωnZ (k, iωn)]2 + ε2
k + φ2(k, iωn). (10)

Note that, since retardation effects in the Coulomb repul-
sion are disregarded, Z (k, iωn) is entirely determined by the
phonon-mediated interaction [30], i.e., Z = Zph. Moreover
φc(k), the Coulomb contribution to φ(k, iωn), given by the
second term of Eq. (9), is frequency independent.

Several approximations are commonly employed in order
to reduce the workload involved in solving the Eliashberg
equations (8) and (9). Essentially, since the superconducting
pairing occurs mainly within an energy window ∼ωD around
the Fermi surface, the equations are simplified by averaging
over k and k′ in the electronic states on the Fermi surface as
follows:

f ≡ 〈〈 f (k, k′)〉〉FS = 1

N (0)2

∑
k,k′

f (k, k′)δ(εk )δ(εk′ ). (11)
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Although being quite accurate for phonons, this approxima-
tion is not justified for the Coulomb interaction, which may
remain large for energies up to EF . In practice, following the
arguments of Morel and Anderson [32], W (k, k′) in Eq. (9)
can be replaced by a strongly reduced pseudopotential μ∗,
with an energy cutoff ωc ∼ 10ωD, which effectively accounts
for the Coulomb scattering of electrons far from the Fermi
surface. The Morel-Anderson pseudopotential is defined by
the expression

μ∗ = μ

1 + μ log (EF /ωc)
, (12)

where μ ≡ N (0)〈〈W (k, k′)〉〉FS. In most applications, how-
ever, μ∗ is treated as a semiempirical parameter fitted as to
reproduce the experimental critical temperature. Within the
above-mentioned approximations, the conventional Eliash-
berg approach involves solving numerically the following
isotropic equations:

[1 − Zph(iωn)]iωn = − T

N (0)

∑
n′

λ(iωn − iωn′ )

×
∫

dεN (ε)
iωn′Z (ε, iωn′ )


(ε, iωn′ )
, (13)

φ(iωn) = φph(iωn) + φc

= T

N (0)

∑
n′

[λ(iωn − iωn′ ) − μ∗θ (ωc − |ωn′ |)]

×
∫

dεN (ε)
φ(ε, iωn′ )


(ε, iωn′ )
, (14)

with a purely phononic and energy independent mass renor-
malization function: Z (ε, iωn) = Zph(iωn).

Plasmonic extension of Eliashberg theory

We go beyond Eq. (4) for the Coulomb self-energy by
assuming the ḠW approximation, i.e., we still neglect ver-
tex corrections, but introduce the dynamical screening of the
Coulomb interaction through the frequency-dependent dielec-
tric function. Hence, we consider the self-energy expression

�c(k, iωn) = − T
∑
k′n′

τ3Ḡ(k′, iωn′ )τ3Wk,k′ (iωn − iωn′ )

− vxc
k τ3, (15)

where the Coulomb potential Wk,k′ (iνn) is obtained from the
symmetrized dielectric function εGG′ (q, iνn) as

Wk,k′ (iνn) = 4π

�

∑
GG′

ε−1
GG′ (q, iνn)ρk

k′ (G)ρk ∗
k′ (G′)

|q + G||q + G′| . (16)

Here � is the unit cell volume, G are reciprocal lattice
vectors and q is the difference k − k′ reduced to the first Bril-
louin zone. The symmetric form of the dielectric function is
defined by

ε−1
GG′ (q, iνn) = δGG′ +

√
4π

|q + G|χGG′ (q, iνn)

√
4π

|q + G′| , (17)

where χGG′ (q, iνn) is the reducible polarization. The pair den-
sity matrix elements read as ρk

k′ (G) ≡ 〈k′|e−i(q+G)·r|k〉.

