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1. Introduction

TheHall effect in its quantized form[1] was first described for free
electrons, forming dispersionless Landau levels (LLs),[2] and first
detected in 1980.[3] Later, Hofstadter butterflies[4–8] revealed
essential differences in the shape of the LLs for electrons in a
periodic lattice and their energy spacing. When this quantized
Hall effect was observed in graphene in 2004,[9] research interest
was renewed and calculations of Chern numbers showed for
example that van Hove singularities (VHSs) of the initial

nonquantized band structure cause a
sign change in the quantum Hall (QH)
conductivity.[10–13]

The recent finding that the topological
Hall effect (THE) in magnetic skyrmion[14–23]

crystals is closely related to the quantum
Hall effect (QHE) on a structural
lattice[12,13,24] may again renew interest in
the QHE in its original form. The advan-
tage of the analogy of QHE and THE in
skyrmion crystals is that the skyrmion acts
as a magnetic field of up to several thou-
sands of tesla, that can hardly be brought
forth conventionally. Such large fields
exhibit the unconventional quantization of
the transverse Hall conductivity more pro-
nounced. However, this effect is strongly
affected by the electronic band structure.
It is conceivable that this hallmark is absent
for special materials.

In this article, we consider electrons
on a square lattice affected by a homoge-
neous magnetic field or by skyrmion
spin textures. We introduce a diatomic

basis with different tight-binding onsite energies that form a
stripe pattern (Figure 1b). We find for both cases strong oscil-
lations in the band structure that suppress the Hall conductiv-
ity. An unsteady energy dependence with sharp peaks in the
bandgaps is explained by geometric arguments. Open orbits
in the zero-field band structure (the initial band structure with-
out magnetic field or texture) behave fundamentally different
compared with closed orbits concerning LL quantization and
cause the suppression of QHE and THE. Having positive
and negative curvatures, these orbits mix states with positive
and negative effective mass that are deflected into opposite
transverse directions. This finding also holds for the THE of
electrons in the presence of a periodic skyrmion spin texture
(a skyrmion crystal) and even single skyrmions (Figure 1). The
results remain valid as long as open orbits appear in the zero-
field band structure; this allows for a generalization of our find-
ings and explanations to other lattices with a polyatomic basis.

This article is organized as follows. We begin with explaining
the tight-binding model and the concept of Berry curvature
that was used to calculate the Hall conductivity (Section 2).
Hereafter, we present and discuss our results for the suppressed
Hall effects in the stripe crystal. We start from the initial QH
system (Section 3.1) and investigate the evolution of LLs and
Hall conductivity upon increasing the sublattice asymmetry
(Section 3.2). Hofstadter butterflies complement the discussion.
The gained knowledge is generalized to the case of more than
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The quantum Hall effect is generally understood for free electron gases, in
which topologically protected edge states between Landau levels (LLs) form
conducting channels at the edge of the sample. In periodic crystals, the
LLs are imprinted with lattice properties; plateaus in the transverse Hall
conductivity are not equidistant in energy anymore. Herein, crystals with a
polyatomic basis are considered. For a stripe arrangement of different atoms,
the band structure resorts nontrivially and exhibits strong oscillations that
form a salient pattern with very small bandgaps. The Hall conductivity strongly
decreases for energies within these bands, and only sharp peaks remain for
energies in the gap. These effects are traced back to open orbits in the initial
band structure; the corresponding LLs are formed from states with positive
and negative effective mass. The partial cancellation of transverse charge
conductivity also holds for different polyatomic stripe lattices and even when
the magnetic field is replaced by a topologically nontrivial spin texture. The
topological Hall effect is suppressed in the presence of magnetic skyrmions.
The discussion is complemented by calculations of Hofstadter butterflies and
orbital magnetization.
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two different basis atoms and can be carried over to the THE in
the presence of magnetic skyrmions (Section 3.3). We conclude
in Section 4.

