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Ecoimmunology conceptualizes the role of immunity in shaping life history in a natural
context. Within ecoimmunology, macroimmunology is a framework that explains the
effects of habitat and spatial differences on variation in immune phenotypes across
populations. Within these frameworks, immune ontogeny—the development of the
immune system across an individual life span—has received little attention. Here, we
investigated how immune ontogeny from birth until adulthood is affected by age,
sex, and developmental environment in a long-lived primate species, the bonobo. We
found a progressive, significant decline of urinary neopterin levels, a marker for the
cell-mediated immune response, from birth until 5 years of age in both sexes. The
overall pattern of age-related neopterin changes was sex-specific, with males having
higher urinary neopterin levels than females in the first 3 years of life, and females
having higher levels than males between 6 and 8 years. Environmental condition (zoo-
housed vs. wild) did not influence neopterin levels, nor did age-related changes in
neopterin levels differ between environments. Our data suggest that the post-natal
development of cell-mediated immune ontogeny is sex-specific but does not show
plasticity in response to environmental conditions in this long-lived primate species. This
indicates that cell-mediated immune ontogeny in the bonobo follows a stereotypic and
maybe a genetically determined pattern that is not affected by environmental differences
in pathogen exposure and energy availability, but that sex is an important, yet often
overlooked factor shaping patterns of immune ontogeny. Investigating the causes and
consequences of variation in immunity throughout life is critical for our understanding
of life-history evolution and strategies, mechanisms of sexual selection, and population
dynamics with respect to pathogen susceptibility. A general description of sex-specific
immune ontogeny as done here is a crucial step in this direction, particularly when it is
considered in the context of a species’ ecology and evolutionary history.
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INTRODUCTION

Ecoimmunology uses an integrative approach to estimate
costs, benefits, and fitness consequences of different immune
defense strategies, and relates variation in immune responses to
phylogeny, sociality, and ecology (Martin et al., 2006; Demas
and Nelson, 2012; Schoenle et al., 2018). Since the emergence
of this discipline, research has focused on how immunity—
the capacity to resist a particular pathogen—affects life history
strategies within species (Brock et al., 2014). Macroimmunology
is a framework within ecoimmunology that considers habitat-
and spatial-specific differences in immune phenotypes across
populations (Becker et al., 2020; Forbes, 2020). While previous
studies have focused on variation in immunity of adult
individuals, immune ontogeny—the development of the immune
system across an individuals’ life span—as a determining factor
for variation and plasticity in immune functioning has remained
largely unexplored (Goenka and Kollmann, 2015). Preliminary
evidence suggests that immunity, but also exposure to immune
challenges, can vary across life stages (Beirne et al., 2016; Peters
et al., 2019). It is also reasonable to assume that sex-specific
differences in development affect immune ontogeny (Love et al.,
2008). Additionally, developmental processes are often sensitive
to environmental cues, and it is plausible that these parameters
also affect immune ontogeny (Martin et al., 2006).

The two branches of the vertebrate immune system, innate
immunity (non-specific immune response) and adaptive or
acquired immunity (specific immune response), share two
response trajectories, the cell-mediated and the humoral
response (Murphy and Weaver, 2018). Vertebrates are born
with functioning immune systems, but immature and adult
individuals differ in immune functionality. These differences in
immunity diminish with increasing age (Dowling and Levy, 2014;
Simon et al., 2015; Georgountzou and Papadopoulos, 2017). After
birth, infants depend mainly on innate immunity because their
exposure to antigens in utero is low or absent (PrabhuDas et al.,
2011; Dowling and Levy, 2014). During the postnatal phase,
the exposure to environmental pathogens stimulates adaptive
immune responses and the immune system becomes less tolerant
(West, 2002; Goenka and Kollmann, 2015; Simon et al., 2015).
There is evidence for ontogenetic changes in immune functioning
in humans, and support for this comes from a recent study
showing a peak in immune functioning between 5 and 14 years
of age (Glynn and Moss, 2020).