For numerical convenience, we rewrite Wk,k′ (iνn) in the
form

Wk,k′ (iνn) = V (k, k′) +
∫ ∞

0
dω Sk,k′ (ω)

2ω

ω2 + ν2
n

, (18)

where V (k, k′) = 4π
�

∑
G

|〈k′|e−i(q+G)·r|k〉|2
|q+G|2 are the matrix ele-

ments of the bare Coulomb interaction and

Sk,k′ (ω) = 16π

�



∑
GG′

χGG′ (q, ω + iη)ρk
k′ (G)ρk ∗

k′ (G′)
|q + G|2|q + G′|2 (19)

is the spectral function of the electronic polarization. Note that
the second term on the right-hand side of Eq. (18) is formally
equivalent to the spectral representation of the anisotropic
electron-phonon coupling [Eq. (5)]. The screened Coulomb
potential in its spectral representation can be separated into a
static and a dynamical part,

Wk,k′ (iνn) = W (k, k′) + �Wk,k′ (iνn), (20)

where the latter, given by

�Wk,k′ (iνn) =
∫ ∞

0
dω Sk,k′ (ω)

[
2ω

ω2 + ν2
n

− 2

ω

]
, (21)

incorporates plasma oscillations. We approximate Eq. (20) by
its average taken over the corresponding surfaces of constant
energy, ε, in k space as

W (ε, ε′) = 1

N (ε)N (ε′)

∑
k,k′

W (k, k′)δ(εk − ε)δ(εk′ − ε′),

(22)

S (ε, ε′, ω) = 1

N (ε)N (ε′)

∑
k,k′

Sk,k′ (ω)δ(εk − ε)δ(εk′ − ε′).

(23)

It should be observed that Eq. (22) is a generalization
of Eq. (11) for the conventional isotropic Eliashberg theory.
By using Eqs. (22) and (23) for the Coulomb interaction in
the expression for the self-energy, we obtain the following
Coulomb contributions to the Eliashberg equations:

Zc(ε, iωn) = −T
∑

n′

∫
dε′N (ε′)

∫
dωS (ε, ε′, ω)

× 2ω

ω2 + (ωn − ωn′ )2

ωn′Z (ε′, iωn′ )

ωn
(ε′, iωn′ )
, (24)

φc(ε, iωn) = −T
∑

n′

∫
dε′N (ε′)

{
W (ε, ε′)

+
∫

dωS (ε, ε′, ω)

[
2ω

ω2 + (ωn − ωn′ )2
− 2

ω

]}

× φ(ε′, iωn′ )


(ε′, iωn′ )
. (25)

Here the functions Z and φ read as:

Z (ε, iωn) = Zph(iωn) + Zc(ε, iωn), (26)

φ(ε, iωn) = φph(iωn) + φc(ε, iωn), (27)

where Zph(iωn) is defined by Eq. (13) and φph(iωn) is given
by the first term of Eq. (14).
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FIG. 1. Left: Eliashberg superconducting gap function φ for bulk
Nb in the full dynamical (blue), weak-coupling dynamical (red), and
static (black) Coulomb approach. Orange ticks show the positions of
the Matsubara points at T = 2.8 K . Right (same color code): Eliash-
berg mass renormalization function Z and its decomposition, for the
dynamical case, into Coulomb Zc and phononic Zph components.

The influence of the plasmonic corrections on TC can be
easily seen by considering that in the simple BCS limit one
has TC ∝ ωD exp [−(1 + λ)/(λ − μ∗)], where 1 + λ comes
from the Zph term in the Eliashberg equations. Here the dy-
namical contribution to the anomalous kernel φc [given by
the second term of Eq. (25)] enhances the Coulomb repulsion
μ between the electrons in the energy scale of the plasmon
frequency ωpl. On the other hand, since ωD � ωpl, the effec-
tive Coulomb repulsion decreases from the original value μ∗,
favoring superconductivity (higher TC). This effect, however,
is counteracted by the Coulomb correction Zc to the effective
mass, which adds up to the phononic term (1 + λ), contribut-
ing to the reduction of TC .

In the discussion above we have implicitly assumed that
the plasmonic contribution to χ (k, iωn) is negligible, as is
the case for particle-hole symmetric systems. In general this
approximation may not be valid. One example is that of doped
insulators, where superconductivity takes place in proximity
of the band gap, whose DFT value is significantly improved
by GW corrections (including both Z and χ ). This drawback
of the theory requires further investigation and is left for future
research.

Figure 1 shows the Matsubara frequency dependence of
the mass renormalization Z and gap function φ for bulk Nb.
The inclusion of retardation effects in the Coulomb interaction
leads in φ to large negative tails at high energy. Since the
high-energy gap function is negative, the plasmonic coupling
serves as an effective attraction, which, according to Eq. (25),
increases the value of φ at the Fermi level. This effect is less
pronounced when Zc is included. The right panel of Fig. 1
shows the decomposition of Z into phononic and Coulomb
contributions. Zph has a peak at low frequency with energy
width of the order of the Debye energy and converges to
1 above ωD. Zc, which is nonzero only in the dynamical
approach, decays at the plasmonic energy scale.