2. Model and Methods

To describe the QHE, we consider a tight-binding model on a
square lattice with the Hamiltonian

H ¼
X
i

f ic
†

i ci þ
X
hiji

tijc
†

i cj: (1)

c†i and ci are spinless creation and annihilation operators
(i and j site indices). fi is the onsite energy at site i, which dictates
the superlattice unit cell. In the majority of this article, we con-
sider a diatomic stripe lattice.

tij is the nearest-neighbor hopping strength

tij ¼ teiφij , φij ¼
e
ℏ

Z
ri!rj

AðrÞ ⋅ dr: (2)

An external magnetic field B ¼ Bez ¼ ∇� A with vector poten-
tial AðrÞ ¼ �Byex (Landau gauge) induces the complex phase
factor. To preserve the periodicity of hopping amplitudes, the
magnetic unit cell is enlarged compared with the onsite super-
lattice unit cell. The magnetic field has to be expressed by
coprime integers p and q: p=q ¼ Φ=Φ0 with Φ ¼ Ba2 and
Φ0 ¼ h=e.[4]

From the eigenvalues EnðkÞ and eigenvectors junðkÞi of the
Hamiltonian (1), we calculate the Berry curvature

ΩnðkÞ ¼ i
X
m 6¼n

hunðkÞj∇kHðkÞjumðkÞi � ðn ↔ mÞ
½EnðkÞ � EmðkÞ�2

(3)

of band n that enters the Kubo formula for the intrinsic trans-
verse Hall conductivity

σxyðEFÞ ¼ � e2

h
1
2π

X
n

Z
BZ

ΩðzÞ
n ðkÞFðEnðkÞ � EFÞd2k (4)

as a Brillouin zone (BZ) integral.[25] F is the Fermi distribution
function.

3. Results and Discussion

First, we recall the band structure and the Hall conductivity for
the monatomic square lattice (Section 3.1). The results can be
explained with the zero-field band structure straightforwardly.
The stripe crystal (Section 3.2) dictates a different geometry of
the superstructure unit cell, which leads to new effects in both
the band structure and Hall conductivity. Finally, our findings
are generalized for a polyatomic basis, different lattice types,
and can be carried over to the THE of electrons in skyrmion tex-
tures (Section 3.3).

3.1. Preliminary Consideration: f¼ 0

As a prelude, we summarize the results for a monatomic lattice
ðf i ≡ f ¼ 0Þ, i.e., a conventional QH system. For details, see the
study by Göbel et al.[13] The upcoming Hamiltonian of the stripe
crystal (Equation (5)) can be used by setting f¼ 0.

The band structure of a QH system on a square lattice
(Figure 2a) for p¼ 1 exhibits mainly flat bands (LLs) that
are nearly equidistant for high and low energies, like for
free electrons. This is due to the fact, that the band structure
without magnetic field (the zero-field band structure, see
Figure 2c) has a minimum (maximum) at E¼�4 (E¼þ4t),
that resembles a free-electron (free-hole) parabola. Near a
VHS where the density of states (DOS) diverges, the electrons
do not behave “freely”: the band spacing is reduced, and the
LLs exhibit oscillations; these features are most pronounced
for the bands close to the energy of the VHS EVHS¼ 0 in the
ΓXΓ direction.

The transverse Hall conductivity σxyðEFÞ in dependence of the
Fermi energy decreases in steps of e2/h for every LL at energies
below EVHS (Figure 2b); σxyðEFÞ is quantized. In this energy
region, the bands carry a nonzero Chern number

C ¼ 1
2π

Z
ΩzðkÞd2k ¼ 1 (5)

At EVHS, for odd q one band carries a total Chern number of
1� q (for even q, two touching bands carry a joint C of 2� q),
which leads to a sign change in Hall conductivity: in addition to

Figure 1. Main message exemplarily visualized for the THE of electrons due to a single skyrmion (noncollinear magnetic texture with out-of-plane
components [gray] and inplane components [colored]). a) When the electron (blue ball) traverses the texture, its spin (arrow) aligns with the texture
(same color) and gets deflected by the emergent magnetic field. b) In a diatomic lattice, characterized by different onsite energies �f (vertical stripes), a
mixed injection of electronic states with positive (blue) and negative (red) effective masses takes place; see text. Since both species feel the same force
due to the emergent magnetic field, they are deflected into opposite directions. This leads to a cancellation in transverse charge transport.
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the LL character of these bands (C¼ 1 for one band for
odd q and total C¼ 2 for even q) a large Chern number of
�q is generated corresponding to the q band oscillations.
Above EVHS, the Hall conductivity decreases again in steps of
e2/h back to zero.

The energy dependence of the Hall conductivity can be nicely
reproduced using the band structure without magnetic field
(zero-field band structure): In Figure 2c, a Fermi line below
(above) EVHS surrounds an electron (a hole) pocket. This corre-
sponds to the negative (positive) sign in the conductivity. At the
VHS, the electron pocket touches the BZ edge and becomes a
hole pocket (Lifshitz transition). The effective mass changes sign
and so does the Hall conductivity.[13]

3.2. Compensation of the QHE for a Stripe Crystal

We proceed with the diatomic stripe crystal with alternating
onsite energies along the y direction. Band structure and Hall
conductivity show different features, which we explain with
the orbits of the zero-field band structure.

