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Abstract

CrossMark

Within recent developments of density functional theory, its numerical implementation
and of the superconducting density functional theory is nowadays possible to predict

the superconducting critical temperature, T, with sufficient accuracy to anticipate the
experimental verification. In this paper we present an analytical derivation of the isotope
coefficient within the superconducting density functional theory. We calculate the partial
derivative of T, with respect to atomic masses. We verified the final expression by means
of numerical calculations of isotope coefficient in monatomic superconductors (Pb) as well
as polyatomic superconductors (CaCg). The results confirm the validity of the analytical
derivation with respect to the finite difference methods, with considerable improvement

in terms of computational time and calculation accuracy. Once the critical temperature is
calculated (at the reference mass(es)), various isotope exponents can be simply obtained

in the same run. In addition, we provide the expression of interesting quantities like partial
derivatives of the deformation potential, phonon frequencies and eigenvectors with respect to
atomic masses, which can be useful for other derivations and applications.

Keywords: isotope effect, CaCg, superconductivity, SCDFT

1. Introduction

The discovery of isotope effect (IE) in superconductors, that
is the variation of the superconducting critical temperature
(T,) upon isotope substitution of the constituent atoms of the
material, has had a fundamental historical role. In fact, after
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its discovery on mercury [1, 2] and the theoretical work of
Frohlich [3] on the interaction energy between electrons and
lattice vibrations, Bardeen [4] concluded that the supercon-
ducting state arises from the interaction of electrons with lat-
tice vibrations. This stimulated the theoretical investigation
bringing to the formulation of the first microscopic theory of
the superconducting phase by Bardeen, Cooper and Schrieffer
(BCS) [5]. Among other merits, BCS theory predicts the iso-
tope effect. In particular, it finds that the critical temperature
scales as T, ~ M~7 with M the atomic mass and -y, the isotope

© 2019 IOP Publishing Ltd  Printed in the UK
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coefficient, equal to % Although, this is the results of the many
approximations within BCS theory, the prediction was quali-
tatively confirmed for many superconductors (Zn, Cd, Sn, Hg,
Pb, T1) [6]. However, the observation of reduced isotope effect
(v < %) in many materials (Ru, Os, Mo) [6] posed more strin-
gent limits in a microscopic theory of superconductivity.

Beyond its historical importance, the measure of isotope
effect also represents a key experimental tool in the study of
superconductivity. Generally, IE is considered a measure of
the phonon contribution on the electron pairing and its lack,
as a possible indication of other pairing mechanisms. For
example, in recent years, IE played a fundamental role con-
firming phonon mediated superconductivity in SH3 [7], MgB,
[8] and in CaCg [9], and several studies of isotope shifts on 7
have been carried in almost all known cuprates [10] and iron-
superconductors [11].

Strictly speaking the value of the isotope coefficient has only
a relative importance, without a reliable theory that interprets
it. In fact, isotope coefficient is a ‘number’ that in principle
contains all the relevant physics of the normal (non super-
conducting) phase and its final value can hinder peculiar and
interesting effects like anharmonic contribution to explain the
inverse isotope effect in superconducting Palladium—Hydride
compounds [12]. On the contrary, even without anharmonic
contributions, its final value accounts for all the interactions
responsible for the superconducting phase: electron—phonon,
Coulomb interactions, spin fluctuations, etc. A theory able to
predict the isotope coefficient must be able to deal with all
these relevant interactions.

The density functional theory for superconductors [13—15]
(SCDFT) accounts for all these interactions and its predicting
power have been successfully tested since 2005 achieving a
complete first-principles description of the superconducting
state [16—18], including all the relevant normal state effects
and the most relevant pairing mechanisms [14, 19-23].

The implementation of the method allowed the ab initio
calculation of many properties of real superconductors [15,
24-30] under different conditions [21, 31-34], and several
predictions [35-42]. Among the others, the predicted isotope
coefficients for simple metals [15, 43], allowed to highlight
the origin of reduced isotope effect, underlining the need of
a consistent treatment of electron—phonon and renormalized
Coulomb electron—electron interaction which ultimately
depends on the phonon frequency range.

Due to its fundamental importance, the straightforward
comparison with the experiments and to complete the form-
ulation of the SCDFT, in this paper we present an analytical
derivation of the isotope coefficient within the SCDFT. This
new approach will allow to obtain isotope coefficient as a post-
processing with a considerable gain in terms of computational
time and precision. In addition, the analytical calculation of
partial derivatives of the interaction functionals gives access
to many interesting quantities like derivative of deformation
potential, phonon frequencies and eigenvectors with respect
to atomic masses.

