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a b s t r a c t

Here we report the IR spectra of FeEnterobactin in catecholate
conformations ([CatFeEB]3�) obtained by DFT calculations using
PBE/QZVP and their correlation it with its experimental counter-
part [SalH3FeEB]

0. Fragments of FeEnterobactin and Enterobactin
(H6EB) are elucidated from their MALDI-TOF mass spectrometry,
and the dependence of the frontier orbitals (HOMO and LUMO)
with the catecholamide dihedral angles of H6EB is reported. The
frequency distribution of catecholamide dihedral angle of H6EB
was carried-out using molecular dynamics (MD). The data pre-
sented enriches the understanding of [CatFeEB]3� and H6EB fre-
quency distribution and reactivity.

& 2018 Published by Elsevier Inc. This is an open access article
under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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ubject area
 Chemistry and biology.

ore specific subject area
 Synthesis, Functionalization, and Characterization of FeEnterobactin

and Enterobactin, IR spectra, catecholamide dihedral angles distribu-
tion and reactivity.
ype of data
 Plots were done with Origin 6.0 (OriginLab, Northampton, MA). We
used Gauss-View to visualize the frontier orbitals, density, electro-
static potentials and vibrational modes.
ow data was acquired
 DFT calculations using PBE exchange/correlation functionals and QZVP
basis set were used to obtain the infrared spectra (IR) of [SalFeH3EB]0

and H6EB. Experimental IR were recorded on a Brucker IFS66v/S
vacuum FTIR spectrometer with a Ge/KBr beam splitter and DTGS
detector, and the MALDI-TOF MS spectra were acquired with an
Ultraflex II TOF-TOF mass spectrometer (Bruker Daltonics) for both
samples (more details in Spectrochim. Acta A (2018) 198, 264–277). To
obtain the frequencies distribution of different dihedral angles values
(Arm1, Arm2, and Arm3, see Figs. 1-7) from H6EB structures over a
time lapse, we used the Desmond code [4] to perform the molecular
dynamics (MD) simulations for the four structures of H6EB. Each
structure was embedded into an explicit TIP3P 2water box. The NPT
ensemble was employed with at 300 K and 1.01 bar of pressure and
the OPLS-2005 Force Field 3were used 4. Before the MD simulations,
the energy of each system was minimized and then, MD simulations
were carried out for 5 ns. We used a VMD program [5] to calculate the
dihedrals angles on the catecholamides for the H6EB structures during
the MD trajectory. Plots were done with Origin 6.0 (OriginLab,
Northampton, MA). All systems were simulated considering periodic
boundary conditions (PBC).
ata format
 Figs. in TIF format.

xperimental factors
 Experimental IR were recorded at 50000 scans with 2 cm�1 resolu-

tion. The sample, [SalFeH3EB]0 were prepared using KRS-5 disc. fifty
milligrams of [SalFeH3EB]0 and H6EB, separately, was dispersed in
100 ml of dichloromethane, then one drop was placed on a KRS-5 disc
to dry. Solid [SalFeH3EB]0 was characterized. All solvents were of
analytical purity. For the sample preparation of MALDI-TOF MS
spectra, 0.5mL of a saturated solution of a-cyano-4-hydroxycinnamic
acid (HCCA) in acetone was deposited on the sample target. A 1ml
aliquot of the sample was injected into a small drop of water pre-
viously deposited on the matrix surface [1].
xperimental features
 Infrared Spectra of [SalFeH3EB]0 was carried out on solid state at RT,
instead, a liquid state is performed to capture MALDI-TOF MS spectra.
ata source location
 Theory and Experimental II departments of the Max Planck Institute
of Microstructure Physics, Halle/Germany. Universidad Andres Bello,
Facultad de Ciencias Biologicas, Center for Bioinformatic and Inte-
grative Biology (CBIB).
ata accessibility
 Data described here are Supplementary information to the article
entitled “IR and NMR Spectroscopic Correlation of Enterobactin by
DFT” Spectrochimica Acta A (2018) [1].
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elated research article
. 1. Calculated [CatFeEB]3� IR spec
tFeEB]3� corresponds to Fe linked
Major details about Enterobactin IR spectra can be found in “IR and
NMR Spectroscopic Correlation of Enterobactin by DFT” Spectro-
chimica Acta A (2018) [1]
The Functionalization and characterization of Enterobactin and Fe
Enterobactin analogs as well as their affinity prediction with FepA-
protein transmembrane using DFT, Molecular Dynamics and Docking
will be reported elsewhere.
Value of the data

� The elucidation of ([CatFeEB]3�) IR spectra by DFT contrasted with experimental IR leads a greater
understanding of the functional group motion which favors the explanation of their chemical
modification.