The Hamiltonian in Landau gauge for q basis atoms reads

0
BBBBBBBB@

h1 � f hðþÞ 0 : : : 0 hð�Þ

hð�Þ h2 þ f hðþÞ : : : 0 0
0 hð�Þ h3 � f : : : 0 0
..
. ..

. ..
. . .

. ..
. ..

.

0 0 0 : : : hq�1 � f hðþÞ

hðþÞ 0 0 : : : hð�Þ hq þ f

1
CCCCCCCCA

(6)

with hj ¼ 2t cos
�
akx � 2π p

q j
�
, hð�Þ ¼ te�iaky .

3.2.1. Band Structure

Starting again at f¼ 0 (Figure 3a), we identify q LL oscillations in
ΓXΓ direction, as already described in Section 3.1. Increasing f
leads to q/2 additional oscillations with a twice as large period,
corresponding to the q/2 atoms per sublattice. These modula-
tions are most pronounced near E ¼ �2t and are independent
of ky, which is at variance with the omnipresent oscillations that
are strongest near EVHS.

For large f, the amplitudes of these oscillations increase until
bands seem to intersect Figure 3d–i. Close-ups (insets) show that
the bands neither intersect nor touch. However, for f ! ∞ the
band spacing converges to zero; the band energies, given by the
diagonal elements

En ¼ 2t cos
�
akx � 2π

p
q
n
�
þ ð�f Þn (7)

of the Hamiltonian, form a “weaving pattern.” For large f
(e.g., f¼ 2t in Figure 3g) the block separation is clearly visible
and the weaving pattern dominates the entire band structure
of each block.

The origin of these patterns can be found in the zero-field
band structure. The rectangular BZ accounting for the diatomic
basis imposes a back-folding of the initial zero-field band struc-
ture. The single band in Figure 4a turns into two bands (blue and
red) in Figure 4b that overlap in energy. At the BZ edge at
kya ¼ �π=2, the bands are degenerate.

If f is increased, the band degeneracy is lifted and the bands’
slope becomes zero at the BZ edge,

E12ðkÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 þ 2t2½1þ cosð2kyaÞ�

q
þ 2t cosðkxaÞ: (8)

In the energy range jEj < 2t, in which the bands overlap ini-
tially, the zero-field band structure becomes deformed and

(a) (b)

(c)

Figure 2. An overview of the monatomic square lattice. a) Electronic band structure with LLs, b) QH conductivity, and c) zero-field band structure
exhibiting electron orbits (blue) and hole orbits (red) separated by a straight line orbit at EVHS¼ 0. The magnetic field is given by p/q¼ 1/20. The unit
of quantization is σ0 ¼ e2=h.
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exhibits open orbits, which seem to introduce the weaving
pattern. For f> 2t, the zero-field bands do not overlap and block
separation sets in (Figure 3g–i).

3.2.2. Hall Conductivity

The weaving pattern brings about peculiar effects in the Hall con-
ductivity (red in Figure 5). For a small f ( f¼ 0.2t in Figure 5a), a
smooth shape of σxy(EF) is recognizable. The oscillations in the
band structure (Figure 3b) cause drops in the modulus
of the conductivity due to the conventional intrinsic Hall effect
with opposite sign. However, the signal remains quantized in the
bandgaps. “U-shaped” valleys appear at energies within the
bands.

Upon increasing f, these valleys become deeper (Figure 5b)
until the conductivity is almost zero (Figure 5d) but with very
sharp peaks (“spikes”) in the tiny bandgaps (insets in
Figure 3) caused by topologically protected edge states. For siz-
able f (Figure 5c–f ), the conductivity in such gaps eventually
changes sign. For f≥ 2t, the block separation is accompanied
by a sign reversal of the transverse conductivity roughly in the

middle of each block (despite being vanishingly small apart from
the very small bandgaps). In the limit f ! ∞, the blocks them-
selves become antisymmetric.

Especially for large f the Hall conductivity is suppressed over a
large energy range. An intuitive argument, stemming from the
synthetic case f =t ! ∞, is that the stripes in the lattice formed by
different onsite energies make the system quasi-1D and prohibit
any transverse charge transport (cf. Equation (6)). For any finite
f/t, the spikes correspond to topologically protected edge chan-
nels in the gaps.