In the following we present the analytical derivation of IE
(section 2) then, we performed the partial derivatives (section 3)

and then present a numerical implementation and discuss
results on Pb and CaCg (section 4)

2. The isotope exponent

2.1. Basic definitions

Considering a superconductor with critical temperature T,
the isotope effect is described by the dependence of T, on the
mass of the constituent atoms. In the case of one-atom per
unit cell:

T.~M™7 (1)
where M is the atomic mass. In case of several atoms per unit
cell, this can be generalized to

Te ~ 1M, 2)

or making use of a reference mass, My, with reference critical
temperature, T :

TC/TS = Ha(Ma/Mg)_%' 3)
For small changes in the mass we obtain
Tc/ng 1 _Z'Va(Ma/Mgz_ 1) (4)
or
T~ T = T0 /M Yo (Mo — MY). )
The partial isotope-coefficient, ,, can be obtained from
- M ST, 6
T =TT M, ©
or, if we introduce the critical inverse temperature
ﬁc = 1/(kBTc)’
Mg, 8B

2.2. Dependence of the critical temperature on the masses

Within the SCDFT [14, 15] the superconducting critical
temperature is determined by the linearized gap equa-
tion (lin. gap. equation) (refer to [14, 15] for the meaning
of the symbols)®:

1 tanh é ’
Ap=—Zl =5 ) K ;kz &)
k/

The interaction kernel, Ky, contains the sum of two
contributions: the electron—phonon (el-ph) interaction (ICE;:,)
and the Coulomb electron—electron (el—el) interaction (lC,edl(,).

First, we rewrite the linearized gap equation as a matrix
equation with a symmetric kernel:

Ay, (®)

8 The following equation is identical to equation (5) of [15]. The only dif-
ferences are: (i) use of the composite index (k, k') instead of (nk, n’K’), (ii)
linearization near T, where Ej ~ &.
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Ak = ZMkk’ Ak/ (9)
k/
where
A, — tanh( fk) (10)
&
B tanh( &) T ph tanh( §k)
Mkk’ = _dekk’ — E T [’Ckk’ + ICkk’} fk

The linearized gap equation is only valid at the critical tem%er-
ature, or equivalently (3., which enters the equation via the
kernel M, which also depends—through the el-ph matrix ele-
ments [14, 15]—on the nuclear masses.

In order to calculate the dependence of 5. on the nuclear
masses, we first rewrite the lin. gap equation as an eigenvalue
equation, so that it is valid for all temperatures.

ZMkk/Ak’ = A(/B)Ak (12)
v
The critical temperature is then defined by the lowest eigen-
value being equal to unity

ABe) = 1. (13)

Since the eigenvalue equation (12) depends separately on
{3 and on the spectral function, also the eigenvalue \° depends
(independently) both on 8 and the masses M,, while [
depends, on the masses M, through equation (13).

We now take the derivative of equation (13) with respect
to the masses:

o\ @ 0B _0
oM, " 0B, oM. (14)
From this we obtain:
dﬂc _ 832\0‘ (15)
- X °
dm,, 53

Next, we need to calculate the partial derivatives of the eigen-
value A. To this end we take the partial derivatives of equa-
tion (12) with respect to 5 and M.

Using the normalization of A (for each 3),

D AA=1 (16)
k
we get
A=Y A M Ay (17)
Kk
Again, due to the normalization, we find
" 8/\/lkk/ A
Z A; (18)
This leads us to the desired result:
dbe _ m .4 (19)
dm,, S A2 e Ay B

% Not to be confused with the electron—phonon parameter.

that, from the definition in equation (7) is proportional to the
partial isotope coefficient.

3. Partial derivatives of the kernels

In order to calculate equation (19), we need to evaluate the
partial derivatives of the interaction kernels with respect to
the atomic masses (M) and inverse temperature (3), which
represent the main part of the present paper.

From equation (11) we find

aMkk’ o 76 aZk _ 1 tanh ék) alcphkk’ tanh é-k/
oM,  ®om, 2

(20)

|: tanh(gfk) ICPhkk/+IC31kk/ tanh fk/
&

(P K W VD e 4 Kl
4\/@cosh( ©)? \/mcosh
(21)

where we used that the electronic contribution () does not
depend on the nuclear masses.