As evident from Fig. 1, the main difficulty in solving
the Eliashberg Eqs. (24) and (25) is related to the fact that
the integration (both in ωn and ε) has to be performed on a
huge energy scale, and therefore cannot be tackled by brute-
force computation. Just to give an indication, at T = 2.8 K ,
the number of Matsubara points within the plotted energy
range is of the order of 70 thousand, and reaching a tight

convergence would require an even larger energy window
of several hundred eV. To overcome this slow convergence
problem in the numerical implementation of the equations,
we have adopted the following strategies: (i) We have used
a logarithmic ε integration mesh. This allows for a dense
discretization at low energy, where variations in the functions
have to be accounted for more accurately but extends up to
arbitrarily large energies with relatively few additional points.
(ii) Similarly, we have adopted a nonhomogeneous mesh of
Matsubara points. Since Matsubara frequencies are fixed by
the temperature, a nonlinear mesh can be obtained by pruning
points and redistributing their weight. The resulting Matsub-
ara mesh at 2.8 K is indicated by orange ticks in the left
panel of Fig. 1. (iii) The dynamical Coulomb interaction itself
depends on the (bosonic) Matsubara frequencies and on the
energy. When computing the interaction from first principles,
a huge computational cost is associated with the calculation
of the matrix elements of the dielectric function at high fre-
quency, with respect to the KS states at high energy. For this
reason, we have introduced high-energy cutoffs in ωn and ε

(typically of the order of 50–100 eV). Above this energy, the
dielectric function of the material is replaced with that of the
homogeneous electron gas in the plasmon-pole approxima-
tion. The parameters which enter the latter are fitted to the
explicitly computed values of S (ε, ε′, ω) at the cutoff, so to
ensure a good overall match to the actual interaction. This
approach not only reduces the numerical cost in computing
the interaction but also allows for the analytical integration of
the Matsubara frequencies from the cutoff energy to infinity.
We point out that these techniques do not introduce additional
errors in the method. However, they involve convergence pa-
rameters that have to be carefully chosen in order to achieve
the correct numerical result.

III. DENSITY-FUNCTIONAL THEORY FOR
SUPERCONDUCTORS

Density-functional theory for superconductors (SCDFT) is
an extension of conventional DFT for ab initio calculations
of material-specific properties in the superconducting state
[33]. The theory includes the superconducting order param-
eter χsc(r, r′) as an additional density. The corresponding
noninteracting KS system then reproduces, in principle ex-
actly, both the normal density and the superconducting order
parameter of the real system. In the so-called decoupling
approximation (on which Eliashberg theory is also based), the
KS system is fully determined by solving the BCS-like gap
equation

�s k = −Zk�s k − 1

2

∑
k′

Kk,k′
tanh

(
β

2 Ek′
)

Ek′
�s k′ , (28)

where Ek =
√
ε2

k + |�s k|2 are the KS excitation energies and
β is the inverse temperature. The kernel of the equation
consists of a diagonal part, Zk = Zph

k , and a nondiagonal
part, Kk,k′ . Zph

k plays the role of the renormalization function
in the Eliashberg equations, whereas Kk,k′ = Kc

k,k′ + Kph
k,k′ ,

which includes both Coulomb and phonon-mediated effects,
is responsible for the binding of the electrons in Cooper
pairs. Compared to the conventional Eliashberg approach,
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SCDFT features two major advantages: (i) the treatment of
the Coulomb repulsion does not resort on any empirical pa-
rameter μ∗ and (ii) all the Matsubara frequency summations
are evaluated analytically in the construction of the exchange-
correlation (xc) kernels. As in Eliashberg theory, phonon
dynamics is properly included, but at the same time the gap
equation retains the form of a static BCS equation. Hence,
Eq. (28) allows one to account for the full anisotropy of mate-
rials at a low computational cost. However, the accuracy of the
method is bound by the quality of the available functionals.