In the following paragraphs, we establish an explanation
using open orbits in the zero-field band structure that lead to
a mixing of electron states of positive and negative effective mass.
We claim that these two species of electrons are deflected into
opposite transverse directions, meaning that electrons do not
move one dimensionally, as speculated earlier, but rather their
transverse motion is compensated (in an analogy to a spin
Hall scenario). In a later section of the article, we prove this claim
by visualization of the scattered electrons’ density. The estab-
lished interpretation allows also to explain the complicated
behavior of the transverse conductivity for small f/t ratios.

Figure 4. Zero-field band structure of a diatomic square lattice in stripe geometry. a) As in Figure 2c but the blue color indicates the smaller BZ respecting
the diatomic basis. b) Backfolded zero-field band structure of (a) in the smaller BZ for f¼ 0. The two bands partially overlap in energy. c) Zero-field band
structure for f¼ 2t, where the two bands do not overlap and block separation sets in. Electron (blue lines), hole (red), and open (gray) orbits are indicated.
The three regions are separated by orbits going through VHSs (purple). This fermion character is further analyzed in Figure 6.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 3. Evolution of the band structure upon increasing f for the diatomic stripe crystal with p/q¼ 1/20. The initially flat LLs exhibit a weaving
pattern. Insets show closeups of the tiny bandgaps.
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3.2.3. Relation to Open Orbits in the Zero-Field Band Structure

The evolution of the zero-field band structure with f is accompa-
nied by a change of the character of the Fermi lines as the bands
partially overlap for f≤ 2t. In any case, the lower band exhibits
one electron pocket for low energies (blue lines in Figure 4c),
open orbits (gray) between the VHSs (purple), and one hole orbit
(red) for energies above the VHSs. The upper band behaves
similarly. This segmentation allows to understand the shape

of σxyðEFÞ. A scheme for estimating the envelope function is
given in the following paragraphs.

Near the edges of the energy spectrum the zero-field band
structure does not exhibit open orbits. Here the transverse con-
ductivity can be estimated by the enclosed “area” (in reciprocal
space) of Fermi lines in the zero-field band structure. The fer-
mion character of a closed Fermi line determines the sign of
the Hall conductivity: electron like gives a negative sign and hole
like is positive.[13] This approximation (blue) describes well the

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 5. QH conductivity for the diatomic stripe crystal with p/q¼ 1/20. The explicitly calculated transverse Hall conductivity σxyðEFÞ (red) is compared
with the approximation of the envelope (blue, see text for details). In green-shaded energy intervals, closed and open electron and hole orbits overlap.
The unit of quantization is σ0 ¼ e2=h.
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Figure 6. Orbit characterization of the zero-field band structure (Figure 4) and explanation of the approximation used for the Hall conductivity σxyðEFÞ in
Figure 5. Each panel shows a left and a right block, corresponding to the lower or upper band of the zero-field band structure, respectively. The white line
shows the DOS in arbitrary units with two VHSs each (the two peaks). Between the corresponding energies, the Fermi line is open (Figure 4c). Near the
minimum (maximum), the Fermi line is a closed electron (hole) pocket visualized in blue (red). For the case f¼ 0, electron and hole states are separated
at E¼ 0. For f> 0, the border is shifted to E¼�f (E¼þf ) for the lower (upper) band. This energy is always located between the VHSs in the open-orbit
regime. In the overlapping areas, an LL may be formed from electron-like and hole-like states. In the closed-orbit regime, the fermion character with the
higher DOS dictates the character of the LL. Energy regions with trivial fermion character are colored in red (hole) or blue (electron) and a darker shade in
the open-orbit regime. When electron-like and hole-like states mix in the open-orbit regime, the fermion character is not trivial, and the region is colored
green, allowing for a sign change of the Hall conductivity peaks in Figure 5.
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explicitly calculated conductivity (red; Equation (4)) in the corre-
sponding energy range. For f< 2t, closed electron and hole orbits
are also present in themiddle of the energy range (Figure 6c–g). In
this case, the fermion character with the higher DOS dictates the
sign (Figure 5a–g), which automatically leads to a sign change at
E¼ 0.

For energies that are characterized by open orbits, the conduc-
tivity is reduced—for large f/t ratios, this reduction is drastic which
could mean that LLs formed from open orbits do not contribute to
transverse transport at all. However, this would not explain the
spikes and why for small f/t the transverse conductivity is sizable
over the whole energy range. For this reason, let us revisit the case
f/t¼ 0. When treating the system in the native unit cell (one basis
atom, as all atoms are equivalent) the zero-field band structure is a
single band that exhibits only closed orbits upon cutting at differ-
ent energies (Figure 2c). As shown in Section 3.1 the conductivity
does not exhibit U-shaped valleys, i.e., it is not suppressed. When
treating the system in the diatomic basis (even though this is not
necessary here), the zero field-band structure is backfolded and
open orbits appear, as shown in Figure 4. Due to the equivalence
of the two systems, we can clearly tell that these open orbits behave
exactly like closed orbits—which seems to be partially reminiscent
even for larger f/t ratios explaining the conductivity peaks in the
small gaps between LLs.