So, for the numerator and denominator of equation (19) we
obtain:

OMgr _ 02 _ 1

o8~ Mo 2

A ZAkaMkk Ap = — Z tanh( &) aZk ‘Ak‘z

g % &

1 ZA* tanh( §k) OKCPP s tanh(%{kr) A

aMa fk’
(22)
x OMy < tanh( &) 3Zk ’
B=S"A Ap = = S~ 2GS 02k o
; o Tt ; & op
_1 AF tanh(5&) O(KMu + Ky) tanh(5 fk')A
2417 & 0B &
an [i K/
4 p 2w+ K ) e A (23)
2(:osh(§£k)2 .

3.1. Analytical derivatives

In order to calculate the above terms, we need to perform par-
tial derivatives of the renormalization term ( Z ) and of inter-
action kernel (ICkk,) with respect to both nuclear masses (M)
and inverse temperature (3). In this work we adopt the kernels
(density functionals) of [14]'%:

Zngm V(& . Qaq) + I (€ —Exr Qag)]
24)

tanh

10Tn [14] the Coulomb interaction X5}, was considered in the Thomas—Fermi
approximation. However, the formalism is equally valid for any other type
of screening as the RPA [20, 27, 82], therefore with respect to [14] we drop
here the TF label of K¢,
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o / o
7 tanh (8 fk)tanh (Ze) Z|gkk 1(&ks ks q)

_I(fk’ _gk/, Q)\q)] (25)

Ki}a = Vik'- (26)

The partial derivative with respect to 5 does not pose rele-
vant problems, because the temperature is present only within
the Fermi and Bose factors, which have a clear analytical
expression. The complete expression of the partial derivatives

of Z; and IC,I:,]:/ with respect to 3 is reported in appendix A.

3.1.1. The kernel derivatives. The partial derivatives with
respect to the masses of the kernels are more involved. They
can be cast as:

9 ’Q
oM, tanh(2 Z//\Zq J (& &> Qaq)
+J(£ka —§k' Mng)]
Aq2
g T
a‘l(é-ks é‘k'» Q/\q) (51(9 _é—k'v Q/\q) a(2)\(] (27)
g 0 oM,
oKy, 2
Mo tanh(2&)tanh(5 &)
8|81?13|2
oM (& &k 0q) — 1(E —Err> Qnq)]
Aq «
+ 7
tanh( fk) tanh( fk, Z |gkk
o O (&, &, ng) (§k, —&.Qaq) | Oq
0 g oM,
(28)
oK.,
o =0 (29)

The above expressions involve the calculation of the deriv-
ative of the both phonon frequencies and electron—phonon
coupling constant with respect to the atomic masses, which
we afford in the next section.

3.1.2. Derivatives of the phonon frequencies. For a mode A
at wavevector q the polarization vectors ég (with « the atom
index and y the cartesian coordinate) and phonon-frequencies
Qq are determined as eigenvectors and eigenvalues of the
dynamical matrix [44]:

Z a'm “ = D (30)
where each matrix element
4 O’E
Caparp (@) = Y e (31)

OR" . OR",

i

does not depend on the nuclear masses (the sum is over the
atoms of the crystal at cell position R;, with respect the refer-
ence cell Ryp).

From equation (30), and using, again, the (mass-inde-
pendent) normalization of the eigenvectors we obtain (see
appendix B for the details of the calculations):

- 2Ma

g

32
oM., (32)

MQ)\q

3.1.3. Derivatives of the coupling constants. The electron—
phonon coupling constants are given by the matrix element
of the derivative of the self-consistent potential (Vxq(r)) with
respect to the phonon mode A at wave-vector ¢ between elec-
tron wavefunctions at wavevectors k and k' = k + q:

o = / & rit (1) Vag (1) ou (1),

The self-consistent potential can be written as [45]:

V,\ /d’ﬁ //d’s //(
qlr

where x/(r,r’) is the full response function, and

(33)

(el )) X(E V()
(34)

V3q(r

0 1
eldRi ~A\q
=3 e () o

i

the derivative of the bare potential. Since the full response
function is not explicitly known, the response equation (34) is

normally rewritten as
TR ) Xt Vol

Vag(r) = V3, (r) / & / a3 <
(36)

which involves only the Kohn-Sham response function
(xo(r’, ")), which is explicitly known, but it has to be solved
self-consistently with respect to Vag(r).