Making a connection to many-body perturbation theory,
approximate xc kernels have been derived from approxima-
tions for the xc self-energy operator, via the Sham-Schlüter
equation in Nambu space. The first SCDFT functional by
Lüders, Marques, and co-workers (LM) [34,35] employed
the ḠsW approximation for the self-energy in the statically
screened Coulomb repulsion and phonon-mediated interac-
tion. By construction, this functional neglected higher-order
processes included in Eliashberg theory by the self-consistent
dressing of the electron Green’s function in the ḠW self-
energy. The LM approximation, thus, was not validated by
Migdal’s theorem, which made it of questionable accuracy
for treating electron-phonon coupling effects. To solve this
issue, Sanna, Pellegrini, and Gross (SPG) [40] have re-
cently introduced a parametrization of the functional based
on the electron-phonon Eliashberg self-energy for a simpli-
fied (Einstein) phonon spectrum. The new SPG kernels give
superconducting transition temperatures and gaps in excellent
agreement with experiments [41–46], while still having a sim-
ple analytic form.

Further extensions and applications of the LM functional
have addressed the description of superconductivity in the
presence of magnetic fields [47,48] and in real space [49],
the inclusion of spin-fluctuations contributions to the pairing
[50,51], and the treatment of the dynamical screening of the
Coulomb interaction [20,22–24,37]. In a first attempt to intro-
duce plasmonic effects in SCDFT, Akashi and Arita [23,37]
have proposed a dynamical correction to the pairing kernel
Kc

k,k′ by retaining the frequency dependence of the Coulomb
interaction at the RPA level in the exchange anomalous self-
energy. The method, implemented in the multipole plasmon
approximation, has given a systematic increase of the TC by
10–20% in compressed sulfur hydrates H2S and H3S and by a
factor of 2 in Al and Li under pressure.

Plasmonic SCDFT with mass term

The results of plasmonic Eliashberg theory for Nb (Fig. 1)
suggest that the Zc term, stemming from the diagonal part
of the dynamical Coulomb self-energy, should play a major
role in determining TC . Zc can be viewed as the Coulomb
counterpart of the mass renormalization enhancement, 1 + λ,
that corrects the BCS predictions to their strong coupling
values in Eliashberg theory [30,52]. Accordingly, it is ex-
pected to be relevant for strong electron-plasmon interactions.
As discussed above, the recently developed SCDFT scheme
for plasmonic superconductivity neglects this contribution by
assuming a null diagonal kernel Zc and can, thus, be regarded
as a weak-coupling plasmonic theory. In this section we pro-

FIG. 2. Left: SCDFT gap function �s for bulk Nb in the dy-
namical (blue), weak-coupling dynamical (red), and static (black)
Coulomb approach. Right: SCDFT Z kernel and its decomposition
(for the dynamical case) into Coulomb Zc and phononic Zph com-
ponents. All the quantities are computed in the low-temperature limit
and using the SPG phononic functional.

pose a more general SCDFT approach, which also includes
plasmonic corrections to the mass enhancement.

By following a procedure analogous to that presented in
Ref. [53] for the treatment of the electron-phonon coupling,
we construct the SCDFT plasmonic kernels from the ḠsW
self-energy in the screened Coulomb potential. In the isotropic
approximation [Eqs. (22) and (23)], we obtain the following
expressions:

Zc(ε) = 1

tanh
(

β

2 ε
) ∫

dε′N (ε′)
∫

dωS (ε, ε′, ω)

× ∂

∂ε
[I (ε, ε′, ω) + I (ε,−ε′, ω)], (29)

Kc(ε, ε′) =W (ε, ε′) − 2
∫

dωS (ε, ε′, ω)

×
[

I (ε, ε′, ω) − I (ε,−ε′, ω)

tanh
(

β

2 ε
)

tanh
(

β

2 ε′) + 1

ω

]
, (30)

where the quantity I (ε, ε′, ω) is defined in terms of the Fermi
and Bose distribution functions f and b by

I (ε, ε′, ω) = J (ε, ε′, ω) − J (ε, ε′,−ω), (31)

J (ε, ε′, ω) = [ f (ε) + b(ω)]
f (ε′) + f (ε − ω)

ε − ε′ − ω
. (32)