Macroimmunology considers variation of environmental
parameters such as resource availability, pathogen exposure
and diversity on a spatial scale and relates this information to
variation in immune system functioning (Becker et al., 2020;
Forbes, 2020). The intensity and diversity of pathogen exposure
during ontogeny is hypothesized to be an important driver
determining adult immunity (McDade, 2003, 2012). Exposure to
fewer but probably novel pathogens is expected to favor innate
over adaptive immune responses. Correspondingly, populations
with high but more familiar pathogen exposure, are predicted
to develop adaptive immunity earlier in life (McDade et al.,
2016). Contrary to these predictions, innate immunity markers
were elevated in human populations with higher pathogen

exposure (McDade, 2003; Teran et al., 2011). Environmental
differences affect cell-mediated responses in adult chimpanzees,
where individuals from a wild population had higher activity of
cell-mediated responses than those living in a zoo environment
(Behringer et al., 2019). Adult phenotypes that effect health
can be the product of differences in developmental processes
in response to environmental circumstances (Bateson et al.,
2004). To consider the modulatory effect of pathogen exposure
on immune ontogeny, comparative data from populations
living in different pathogen environments are needed. One
way to understand immune ontogeny in relation to ecological
pressures and across evolutionary times, is to investigate free-
living, genetically diverse, and energetically limited populations
of animals using ecoimmunological and macroimmunological
approaches (Demas and Nelson, 2012; Forbes, 2020). Comparing
wild and captive populations provides an ideal setting to
investigate environmental drivers of immune ontogeny because
of differences in dietary energy availability and pathogen
exposure. Although wild populations are probably exposed to a
higher quantity of pathogens, zoo-housed animals are in close
contact to humans which may increase the risk of transmission
of zoonotic infections and exposure to new pathogens. This
is particularly relevant for great apes because of their high
susceptibility to human pathogens (Calvignac-Spencer et al.,
2012; Dunay et al., 2018). In addition, zoo-housed populations
usually receive intense medical care when infected, and this
may also affect the strength and quality of their immunity
(Courtenay and Santow, 1989). Furthermore, most zoo-housed
individuals enjoy a superior and more stable energy supply which
permits higher investments into immune system functioning
during ontogeny and adulthood without compromising e.g.,
growth (Urlacher et al., 2018). These differences in intensity and
diversity of pathogen exposure and energy supply between wild
and zoo environments are therefore ideal to test hypotheses about
ontogenetic drivers of adult immunity.

In humans and other mammals, immunity differs between
the sexes. Adult females have fewer infections, stronger antibody
responses, but also greater vulnerability to autoimmune diseases
than males (e.g., Klein and Roberts, 2010; Klein and Flanagan,
2016; Metcalf et al., 2020; but see Kelly et al., 2018). These
differences in immunity are seen as sex-specific trade-offs in
resource allocation favoring immunity or reproduction (Zuk,
2009). Sex hormones with higher concentrations in females
(i.e., estrogens) enhance immune functioning, but those with
higher concentrations in males (i.e., androgens) are thought
to negatively affect immune responses (Zuk, 2009; Fischer
et al., 2015; Kelly et al., 2018) and support behaviors that
make adult males more susceptible to infections (Klein, 2000).
For example, estradiol increases immune responses associated
with pro-inflammatory processes. In contrast, testosterone
biases the specific cell-mediated immune response toward anti-
inflammatory processes (Fischer et al., 2015; Klein and Flanagan,
2016; Fathi et al., 2021). These interactions between sex steroids
and cell-mediated immunity suggest that increases in estradiol
and testosterone with the onset of sexual maturation in females
and males, respectively, can produce similar sex-specific effects
on immune system functioning during development. While sex
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differences in adult immunity are well described, information
about sex-specific immune ontogeny is rare (Fish, 2008; Klein and
Flanagan, 2016). For example, inflammatory processes are higher
in pre-pubertal boys than girls, but after puberty this relationship
is reversed (Yang and Kozloski, 2011; Klein and Flanagan, 2016),
and many vaccinations induce a greater antibody response and
some a greater cell-mediated response in girls than in boys
(Flanagan et al., 2017; Fathi et al., 2021). So far, the few studies
available indicate that immune ontogeny in humans is sex-
specific and we can therefore expect to find similar differences
in the immune ontogeny in non-human primate species.