In order to calculate the partial derivative of the coupling

constant with respect to the masses we need to calculate the

partial derivative of the potential, = M as

aV)\q /d3 //dS // r (5(1'/ 71,//)
ovo (l‘”)
+ (e Hher >) ) St
(37)
We write Vf\)q(r) as:
Z -
=3 M)
az,u: \/m pog (38)
with
iqR; 1
Vopealt) = 3¢ aR# R 9
The same change of basis can be applied to VA4 (r):
Aq
14 Z \/W au auq ) (40)
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Thus equation (34) can be written as:

/d3 //dS //

+ <|r| + fre(r,T )) X(r’,r”)> Voua(1').

(4D)

This form of the displacement potential now allows us

to take the derivatives with respect to the nuclear masses

without additional solutions of the response equation, since

the response screening is performed on potentials which do

not depend on the masses, and the eigenvectors, frequencies,
etc are pulled outside the response function.

)6(1_/ _ I‘l/)

ocuq

Therefore,
Vg { Zs Oq . ras
= (g + Mo, VanVauq(r) | +
oM., ; Mo Qg /2Molng OM,, ~>on

(42)

6Ca

+ - - Vo BN
S| e i Vel >] )

At this point we only need the derivative of the phonon fre-
quencies and eigenvectors with respect to the masses, which
are explicitly calculated in appendices B and C. At this point,
we transform also the matrix element through

/\q ~auq

Can 8w (44)

W=
with
G = [ O oo . @)

Using equations (42) in (44) and including the derivatives
obtained in appendices B and C, we obtain:

Aq ~06H q
QL 8k

agkk’ _ Z _ Zy -3 ZHI Cam am
oM, " V2M Qg 2M.,

Since the eigenvectors of the dynamical matrix form a unitary
matrix, the g/ can also be generated from the first-princi-

ples calculated gk through the transformation
- A
g = Z Q4" /2M g g0

Finally, the required derivative of the modulus squared is

(47)

0 A d 0 ag*\ A
oM., ‘gkk’|27gkk? <nglg>+<wgklg S (48)

and this completes our derivation of equation (7). The
complete analytic expression of the isotope coefficients is
clearly very complicated and we are not able to extract exact
features from it, as an upper limit for the isotope coeffi-
cients. However it can be easily evaluated numerically for
any given material.

ZzM ,/2M qu XZ#

4. Implementation and test cases: Pb and CaC,

We test the validity of the analytical approach by direct tests
with usual finite difference method (FDM). In this last case, in
order to calculate -y, we need to calculate the critical temper-
ature for two different isotopic masses of the same a-atom.
The two approaches must give the same result.

Evaluation of ~, (equation (7)), requires the calculation of
the one-electron energies near the Fermi level (&), phonon
frequencies (£2,q), the phonon eigenvectors (C’\ ) and elec-
tron—phonon matrix elements (gk 7). All these quantities have
been calculated within density functional theory perturbation
theory [44, 46—48] using a pseudopotential implementation
[49]. In addition, we solved the gap equation to find T, and
obtain the values of A sufficiently close to T, (where the gap
vanishes by definition)!!". Thus, the main steps of the calcul-
ation can be summarized as: (i) calculate the el-ph matrix ele-
ments and phonons frequencies and eigenvectors on a regular
grid for the electron wave-vector (k) and phonon wave-vectors
(q) in the Irriducible Brillouin zone. (ii) Obtain A, on a non-
uniform [15] mesh of k and K’ near the Fermi level and solve
the superconducting gap equation to find the value of T¢. (iii)
Calculate ~,, using the same non-uniform mesh.

4.1. Superconducting lead

The superconducting properties of Pb are quite well under-
stood [50-52], however a renewed attention has been devoted
to then many peculiarities of its superconducting phase, both
theoretically [43, 53—55] and experimentally [56].

Pb crystallizes in a fcc lattice and its Fermi surface is com-
posed of three sheets arising from the Pb p-orbitals; at 7.2 K
it becomes superconductor showing a multigap superconduc-
tivity [43].