In Fig. 2 we show the energy dependence of the calculated
KS gap function and kernel Z for bulk Nb. As in Eliash-
berg theory, plasmonic contributions enhance the high-energy
negative gap. The effect is much more pronounced for the
weak-coupling approach, within which the value of the KS
gap at the Fermi level almost doubles compared to the static
and full dynamical case. The kink, which can be observed
in the gap function in between 2 and 5 eV, is caused by
a d peak in the Nb density of states. As for other systems
with d electrons [36], this feature is induced by a strong
Coulomb repulsion of the localized electrons, that greatly
reduces the Cooper binding and, thus, the absolute value of
the gap. This effect is enhanced in dynamical simulations
since the screening is reduced compared to the static case.
The kernels Zc and Zph in the right panel of Fig. 2 have
the shape of two overimposed peaks. The sharper peak is
strongly temperature dependent and occurs very close to the

214508-5



A. DAVYDOV et al. PHYSICAL REVIEW B 102, 214508 (2020)

FIG. 3. Electron energy loss spectra in the low-q limit, showing
the position of the main plasmonic peaks for the chosen set of
materials.

Fermi level at |ε| < 10−4 eV. This energy scale is not directly
related to that of the couplings but arises from the constraint
that the KS system should reproduce the interacting normal
and anomalous densities [40]. On the other hand, the broader
peak decays on the energy scale of the interactions, i.e., at the
plasmon energy in Zc and at the Debye energy in Zph.

IV. HYBRID ELIASHBERG

By virtue of Migdal’s theorem [27,30], the FW approx-
imation for the anomalous self-energy in Eliashberg theory
describes the phonon-mediated pairing very accurately. On
the other hand, there is no a priori indication that the FW
scheme improves over FsW for the treatment of plasmonic
effects. Here we consider a hybrid Eliashberg-SCDFT theory
in which the Coulomb part of the pairing self-energy is in the
FsW form, where Fs is the KS Green’s function which repro-
duces the superconducting order parameter in the Eliashberg
approximation.

Since the KS system has the same anomalous density
of the fully interacting system, the following equality holds
[34,35,40]:

χsc(ε) = − 1

β

∑
n

F (ε, iωn) = − 1

β

∑
n

Fs(ε, iωn). (33)

Here Fs is defined in terms of the KS pairing potential
�s as Fs(ε, iωn) = �s (ε)

ω2
n+E2 , where E = √

ε2 + �2
s (ε). From

Eq. (33) we compute χsc by assuming that the interacting
Green’s function has the Eliashberg form, i.e., F (ε, iωn) =
φ(ε, iωn)/
(ε, iωn). A straightforward evaluation of the
Matsubara frequency summation on the right-hand side of
Eq. (33) yields:

χsc(ε) = − �s(ε)

2
√

ε2 + �2
s (ε)

tanh
β
√

ε2 + �2
s (ε)

2
, (34)

which relates the Eliashberg anomalous density to the KS
potential. Solving numerically Eq. (34) for �s allows one
to uniquely construct the corresponding Fs in the Eliashberg
approximation. This is then used as an input for the Eliash-
berg equation that determines the Coulomb gap function, i.e.,

TABLE I. Electron-phonon (λ) and electron-plasmon (Zc
0 ) cou-

pling strengths for the test set of materials with associated
experimental critical temperatures T exp

C .

Al Sn Ta Pb Nb ZrN TaC CaC6 V3Si

λ 0.36 1.02 0.80 1.32 1.33 0.74 0.65 0.77 1.43
Zc

0 0.31 0.28 0.33 0.29 0.33 0.31 0.26 0.35 0.38
T exp

C 1.18 3.8 4.5 7.2 9.2 8.1/

9.45
9.7/

10.2 11.5 17.0

Eq. (25) is replaced by

φc(ε, iωn) = −T
∑

n′

∫
dε′N (ε′)

{
W (ε, ε′)

+
∫

dωS (ε, ε′, ω)

[
2ω

ω2 + (ωn − ωn′ )2
− 2

ω

]}

× �s(ε′)
ω2

n′ + E ′2 . (35)