The scheme for approximating the envelope therefore
accounts also for states characterized by an open orbit when
counting the occupied states to determine σxyðEFÞ. The open
orbits have either electron or hole character depending on their
energy in relation to �f (cf. Figure 6). This single assumption
reproduces the peaks if open-orbit energy regimes of one band
do not overlap with closed-orbit regimes of the other zero-field
band (for f> 1.5t; Figure 5g,h and 6g,h). Furthermore, it can
explain the mostly unsuppressed conductivity in the open-orbit
regime for small f/t (Figure 5a). In all cases, this approximation
seems to determine the envelope function of σxyðEFÞ.

Going more into detail, one case deserves special attention.
For f/t< 1.5 we find small energy ranges where the two zero-field
bands exhibit open and closed orbits of different characters
for the same energy (highlighted green in Figure 5 and 6).
Consequently, in these cases, the transverse conductivity may
change its sign. The envelope function can be constructed by
accounting for “both” orbits as either electron like or hole like.
For this reason, the two branches of the envelope function have a
positive sign and a negative sign in these energy ranges, respec-
tively. The envelope function can be comprehended in detail
when comparing Figure 5 and 6.

Summarizing at this point, we find a strongly diminished
QH conductivity in a stripe bipartite lattice. Deflection of elec-
trons is suppressed by the two inequivalent sublattices except
for small energy gaps where topologically protected edge chan-
nels allow for transport, like for a conventional QH system
with f¼ 0.

The quantization of open-orbit states is not as straightforward
as for closed orbit states. Our findings suggest that they behave
like closed orbits at the very edges of the LLs, so that σxy in the
bandgaps exhibits quantized peaks as for closed orbits. The
Chern numbers of those bands (except for those corresponding
to a sign change in the Hall conductivity) are still C¼ 1.
However, the Berry curvature only has a considerable magnitude

near the band extrema. “Within the bands” (apart from the LL
edges) the conductivity drops nearly to zero, accounting for the
mixed electron and hole characters of open orbits.

3.2.4. Hofstadter Butterfly

The full field dependence of the energy spectrum of a QH system
is commonly described by so-called Hofstadter butterflies.[4] The
LL energies are plotted versus the magnetic flux Φ ¼ p

qΦ0. For
f¼ 0, we obtain the well-knownHofstadter butterfly of the square
lattice (Figure S2a, Supporting Information). At the very left of
that figure (Φ=Φ0 ¼ 1=q), black dots represent the LL behavior
we have shown in Section 3.1: equidistant, flat bands in the
low- and high-energy ranges, and very narrow bands with
increased band width near the VHS.

The general case of p/q can be reduced to known cases (p¼ 1)
by an expansion into continuous fractions. A magnetic flux
of ðp=qÞΦ0 with p> 1 is reduced to a flux of ð1=q̃ÞΦ0 after the
expansion, where each of the q̃ bands comprises a bundle of
several bands. This “bunching” leads to the fractal nature of a
Hofstadter butterfly. The exact band distribution can be found
via the expansion into continuous fractions or from the
Diophantine equation.[4,8,13,26–29]

For small f¼ 0.5t (Figure 7a), the energy spectrum generally
looks similar to the Hofstadter butterfly for f¼ 0 (Figure S2a,
Supporting Information). The introduced band oscillations lead
to a denser appearance and condense in complicated patterns
with additional “lines” (e.g., in the extended topmost structure).
A symmetric deformation resembles the spread out zero-field
band structure.

For f¼ 3t (Figure 7b), block separation is clearly established.
The two blocks of the butterfly appear confined by almost straight
lines, whereas for small f, the energy spectrum had the famous
butterfly shape. The two blocks are almost densely filled for large
f/t, which is explained by the weaving pattern that dominates
the entire band energy range. The origin of the few white lines
(unoccupied energies) within this “filling” can be understood
from the band structure for Φ=Φ0 ¼ p=q ¼ 3=20 (Figure 8).
The associated continued fraction

3
20

¼ 1
6þ 1

1þ1
2

(9)

yields only six groups of bands. An increased f, as compared with
the case p=q ¼ 1=20, is thus needed to make the bands touch.
The white spaces (bandgaps) in the Hofstadter butterfly vanish
for an even larger f.