2 2
qu +0 ’q) Zm Cam a/u CA’q~a’u;q
! kk/
0, — 2, o

(46)

The calculation was performed using norm-conserving
pseudopotential [57] with 32 Ry of energy cutoff. Converged
Brillouin zone integration of the charge density was achieved
with 26% Monkhorst—Pack (MP) [58] grid. Phonon frequen-
cies and electron—phonon matrix elements are calculated on
a 8% MP q grid and 26> MP k grid. The self-consistent gap
equation was solved on a non-uniform k-mesh in the IBZ of
6000 (500) points for bands crossing (not crossing) the Fermi
level. The results are identical to those reported in [43] and
not discussed here. We focus, instead, on the isotope effect.
First, we determine the isotope coefficient calculating the crit-
ical temperature T! and T? for two different isotopic masses,

' As general rule we decided to choose any temperature in which A2
becomes linear with 7. The BCS-type second order phase transition requires

Ty\1
(I-7)z
Anyway, we always verified that this last choice ensures that -y does not
depend on the temperature.

that near T, the superconducting gap may be expressed as A ~
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M1 =207.21 and M2 =
as:

208 respectively. Thus ~y is obtained

1-T2)T!

— <l — 047 +0.01.
MM, — 1

")/ =

The error bar accounts for the indeterminacy in the deter-
mination of 7.

Application of the analytical procedure, using the same
sets of k and ¢ points, gives v = 0.48. The experimental value
is 0.48 £ 0.01 [59, 60]. The agreement is excellent.

In principle, the only value that can be compared with the
experimental one, is the one obtained in the same conditions,
that is, with a finite variation of the isotopic mass. The analyt-
ical derivation, assumes an infinitesimal variation around the
reference mass. However, the dependence of + on the refer-
ence mass itself is weak and irrelevant for practical purposes.

5. Graphite intercalated compound: CaCg

The second example we want to discuss is the isotope effect
in CaCg compound. This system (and in general the class of
interacalated grphites [61]) has been theoretically very well
characterized [27, 39, 62—-68] and theory is overall in good
agreement with most of the experimental evidence: electronic
[69, 70], phononic [71-74], coupling [75, 76] and supercon-
ducting properties [28, 71, 75-79], with few exceptions [9, 80].

CaCg represents a stringent test for our analytic derivation.
In fact, the multi-atom case is far from trivial, as it accounts
for many different interaction between different masses. In
order to be consistent with calculations of [65], we used the
same computational details. Even in this case, our analyt-
ical procedure reproduces (within 0.01) the finite-difference
values (obtained as described in the case of Pb). In particular,
we find yc, = 0.24 and ¢ = 0.26. These values in agreement
with previous estimations [63, 65] outline the important role
played by both C and Ca atoms in the superconducting phase
transition and the high coupling of low energy Ca phonons, in
agreement with recent ARPES measurements [70]. However
the Ca isotope coefficient disagrees with the values measured
in [9], that estimates a value between 0.4 and 0.56. This point,
remains up to now unresolved [81].

6. Conclusions

This paper presents a development of the superconducting
density functional theory presented in [14, 15]. We derived
an analytical expression of the isotope coefficient in the
framework of SCDFT which has many advantages with
respect to the finite difference method. In particular: (i)
in the finite difference method, a numerically stable value
of ~, requires an evaluation of 7, with a high enough acc-
uracy (less than 1%). This is a formidable task by itself. In
fact, close to T, the self-consistent gap is approaching zero,
making the self-consistency very difficult and time con-
suming to achieve. In addition, in order to obtain a reliable
estimate of T, the calculation of the superconducting gap
has to be performed for many different temperatures close
to T¢.. In case of multiband and polyatomic systems this pro-
cedure can represent a serious limitation. The advantage of
the analytical approach is that it does not require extra self-
consistent solutions of the gap equation. (ii) The determina-
tion of  needs (at least) two independent calculations of T,
for two different atomic masses. The new approach needs
only one calculation of T, at the reference mass. (iii) In case
of polyatomic systems, evaluation of ~,, for each species is
an independent calculation. In the analytical approach ~,, is
calculated within the same run for each atomic species («).
Therefore the overall calculation of isotope coefficients is
reduced by a factor 2 X Ny x N,, where Ny is the number
of self-consistent cycles in the solution of the gap equa-
tion and N; the number of atomic species in the system.

We want to underline that the present analytical approach
(even if at the moment rather complicated) is suitable to
analyze the dependence of the isotope coefficients on many
different normal states properties (electron eigen-energies,
phonon frequencies and eigenvectors, superconducting gap,
Coulomb potentials, etc.).

In conclusion, the present formulation of the isotope
effect, completes the formal derivation of SCDFT. As for
the BCS formulation, we were able to derive an analytical
expression of isotope effect. This allows a relevant time-
saving, higher accuracy with respect to the usual numerical
calculation and an analytical framework to analyze the com-
putational results.