V. COMPUTATIONAL RESULTS

A. Material set

In order to assess the accuracy of the methods discussed
above, we have investigated the effect of the electron-plasmon
coupling on the transition temperatures of a set of con-
ventional superconductors. Our set includes experimentally
well-characterized systems chosen to cover a wide range of
properties, i.e., elemental (Al, Sn, Ta, Nb, and Pb) and bi-
nary phonon-mediated superconductors (TaC, ZrN, V3Si, and
CaC6), ranging from weak to strong coupling. To keep the
entire procedure ab initio, all the calculations have been per-
formed at the theoretical lattice parameters obtained by means
of the PBE functional [54]. The electron-phonon matrix ele-
ments have been obtained within linear response perturbation
theory as implemented in Quantum Espresso [55,56] and have
been integrated using a stochastic algorithm for improving
the Fermi surface sampling. Details on this numerical ap-
proach, including k and q sets, can be found in Ref. [40]
and references therein. The dielectric function entering the
dynamical Coulomb kernel has been calculated within the
random-phase approximation (RPA), using the full-potential
linearized augmented plane wave (LAPW) code Elk [57].
Figure 3 shows the electron energy loss spectra in the low-q
limit for the chosen set of materials. For both Al and Sn,
which are free-electron-like metals, one observes, similarly to
the homogeneous electron gas, a single pronounced plasmon
peak, centered respectively at 16 and 14 eV. All the other
systems show a more complex spectrum, varying from the
two-peak structure of V3Si to the broad distributed structures
of TaC. Apart from the low-energy plasmons of CaC6 and
ZrN, the main plasmonic structures are located at energies
above 10 eV.

The electron-phonon and electron-plasmon coupling
strengths for the chosen materials are summarized in Table I,
together with the experimental TC’s. The electron-phonon
coupling is expressed in terms of the BCS-like coupling con-
stant λ defined as the static limit of λ(iνn) in Sec. II. The
electron-plasmon coupling, being strongly energy dependent,
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FIG. 4. Bottom: Eliashberg critical temperatures computed
within the full dynamical (violet), weak-coupling dynamical (green),
and static (blue) approach for the screened Coulomb interaction.
Note the use of a logarithmic scale on the ordinate axis. Top: Per-
centage error (computed with respect to the experimental critical
temperature). Errors are highlighted by a color scale from green
(accurate) to yellow and red (large deviation).

cannot be reduced to a simple isotropic parameter and is thus
represented by the energy-integrated quantity Zc

0 , defined as
Zc(ε, iωn) of Eq. (24) computed at the Fermi level (ε = 0)
and ωn = 0.

B. Eliashberg

In Fig. 4 and Table II (columns A–C, L) the experi-
mental values of TC for the chosen set of materials are
compared to the values calculated within the Eliashberg ap-
proach from Eqs. (24) and (25) by employing the static and
dynamical screening of the Coulomb interaction. For the

dynamical case, the weak-coupling results obtained by ne-
glecting the plasmon-induced mass renormalization term Zc

are also shown.
It is evident that the static approximation gives better

values for TC , whereas the plasmonic theory systemati-
cally overestimates the experimental data. The inclusion of
Coulomb retardation effects in the ḠW approximation yields
predicted temperatures that are on average two times big-
ger than the corresponding experimental values. Notably, the
discrepancy between theory and experiments becomes huge
when the term Zc is neglected. Since the inclusion of dynam-
ical screening effects in the Coulomb interaction brings the
theory a step closer to being exact, one would expect an im-
provement in the calculated values of the critical temperature.
The apparent worsening of the results can be traced back to
the neglect of vertex corrections in the Coulomb self-energy
diagram [58,59] and/or the breakdown of the RPA for W.
Regarding this point, we should mention that going beyond
RPA by using linear-response time-dependent DFT [60,61]
within the adiabatic local density approximation in the calcu-
lation of the dielectric function does not improve significantly
the quality of the results. These aspects will require further
investigations. As a matter of fact, our ab initio treatment of
the static Coulomb interaction in Eliashberg theory appears to
be very accurate, confirming previous results along these lines
[25,62,63].

C. SCDFT

In this section we present the results obtained within
the SCDFT framework. As for Eliashberg theory, we con-
sider static, plasmonic weak-coupling [Zc = 0, Eq. (30) for
Kc] and strong-coupling [Eqs. (29) and (30)] approaches.
These are combined with the treatment of the electron-phonon
coupling in the LM [34,35] (Ḡ0W ) and SPG [40] (ḠW )

TABLE II. Critical temperatures computed in Eliashberg theory (Secs. II A and V B) and SCDFT with the phononic LM or SPG functional
(Secs. III and V C) and hybrid Eliashberg-SCDFT (Secs. IV and V D) by employing the full dynamical, weak-coupling dynamical, and static
approach for the screened Coulomb interaction. The corresponding experimental values are also listed. Bottom: Percentage and absolute errors.
|err| = |TC- T exp

C | is the deviation from the experimental TC . For each method and approximation we indicate the average percentage error [av.
%|err| = (100|err|/T exp

C )], the average error (av. |err|), and the maximum error (max |err|) over the material set.