� The determination of the frequency distribution of dihedral angles of H6EB structures using
molecular dynamics (MD) allows to reveal the predominant structure and with this, its prevailing
electronic properties; their reactivity parameters leads to predict synthesis of new materials.

� The visualization of atomic bond cleavage of FeEnterobactin and Enterobactin obtained by mass
spectrometry permit determine the reactivity sites useful for the implementation of functionali-
zation methodologies.
1. Data

Fig. 1 shows the calculated catecholate FeEnterobactin ([CatFeEB]3�) contrasted with experimental
[SalFeH3EB]0.

Unlike the H6EB [1], the calculated [CatFeEB]3� shows a unique broad and sharp N-H band at
3547 cm�1, coherent with steric restrictions associated to the Fe, and as it is expected the
stretching OH bands localized at 3812, 3846, 3747, 3522, 3420, 3371, 3221 and 2880 cm�1 in H6EB
tra using PBE/QZVPmethod and Experimental [SalFeH3EB]0 in the range of 4000–450 cm�1.
at catechol groups, and [SalFeH3EB]0 to Fe at catecholamide groups respectively.
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disappear in calculated [CatFeEB]3. Instead, this band is present in experimental FeEnterobactin,
associated to the Fe linked in the Salicylate conformation [SalFeH3EB]0 as it is reported by N.K.
Raymond [10,11]. In the case of stretching and bending C-O bands its intensity decreases, and/or
in some cases a signal shift is observed for 1336, 1235, 1175, 1125, 1032, 980, 849, 801, 695, 535 to
Fig. 2. H6EB fragments based on MALDI-TOF MS spectra [1], calculated using minimum and maximum atomic weights (ma) from
the IUPAC 2013 technical report [12], and Mm (monoisotopic mass) [16]. ma(H)¼ [1.00784, 1.00811]; ma(C)[12.0096, 12.0116], ma(N)
[14.00643, 14.00728], ma(O)[15.99903, 15.99977] and ma(Na)[22.98977] were considered in the estimation of minimum and
maximum molecular weights (Mw), and Mm was calculated using web tool provides by http://www.cheminfo.org. Being the
average of the mass measurement error (or accuracy) of Δm:33.031 ppm (0.0033%) [16].

http://www.cheminfo.org


M. Moreno et al. / Data in Brief 20 (2018) 2054–20642058
1378, 1361, 1094, 1064, 990, 943, 913, 857, 673, 629 and 544 cm�1 in [CatFeEB]3� , details of the
H6EB IR can be found in [1]. [CatFeEB]3� data revels signal shifts for the stretching (C¼C) IR
bands from 1587, 1544, 1468, 1390, 1343 to 1574, 1555, 1466, 1450, 1370 and 1335 cm�1,
respectively, this is due to the inductive effect of the Fe attached to the catechol groups, similar to
the reports from N.K. Raymond [10,11]. The IR data is used as guide to improve the elucidation of
FeEnterobactin and analogs. MALDI-TOF MS data of [CatFeEB]3� exhibits a cleavage in C5-C4
instead C4-N in H6EB, again, it seems to be that the steric restrictions of the Fe linked to catechol
Fig. 3. CatFeEnterobactin (CatFeEB) and SalFeH3Enterobactin (FeH3EB) fragments based on MALDI-TOF MS spectra [1], cal-
culated using minimum and maximum atomic weights (ma) from the IUPAC 2013 technical report [12] and monoisotopic mass
Mm [16]. ma(H)¼ [1.00784, 1.00811]; ma(C)[12.0096, 12.0116], ma(N)[14.00643, 14.00728], ma(O)[15.99903, 15.99977], ma(Na)
[22.98977] and ma(Fe)[55.845] were considered in the estimation of minimum and maximum molecular weights (Mw), and
Mmwas calculated using web tool provides by http://www.cheminfo.org. Being the average of the mass measurement error (or
accuracy) of Δm:11.625 ppm (0.0011%) [16].