Appendix A. Partial derivatives of interaction kernels with respect 3

The partial derivative of Z; and lek, with respect to 3 are defined as:

02
% - WZZWIZ (6060 Dr0) + (660 O
(T 0 20 P 56 ) + 56— ) (A1)
OKR,  1&sinh(B&) + & sinh(8&) o
9 2 smh( &)?sinh(2&y)? %] e 118 G D) = 18 = Dao)]
(A.2)

Z |gkk’

J’_
tanh( &) tanhg

[ (&> &y ) — ;(ﬁk, —&us QAq):|
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oK.,

95 =0.

According to [14, 15], the function 7 is defined as:

eBé _ oB(&+)  oB& _ eﬁ(ﬁHrQ)}
& —6&—0Q & —&+ 0

K&&ﬂ)iﬂ&h@hﬂm[

and J as:

J(1,6,Q) =J(£,6,9) — J(&,6,-Q)

and

ﬂ&éLQy:_ﬁ@0+”MQ)PM&)+m@y—m

(oD | BEIH =D~ braer - ot - 60)].

In the following sections we will derive analytical expression of the derivative of [ and J with respect to 5.

A.1. Derivative of | with respect to 3

We rewrite I term defined in (A.4) as

1 — e BE—&—Q) se 1 — eB1—&+9Q)
1 7 2

_ po lze 7o e -
1(61,6.90) = f3(&1) f3(&2)n5(Q) |e G-6-0 ° Tg-a+0

B 5,
We use
0
@ftzfm@ufm@»
ong(Q
) ) 1+ s (@)
deb . pe
o5
to find
g% =—A[&(1 —f5(&)) + &(1 —f3(&)) + Q1 4+ ng(Q))]
% = & By + e
887352 = 6232 _ eﬁ(fl-i-fl)
and from that
4 = 0A aBl 832
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A.2. Derivative of J with respect to 3

From (A.5) we just need to calculate the partial derivative of J (&1, &2, Q) with respect to 3:

§uf(6) (1 —f5(&1)) + Qns () (1 + np(2))

(fl’g Q)

35 G —&—-Q
e (CRUIAGE
 f8(&1) +np(2)
G —6—Q
X[—&h@ﬁu—m@ﬁﬂ%&—ﬂﬁﬂﬁ—QM%#H&—QD
& —&—

+ /(& — N f(Q—&)
x [1= 86 - ) fa(@ - &) - BE@ - € fsler - 0] |

Appendix B. Partial derivative of phonon frequencies with respect to atomic masses

From equation (30) we can write:

=Y 9 Capar(q) N
an aM MM,
ap,a’ p!

8M "

1 2 : Aq* Capaw (@) 2
= — 6& all 6&’ al’ ek A2 ,q /
2M o0 o G- (oo + darar) MM, Sarn

_ 1 Z C)\q * Co//ua u + Z C)\q* Cauoc w (q) C)\q
(e %) a u’ ap!
2M o1 o A /M”M o VM M

_ Z Co/’u a #Q
Ma//

and

g _ 1 0, X, G WQ
M, 20 OM,  2M,

which ultimately have to be inserted in equation (42).

Appendix C. Partial derivative of the phonon eigenvectors

We will use perturbation theory in order to calculate the partial derivative of the phonon eigenvectors.
First, we linearize the dynamical matrix in terms of the masses:

Caparp (q) _ Capar ( 1 au o’ u _|_ 5 aua u ”)

VMaMor Moo, 2M0 o ./MOMO o \/MOMS,

and then we will calculate the derivative as:

(A.16)

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(C.1)
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‘q * Coypyagny (@) Coypagny (@)
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1 o B+ Bog) Ty o G2
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Appendix D. Derivative of the deformation potential
Substituting (C.2) and (B.5) in (42), we obtain
Aq
OWVaq B Za 1 A *Aq T | Ze OG-
oM, ,ZL [ ZMQQAq\/m (Q)\q B ;Cam Cam g Cauvau:q(r); \/m oM., Vs jusq(T)
= Z [_ Lo (1 mEPMR @21*@3') CA4V (1)
Iz \% ZMQQ/\Q 2Mq g ’
1 Zow 02+ 03, Nated o
- (q g;q) _Z&C 4 Safh Vg0 | - (D.1)
o Mo /2o Qxq 524 Na T Mg
Appendix E. Derivatives with respect to O
We consider again 1(§;,&,Q):
OA
6 = —BA (1 +na(2) (E.1)
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