A B C D E F G H I J K L
Eliashberg SCDFT (LM) SCDFT (SPG) Hybrid-Eliashberg

Static Dyn. (Zc = 0) Dyn. Static Dyn (Zc = 0) Dyn Static Dyn. (Zc = 0) Dyn. Dyn. (Zc = 0) Dyn. Exp

Al 0.9 7.6 2.5 0.3 2.8 0.3 1.6 5.9 1.3 2.2 0.7 1.18
Sn 5.7 9.5 6.4 3.7 7.8 3.1 5.4 8.8 4.6 6.9 4.8 3.8
Ta 6.1 20.3 11.0 2.8 9.6 2.9 5.5 12.6 5.3 8.8 5.0 4.5
Pb 6.9 9.7 8.2 5.4 9.6 3.8 6.4 9.6 5.0 7.8 6.7 7.2
Nb 13.3 41.9 23.2 7.3 19.1 7.8 10.5 20.7 10.7 17.0 11.5 9.2
ZrN 12.5 30.9 20.8 6.6 15.6 5.0 12.5 21.3 9.5 16.4 11.4 8.1/9.45
TaC 9.0 19.2 13.2 4.9 10.3 3.5 10.2 15.3 7.5 11.4 7.9 9.7/10.2
CaC6 10.6 52.3 24.8 5.9 26.0 4.2 12.0 30.0 7.9 16.7 9.2 11.5
V3Si 26.5 149.4 61.8 13.9 31.4 12.3 19.0 34.1 16.7 28.1 20.7 17

av. %|err| 29.6 320.2 113.1 34.3 86.3 43.4 19.4 145.2 17.4 61.3 21.9
av. |err| 2.5 29.6 10.9 2.6 6.5 3.4 1.2 9.4 1.3 4.6 1.7
max |err| 9.5 132.4 44.8 5.6 14.5 7.3 3.1 18.5 3.6 11.1 3.7
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FIG. 5. Bottom: SCDFT critical temperatures computed using the LM (left) and SPG (right) phononic functional, within the full dynamical
(violet), weak-coupling dynamical (green), and static (blue) approach for the screened Coulomb interaction. Note the use of a logarithmic scale
on the ordinate axis. Top: Percentage error (computed with respect to the experimental critical temperature). Errors are highlighted by a color
scale from green (accurate) to yellow and red (large deviation).

approximations. The calculated TC’s are listed in Table II,
columns D to I, and are compared to the experimental values
in Fig. 5.

By using the phononic LM functional, the SCDFT results
obtained within the static approximation for the screened
Coulomb interaction underestimate the experimental values
by an average error of 35%. The inclusion of plasmonic effects
in both the normal and the superconducting state yields even
lower TC’s, with an average error of 43%. On the other hand, if
only the plasmonic contribution to the superconducting pair-
ing is accounted for (i.e., Zc = 0), then the theoretical results
systematically overestimate the experimental data by a factor
of 2. In spite of these deviations, plasmonic SCDFT with
the phononic LM functional gives closer TC’s to experiments
compared to Eliashberg theory.

As mentioned, the SPG functional improves over the LM
approximation and is comparable in accuracy to conven-
tional Eliashberg theory in describing electron-phonon effects
[40]. The construction of the functional was carried out in
the phonon-only approximation to optimally reproduce the
Eliashberg self-energy, TC and χsc. Nevertheless, SCDFT-SPG
has similar accuracy to Eliashberg theory also for the treat-
ment of static Coulomb effects. For a static interaction, in
fact, the anomalous Eliashberg self-energy reduces to the form
χscW . Differences in the calculated TC’s between the two
methods can thus be ascribed to minor deviations of the SPG
χsc from the Eliashberg one or to numerical aspects and are
expected to be small. In fact, by employing the SPG functional
together with the static Coulomb kernel we obtain results in
good agreement with experiments. The agreement worsens
considerably when including plasmonic effects in the weak-
coupling approximation, since this leads to a sizable increase
of the predicted TC’s. On the other hand, adding the plasmonic
renormalization mass factor Zc suppresses the TC’s values and
increases the overall accuracy. The average percentage error in
this latter dynamical approach is less than 20%. For the chosen
set of materials, this approximation turns out to be the most
accurate, as reported in Table II. However, it should be noted
that all the theoretical results have a nonnegligible intrinsic