Like in humans, the life histories of great apes (Hominidae),
humans’ closest living relatives, are characterized by a long
developmental period. Maturation until adulthood accounts for
one third of the total lifespan, the period between the onset of
sexual maturation and first reproduction is relatively long, and
there is a considerable gap between the time when adult body
size is reached and the emergence of reproductive competence
(Lancaster and Hamburg, 2008; Robson and Wood, 2008; Walker
et al., 2018). On an ultimate level, variation in immune ontogeny
is assumed to be affected by a species’ pace-of-life. Apes differ
in their innate immune strategy from monkeys with shorter
lifespans and a faster pace-of-life. The energetically costly strategy
of sterilization over specificity which apes employ is thought to
have evolved as a response to higher risk of pathogen exposure
during their slow life history or past pathogen exposure (Hawash
et al., 2021). So far, studies on the influence of environment
and sex on ontogenetic changes in immunity have focused on
species with short lifespans and fast pace-of-life. In long-lived
species, their long developmental periods provide more time
for adaptive adjustments in life history trade-offs in response
to environmental factors than in short-lived species. Those
adjustments can then lead to a larger variation of functional
immune phenotypes (Simon et al., 2015; McDade et al., 2016).
In this regard, humans are the best studied long-lived species
so far, but many aspects of human immunology have only
been studied in the context of pathologies (McDade, 2003;
Martin et al., 2006; Tieleman, 2018), and studies documenting
the variation in “healthy” immune ontogeny are scarce. The
biotopes inhabited by African apes vary in terms of climate, forest
cover, faunal composition, and in the frequency and intensity
of human contact. Therefore, it is reasonable to assume that
pathogen exposure varies accordingly, and that this manifests
in species-specific resistance and susceptibility to pathogens.
For example, ape species seem to differ in their susceptibility
to simian immunodeficiency virus (SIV) (Gao et al., 1999; Li
et al., 2012), and differences in pathogen exposure have probably
shaped their immune systems (de Groot et al., 2002) and
maybe affect their current distribution (Inogwabini and Leader-
Williams, 2012). Therefore, great apes are an ideal model taxon
to investigate sex-specificities and environmental impacts on
the immune ontogeny of slow-paced species that might explain
variation in disease susceptibility and range distribution within
and between populations.

Within the African great apes, bonobos (Pan paniscus)
and chimpanzees (P. troglodytes) are closely related to each
other, and to humans. Given the importance of developmental

changes for the reconstruction of phylogenetic trends, there is
increasing interest in the postnatal development of bonobos
and chimpanzees (Hare and Yamamoto, 2015; Lee et al., 2020;
Behringer et al., 2020). Yet, information on immune ontogeny
in these species is rare. Bonobos are particularly interesting
for studying immunity and its ontogeny because recent studies
revealed that their major histocompatibility complex (MHC)
class I profile has undergone selection reducing its variability
compared to humans and chimpanzees, presumably due to
selection for malaria protecting MHC allotypes (e.g., Wroblewski
et al., 2017; de Groot et al., 2018; Maibach and Vigilant, 2019).
It is assumed that such a reduction in genetic diversity of the
MHC influences the functioning of immunity in this species
(Sommer, 2005; de Groot et al., 2017). Additionally, the onset of
sexual maturation in female bonobos occurs about three years
earlier than in males (Behringer et al., 2014). Therefore, sex-
specific differences in immune ontogeny are predicted to occur
at different ages.

In our study, we focus on cell-mediated immune ontogeny.
Cell-mediated immunity targets intracellular pathogens such as
all viruses (e.g., Human alphaherpesvirus 3), certain bacteria
(e.g., Mycobacterium leprae and M. tuberculosis), and certain
protozoa (e.g., Plasmodium falciparum and Leishmania spp.)
(Thakur et al., 2019). The activation of cell-mediated immunity
can be assessed by measuring neopterin, a biomarker mainly
produced by monocyte-derived macrophages and dendritic cells.
Neopterin can be readily measured in blood and urine (Fuchs
et al., 1992; Hoffmann et al., 2003; Winkler et al., 2003a), the latter
enabling studies on cell-mediated immunity to be conducted
non-invasively in natural settings with exposure to a natural
set of pathogens.