http://www.cheminfo.org
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leave the bond C5–C4 more reactive than C4-N in H6EB (see Figs. 2 and 3). This is reflected in the
dependence of frontier orbitals (HOMO-LUMO) with the frequency distribution of catecholamide
dihedral angles of H6EB depicted in Figs. 4-8, for five H6EB structures. Despite of this wide ver-
satility, the catecholamide arms tend to converge in only one range of frequencies; from � 60° to
60°, granting to H6EB a predominant reactive region governed for carbonyl groups (amide and
ester). This match with the C4-N scission reveled from the MALDI-TOF MS data [1]. Fig. 8 depicts
the highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital (LUMO) of
H6EB structures, where the effects of the dihedral angles are evident. They show an asymmetrical
distribution of the ability to donate electrons (HOMO) and accept electrons (LUMO) located in the
catecholamides arms.

Based in other analyzes by Vonlanthen et al. [13] and Mishchenko et al. [14] for a study of
molecular conductance in a series of organic molecules with fixed dihedral angles, it is expected that
Fig. 4. Dihedral angles of structure-2 arms (g) as a function of time (a-c) and frequency distribution (d-f).



Fig. 5. Dihedral angles of structure-3 arms (g) as a function of time (a-c) and frequency distribution (d-f).
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the dihedral angles influence the properties of siderophores and their analogs as reported by Ray-
mond et al. [15].

Thus, data here allow us to infer that the IR spectra and the reactivity are strongly influenced by
the presence of Fe. These, together with the steric effects between the arms of catecholamide and
with the trilactone backbone, as it is showed in data here. The reactive regions in [CatFeEB]3� and
H6EB, where the delocalization of electrons (amide, esters, and catechol groups) is predominant, are
like a protein recognition code, giving rise to cellular memory. Nevertheless, this is beyond the scope
of this contribution.
2. Experimental design, materials, and methods

Experimental infrared spectra were recorded at 50000 scans recorded with 2 cm�1 resolution.
Samples, [SalFeH3EB]0 and H6EB, were measured using KRS-5 disc. Fifty milligrams of [SalFeH3EB]0



Fig. 6. Dihedral angles of structure-4 arms (g) as a function of time (a-c) and frequency distribution (d-f).
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and H6EB, separately, was dispersed in 100 ml of dichloromethane, then one drop was placed on a
KRS-5 disc to dry. Solid H6EB and [SalFeH3EB]0 were characterized. All solvents and H6EB were of
analytical purity. For the sample preparation of MALDI-TOF MS spectra, 0.5mL of a saturated solution
of a-cyano-4-hydroxycinnamic acid (HCCA) in acetone was deposited on the sample target. A 1ml
aliquot of the sample was injected into a small drop of water previously deposited on the matrix
surface.

Quantum Chemical calculations were performed using Density Functional Theory (DFT) with
the PBE exchange-correlation functional including long-range corrections [6] and QZVP [7,8]
basis sets, with an ultrafine integral grid. Different starting catechol amide dihedral angles of
H6EB were considered for the calculations (see data in Figs. 3-6). All the results presented cor-
respond to a local minimum for each of the calculated structures. All theoretical results were
performed with the Gaussian 09 code [9] and we used Gauss-View to visualize the molecular
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orbitals, electrostatic potentials, and the vibrational modes. To obtain the frequencies of dif-
ferent dihedral angles values (Arm1, Arm2, and Arm3) from H6EB structures over a time lapse,
molecular dynamics (MD) simulations (using the Desmond code) of the four structures of H6EB
were performed, where each structure was embedded into an explicit TIP3P [2] water box. The
NPT ensemble was employed with at 300 K and 1.01 bar of pressure and the OPLS-2005 force
field [3] was used. Each system was subjected to energy minimization before the MD simulations
were carried out for 5 ns. We used a VMD software [5] to calculate the dihedrals angles on
catecholamides from H6EB structures during the MD trajectories. Plots were done with Origin 6.0
(OriginLab, Northampton, MA). All systems were simulated considering periodic boundary
conditions (PBC).
Fig. 7. Dihedral angles of structure-5 arms (g) as a function of time (a-c) and frequency distribution (d-f).



Fig. 8. Frontier Orbitals (HOMO-LUMO) of structure 1(a), structure-2(b), structure-3(c), structure-4(d) and structure-5(e).
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