error due to the approximations made in calculating the
phonon spectral function. For this reason it is not possible
to precisely rank in accuracy the different methods. Nev-
ertheless, we can say that plasmonic effects can be safely
incorporated in the SCDFT scheme, as they introduce a rel-
atively weak correction to the phonon-induced TC , which
appears to be consistent with the experimental results.

In Sec. V B we have mentioned that the failure of plas-
monic Eliashberg theory could be ascribed to the RPA
screening or the neglect of Coulomb vertex corrections. The
higher accuracy of plasmonic SCDFT, which employs the
same Coulomb propagator, indicates that the RPA is not the
main source of error. On the other hand, plasmonic SCDFT
relies on the ḠsW approximation for the Coulomb self-energy,
whereas Eliashberg theory amounts to the fully self-consistent
ḠW . This leads us to speculate that vertex corrections to
the Coulomb self-energy might be mostly canceled by the
self-consistent dressing of the KS electron Green’s function
in ḠsW .

D. Hybrid Eliashberg

From the results of plasmonic Eliashberg theory is evident
that the FW approximation for the anomalous Coulomb self-
energy significantly overestimates the TC . Since Eliashberg
theory is a routinely used method for the prediction of super-
conducting properties, this appears as a major drawback. A
viable alternative is the hybrid Eliashberg-SCDFT approach
proposed in Sec. IV. This, in fact, employs the FsW approxi-
mation, which better describes the plasmonic contribution to
the superconducting pairing.

The TC’s calculated for our test set of materials are col-
lected in Table II (columns from J to K) and compared to
the experimental data in Fig. 6. Consistently with all the
previous weak-coupling calculations, the results without the
plasmonic mass term tend to overestimate the TC . In this case
the overestimation is, on average, by about 60%, considerably
improving over Eliashberg theory. On the other hand, the fully
dynamical approach leads to predicted temperatures that are
very close to the experiments.
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FIG. 6. Bottom: Hybrid Eliashberg-SCDFT critical temperatures
computed within the full dynamical (violet), weak-coupling dynam-
ical (green), and static (blue) approach for the screened Coulomb
interaction. Note the use of a logarithmic scale on the ordinate axis.
Top: Percentage error (computed with respect to the experimental
critical temperature). Errors are highlighted by a color scale from
green (accurate) to yellow and red (large deviation).

VI. CONCLUSIONS

We have presented an extension of Eliashberg theory and
SCDFT to include the dynamical screening of the Coulomb
interaction. Our analysis points at the importance of the
plasmonic mass terms, which largely counterbalance the ef-
fect of the plasmon-mediated attraction in the Cooper pair.

The computational cost associated with the inclusion of the
frequency-dependent Coulomb interaction is made affordable
by employing an energy-resolved isotropic approximation
and by setting nonlinear energy and frequency integration
meshes. A hybrid Eliashberg-SCDFT scheme is also for-
mulated, which combines the Migdal’s approximation for
the electron-phonon coupling with the SCDFT treatment of
plasmonic effects (without introducing uncontrolled approx-
imations beyond G0W0). The accuracy of the approximations
employed in the different methods has been assessed by calcu-
lating the plasmon contribution to the critical temperature for
a set of classic superconductors. Our simulations show that
the SCDFT plasmonic kernels, combined with the phononic
SPG functional, yield a good agreement between predicted
and measured critical temperatures. Dynamical corrections
turn out to be small but not negligible, being of the order
of 10–15% of TC . Eliashberg theory, although accurate in the
static limit of the screened Coulomb interaction, when plas-
monic effects are included leads to a large overestimation of
TC , by an average factor of 2. Dynamical Coulomb effects can
be included in Eliashberg by adopting the hybrid approach,
which gives results close to SCDFT and overall in excellent
agreement with experiments.
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