In this study, we investigated the effects of age, environment
(wild vs. zoo-housed), and sex on cell-mediated immune
ontogeny in bonobos. We measured urinary neopterin as a
marker of cell-mediated immunity in individuals ranging in
age between birth until 18 years of age. Using human studies
as a conceptual benchmark, we considered the impact of age,
environment and sex on immune ontogeny and tested the
following predictions: (1) Age: If the immune system shifts
from predominantly cell-mediated to more humoral responses
during the first years of life, neopterin levels will be elevated in
infant bonobos and decline with age. (2) Environment: If the
pattern of immune ontogeny is plastic in response to pathogen
exposure and energy availability, we expect higher neopterin
levels and a later decline in individuals from wild populations
compared to those from captive populations. (3) Sex: If sex-
specific developmental processes such as the increase of sex
steroid hormones with the beginning of sexual maturation affect
immune ontogeny, we expect neopterin levels to decline about
three years earlier in females than in males.

MATERIALS AND METHODS

Study Sites and Subjects
Between June 2008 and October 2019, 597 urine samples
(female: 375; male: 222) were collected from two wild bonobo
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communities (Bompusa East and Bompusa West community)
at the LuiKotale field site, Democratic Republic of the Congo
(Hohmann and Fruth, 2003). All subjects were habituated to
human presence before the start of the study period and all were
individually known. Samples represent 34 individual females
(average: 11 samples per individual) and 21 individual males
(average: 11 samples per individual). For wild subjects, the
month and year of birth were known for 13 individuals, and
for these we set the date of birth to the 15th of the respective
month. For 12 individuals only the year of birth was known,
and we set the birth date to June 15th of the respective year.
For the remaining 30 individuals exact birthdates are known.
Zoo-housed bonobos were sampled between January 2012 and
September 2018, and 237 urine samples (female: 137; male: 100)
were collected in nine different zoos. These samples represent 49
individual females (average: three samples per individual) and
26 individual males (average: four samples per individual). All
zoo-housed bonobos were of known age and were housed in
mixed-sex groups of different sizes. Age range was 0–18 years of
age for both populations (zoo average: eight years; wild average:
five years). All samples were collected at a time when individuals
did not show symptoms of infection or injury (e.g., running
noses, coughing or sneezing, visible wounds).

Urine Collection
Urine samples were collected opportunistically throughout the
day between 6:00 and 20:00 h. Samples were collected on plastic
sheets or the floor for zoo-housed bonobos, and from vegetation
for wild animals. Samples were protected from direct sunlight
to avoid neopterin degradation (Fuchs et al., 1992; Behringer
et al., 2017) and were excluded when contamination with feces
was detected. In the field, urine samples were frozen in liquid
nitrogen upon arrival at camp on the same day. Zoo samples
were frozen immediately after collection. All urine samples were
transported frozen to the Max Planck Institute for Evolutionary
Anthropology in Leipzig, Germany, and later to the German
Primate Center, Göttingen, Germany for analysis.

Sample Preparation and Neopterin
Measurement
Prior to analysis, urine samples were thawed, vortex-mixed for
10 seconds, and subsequently centrifuged for 5 minutes. We
measured neopterin levels with a commercial neopterin ELISA
kit (Neopterin ELISA, Ref. RE59321, IBL International GmbH,
Hamburg, Germany), previously validated for use with bonobo
urine (Behringer et al., 2017). Initially, we determined specific
gravity (SG) in all samples using a digital handheld refractometer
(TEC, Ober-Ramstadt, Germany). SG population average was
1.005 for zoo-housed individuals, and 1.011 for wild bonobos.
Highly diluted samples with a SG of <1.003 were excluded from
the data set (N = 28). Prior to neopterin measurement, urine
samples were diluted (1:10–1:200 depending on SG) with the
provided assay buffer, and samples were measured in duplicate
according to the supplier’s instructions (for details see Behringer
et al., 2017). Inter-assay variation for high- and low-value
quality controls was 5.8 and 6.1% (N = 28 assays), respectively.

Intra-assay variation was 6.4%. All neopterin concentrations
were adjusted for variation in urine volume and concentration
using the samples’ specific gravity (SG) value (Miller et al.,
2004). Final neopterin concentrations are expressed in ng/ml
corrected for SG.