3.2.5. Other Lattice Types

The results for the stripe crystal can be carried over to the general
case of b ¼ 2, 3, : : : , q basis atoms in the “structural” basis (b has
to be a factor of q). Choosing all of the b onsite energies differ-
ently separates the band structure into b blocks, in which each
block exhibits the weaving pattern with q/b band oscillations.
As an example, we choose b¼ 3 (Figure 9).

For the diatomic case b¼ 2, the bands showed q/2 oscillations
for each of the two blocks in ΓXΓ direction. The oscillations of
the upper block were shifted half an oscillation length in XΓ.
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Now, for b¼ 3, we find three blocks with q/3 oscillations. The
bands look again almost identical when comparing the blocks
but they are shifted by 1/3 (2/3) of an oscillation length for
the middle (upper) block in XΓ direction.

The behavior of the Hall conductivity σxyðEFÞ can be deduced
in analogy to the case b¼ 2. We now find b blocks that exhibit the
same shape in the limit f ≫ t.

The established findings of the suppressed Hall conductivity
and the weaving pattern in the band structure are not limited to
stripe square lattices. We find similar results for triangular lattices
with stripes of different onsite energies and expect these features
for other polyatomic lattices. They appear as long as open orbits
are present in the zero-field band structure. As we show in the next
section, the results are not even limited to the QHE due to an
external magnetic field; we also find a suppressed THE in the pres-
ence of a skyrmion crystal and even for single skyrmions.

One exceptional lattice is the checkerboard-type diatomic
square lattice, as shown in the Supporting Information

(Figure S1 and S2). Here, the zero-field band structure is folded
back exactly at the straight orbit including the VHS, where the
orbits transition from electron like to hole like. For this reason,
the back-folded zero-field band structure consists of one purely
electron-like band and one purely hole-like band. In this case, the
introduction of f> 0 does not generate open orbits but leads to a
trivial splitting of the zero-field band structure at EVHS¼ 0. In the
presence of an external magnetic field, we find bands without
the weaving pattern and an unsuppressed QH conductivity.
The lack of open orbits further substantiates our aforementioned
argumentation.

A suppression of the Hall conductivity arising from open orbits
can alternatively be established upon considering a monatomic lat-
tice with anisotropic hoppings tx 6¼ ty. Figure 10 shows the results
of a square lattice with p=q ¼ 1=20, where each atom has the
same onsite energy but the hopping amplitudes are tx ¼ 2t and

(a) (b) (c) (d) (e) (f) (g)

Figure 8. Evolution of the band structure upon increasing f for the
diatomic stripe crystal with p/q¼ 3/20.

(a) (b)

Figure 7. Hofstadter butterflies of the stripe crystal for a) f¼ 0.5t and b) f¼ 3t. The magnetic flux is given byΦ ¼ p
qΦ0 calculated for fixed q¼ 400. The flux

quantum is Φ0 ¼ h=e.

(a) (b)

Figure 9. Band structure of a stripe crystal with a three-atomic basis and
p/q¼ 1/24. The band structure is split into three blocks. The onsite energies
for the three sublattices are a) f¼ t,0,�t and b) f¼ 7t,0,�7t, respectively.
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ty ¼ t. This results in a zero-field band structure with open orbits
between �2t and þ2t (Figure 10a). In this energy range, the band
structure exhibits a weaving pattern (Figure 10b), and theHall con-
ductivity is strongly reduced for most energies (Figure 10c).
Similarly, the sharp peaks in the tiny band gaps remain. The only
difference in this scenario is that the Hall conductivity is perfectly
antisymmetric with respect to E¼ 0. Here, two LLs touch which is
why a sharp conductivity peak is absent at this energy.

3.3. Suppression of the THE in the Presence of Magnetic
Skyrmions

In this section, we replace the external magnetic field by a
skyrmion crystal to discuss the topological contribution to the Hall
effect. In addition to skyrmion crystals in stripe lattices, formed by
a polyatomic basis from different elements, we have in mind mul-
tilayer systems. Consider, for example, a skyrmion layer on top of a
heavy metal layer with a lattice mismatch. At the interface, lattice
relaxationmay arise and stripe reconstructions like for Si(100) may
form. The electrons in the skyrmion layer on top will then feel
onsite differences distributed in a stripe shape. Another scenario
is that the skyrmion layer itself becomes buckled which leads to
stripe-shaped oscillations in the atomic distance to the layer below
which translates to oscillations in the onsite energy.

The spins of the electrons of Hamiltonian (1) (ci are now
spinor-valued operators) couple to a skyrmion texture fsig
HH ¼ m

X
i

si ⋅ ðc†i σciÞ (10)

(σ vector of Pauli matrices) via Hund’s coupling. We model
skyrmions in a ferromagnetic surrounding like in the study
by Göbel et al.[30] The topological charge is NSk¼�1, as the
center spin shall point into negative z direction. This leads to
a negative emergent field[19,31]

BðzÞ
emðrÞ ∝ nSkðrÞ ¼ sðrÞ ⋅

�
∂sðrÞ
∂x

� ∂sðrÞ
∂y

�
(11)

(here shown in a continuous formulation), which effectively
accounts for the noncollinearity of the skyrmion spin texture.

In this respect, the QHE and the THE are related[12,13,24] and
many of the aforementioned findings also appear for the THE
of electrons in skyrmion crystals. We would like to emphasize
that the emergent field was not used for any calculations and
merely serves to easily interpret the THE generated by the spin
chirality of the skyrmion texture.

Bandgaps and Chern numbers are similar to the LLs in
the QH system. The main difference compared with the QH sys-
tem is that for electrons in a skyrmion crystal, the bands are dis-
persive so that the widths of global bandgaps are decreased. The
reason for this is the inhomogeneity of the emergent field, in con-
trast to the homogeneous external magnetic field in the QH case.
However, the average value of the emergent field can be related to
the magnetic field of a QH system [Bem ¼ B 6¼ BemðrÞ]; in this
sense, a skyrmion crystal with nb sites in the unit cell corresponds
to the QH scenario of p=q ¼ �NSk=nb.

The two signs correspond to the two blocks in the band struc-
ture. They occur due to the introduction of the electron spin: one
block corresponds to electrons with their spin aligned parallel
with respect to the texture and one where the spins are aligned
antiparallel. The two blocks are shifted by �m, respectively, for
m¼ 5t (chosen throughout this article).

When the onsite energy of a bipartite lattice is introduced,
the band structure (Figure 11a) exhibits similar features as for
the QH system. Each of the two blocks begins to split up again
like for the one block in the QH system. Most importantly, we
find again the weaving pattern. This time the unit cell has to be
chosen quadratic (here 6� 6 lattice sites). In analogy to the QH
system, one observes three oscillations in ΓXΓ direction; due to
the inhomogeneity of the emergent field, the oscillations are no
more perfectly periodic. However, the weaving pattern still leads
to the suppression of the topological Hall conductivity σxyðEFÞ
nearly to zero in the same energy range as for the corresponding
QH system shifted by �m (Figure 11b). The aforementioned
established interpretation using open orbits of the zero-field
band structure holds also in this scenario.

To further investigate the mixing of electronic states with
positive and negative effective mass, we use a Green’s function
approach and compute the scattered electron’s density for a

(a) (b) (c)

Figure 10. Monatomic lattice with anisotropic hopping tx¼ 2t and ty¼ t. a) The zero-field band structure with electron orbits (blue), hole orbits (red),
and open orbits (white). The three regimes are separated by orbits containing VHSs (purple). b) Band structure when an external field (p/q¼ 1/20) is
applied. c) The corresponding Hall conductivity in units of quantization σ0 ¼ e2=h.
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single skyrmion in a finite ferromagnetic sample (corresponding
to the sketch in Figure 1), like in a racetrack storage device.[32–35]

For this purpose, the program package KWANT[36] is used simi-
lar to the example presented in the documentation of this code
(Section 2.7; cf. also the studies by Yin et al., Hamamoto et al.,
and Göbel et al.[37–40]). A bias voltage imposes an electric current,
where electrons move from the left to the right terminal. To visu-
alize the effect of the skyrmion on the deflection, the background
electron density (the scattered electron density for a purely fer-
romagnetic system) is subtracted from the scattered electron
density of the skyrmion system.

The result is shown in Figure 12: for f¼ 0 (monatomic lattice)
and EF ¼ 3.1t, the zero-field band structure exhibits one closed
electron pocket. Electrons with a positive effective mass align
their spin with the skyrmion texture and are therefore deflected
to the bottom due to the negative emergent field. For nonzero f,
open orbits appear in the zero-field band structure. We find that
electrons are deflected to the bottom and top due to coupling to
the skyrmion (Figure 12b). Blue stripes (deflected electrons) are
visible in both transverse directions. This finding motivated the
schematic Figure 1 from the introduction.

The blue stripes also show white vertical lines in this case
(every second lattice site in the horizontal direction appears
white). This means that electrons are mainly “living” on one
of the two sublattices of the bipartite lattice. We find that for
the two different stripes, electrons live on the opposite sublat-
tice, which means that the mixing of the electronic character
(positive and negative effective mass) appears separated in
real space.

The classical formula for the deflection of electrons by the
Lorentz force

r̈ ¼ � e
m⋆ ṙ� Bem (12)

gives two possibilities to suppress the THE. The first is to mix
two spin species as these feel opposite emergent fields �Bem.
This happens in antiferromagnetic skyrmions[41–45]—a skyrmion
consisting of two sublattices with mutually reversed spins. The
THE vanishes, and a topological spin Hall effect emerges:
electrons with spins aligned parallel to the texture are deflected
into one transverse direction, whereas electrons with oppositely
aligned spins are deflected into the other direction. For weak
Hund’s coupling (m=t < 4),[30,37] the same can occur for conven-
tional skyrmion crystals at specific Fermi energies.

The second possibility is presented in this article: the
introduction of onsite energies that can lead to a mixing of
electronic states with positive and negative effective masses m⋆

(see Equation (12)). Here, the spin of the electrons is aligned
parallel with respect to the texture, so a spin Hall effect cannot
emerge. Instead, m⋆> 0 states are deflected in one transverse
direction, whereas m⋆< 0 states are deflected in the opposite
transverse direction. Conceptually, this situation describes an
“effective mass Hall effect” similar to the vanishing Hall effect
in compensated metals.

4. Conclusions

Using a tight-binding model, we investigated the influence of a
homogeneousmagnetic field on band structure and Hall conduc-
tivity of a stripe square lattice featuring a diatomic basis. The
band structure exhibits a weaving pattern, leading to a suppres-
sion of the Hall conductivity for energies within the strongly
dispersive LLs. In the bandgaps (that become tiny for f ≫ t),

(a) (b)f  = 0 f  > 0

x

y

Figure 12. Deflection of electrons due to a single skyrmion. We subtracted
the density of scattered electrons for a ferromagnetic system from the den-
sity for a ferromagnetic system with a single skyrmion in the center (circle).
Blue represents positive values, corresponding to an excess of electrons,
and red represents negative values, i.e., a depletion of electrons. A current
flows from the left to the right terminal induced by a small bias voltage.
a) For f¼ 0, the electrons are deflected only to the bottom (arrow). b) For
f¼ 0.4, we have electrons with a positive effective mass, mainly living on
sublattice A, that are deflected to the bottom, and electrons with a negative
effective mass, mainly living on sublattice B, that are deflected to the top.
m¼ 5t and EF¼ 3.1t in both cases.

(a) (b)

Figure 11. THE of electrons in a skyrmion crystal for f¼ 1t. a) Band struc-
ture, with indicated local alignment of electron spins with respect to the
texture: parallel (red) and antiparallel (blue). b) Topological Hall conduc-
tivity with a block separation by spin orientation and a beginning block
separation by onsite energies. The weaving pattern in the band structure
leads to a suppression of the topological Hall conductivity (gray is the
unsuppressed σxy for f¼ 0). Parameters: unit cell 6� 6 sites, m¼ 5t.
The unit of quantization is σ0 ¼ e2=h.
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the Hall conductivity is still quantized, with the consequence of
sharp peaks in σxyðEFÞ at the corresponding energies.

These features are traced back to open orbits in the zero-
field band structure, that exhibit positive and negative orbit
curvatures. Electrons with a positive effective mass live on one
sublattice and are deflected in one direction, whereas electrons
with a negative effective mass live on the other sublattice and
are deflected in the opposite transverse direction, yielding a com-
pensated transverse charge deflection. A similar argument holds
for the orbital magnetization.[46–51] It is strongly suppressed
when the Hall conductivity is suppressed. This result is exem-
plarily shown for an electronic system in the presence of an exter-
nal magnetic field in the Supporting Information (Figure S3).

The results and their interpretation can be generalized to other
polyatomic stripe lattices. Furthermore, the results can be carried
over to the THE of electrons in topologically nontrivial spin
textures like skyrmion crystals, but also bimeron crystals[52,53]

and even isolated topological objects in a ferromagnetic environ-
ment. If the Fermi energy is within a specific range, electrons
in these textures on a polyatomic stripe lattice exhibit no net
transverse charge transport, but—conceptionally speaking—an
effective mass Hall effect is present.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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