Statistics
Expecting age-related but non-linear patterns in urinary
neopterin levels, we fitted a generalized additive mixed model
(GAM) (Wood, 2011) with gaussian-identity link function
using R (R Development Core Team, 2008) to our data.
The GAM is composed of a sum of smooth functions of
covariates and provides a structure for generalizing a general
linear model by allowing additivity of non-linear functions
of the variables (Wood, 2004, 2017; Ravindra et al., 2019).
We used the R package “mgcv” version 1.8–27 (Wood, 2017)
to investigate age-related changes in urinary neopterin from
birth through early adulthood (18 years of age). Urinary
neopterin levels were log-transformed. Sex and environmental
condition (zoo-housed, wild) were included as ordered factors,
and daytime of sample collection as a control predictor. To
model changes in neopterin levels with age, we included age
as a smooth term with a penalized cubic regression. We
included interaction-like terms of age with sex, and age with
environmental condition by using the “by” argument to the
smooth term (Wood, 2017). To control for time between
sample collection until measurement, we included sample storage
time as a smooth term. Sample storage time ranged between
6 months and nearly 12 years. Because sex and environmental
condition are ordered factors, an indicator vector is generated
for each level, but not for the first level of the ordered
factor. Individual identity and zoo/community were included as
random effects to account for unequal and repeated sampling
of individuals across ages and environments, and both were
included in random slopes with age. The basis dimension, k
was set to 5. The choice of basis dimensions determines the
maximum possible degrees of freedom allowed for each model
term (Wood, 2017). To control for the potential influence
of time of sample collection, this parameter was included
as a fixed effect in the model as a control predictor. To
investigate sex differences, we ran a difference plot using
the package “itsadug” (van Rij et al., 2020) implemented in
the R package “mgcv.” Differences between the sexes were
estimated from the GAM model, in which the smooth term
for the difference between males and females is calculated,
including confidence intervals (CIs). We compared the full
with the null model using “CompareML.” The null model
included only the control and random factors, as well as
random slopes. Diagnostics were done using “gam.check.”
Model assumptions were assessed by visual inspections of
a histogram, a q–q plot of the residuals, and by plotting
residuals against fitted values and basis dimension. The
lowest k-index <1 was 0.43 and all other model assumptions
were met. Concurvity, the situation where a smooth term
can be approximated by some combination of the others,
was not an issue.
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FIGURE 1 | Log-transformed urinary neopterin levels corrected for specific gravity (corr. SG) obtained from wild (left) and zoo-housed (right) bonobos in relation to
chronological age at sampling. Each filled circle represents a sample: females in red, males in blue. Lines represent the fitted sigmoidal model for the data set.
Shaded areas represent bootstrapped 95% confidence intervals for expected urinary neopterin levels. Total N = 806 urine samples, Nwild = 578 samples,
Nzoo−housed = 228 samples.

FIGURE 2 | Log-transformed urinary neopterin levels corrected for specific gravity (corr. SG) obtained from wild and zoo-housed female (red) and male (blue)
bonobos in relation to chronological age at sampling. Each filled circle and vertical black line at the buttom represents a sample. Lines represent the fitted model for
the data set. Shaded areas represent bootstrapped 95% confidence intervals for expected urinary neopterin levels. Total N = 806 urine samples, Nfemale = 495
samples, Nmale = 311 samples.

RESULTS

The full—null model comparison revealed significance (Df = 10;
p < 0.001). From birth until the age of five, urinary
neopterin levels declined significantly and progressively with
age and remained mostly stable at older ages (Figures 1, 2).

Environmental conditions did not explain differences in
neopterin levels in our data set (Table 1 and Figure 1,
Penvironment = 0.924) or changes in urinary neopterin levels with
age (Table 1 smooth terms and Figure 1). Sex did not predict
neopterin levels in our dataset (Table 1, Psex = 0.865), but
the smooth function for the interaction-like term for age with
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sex was significant. This indicates that age-related changes of
urinary neopterin levels differ between the sexes (Table 1 smooth
terms and Figure 2). Independent of the environmental context,
urinary neopterin levels were significantly higher in males than in
females during the first three years of life (Figure 3). This pattern
reversed at around six years when neopterin levels of females
increased successively until they became significantly higher than
the levels of males (Figure 3).

DISCUSSION

In this study we used urinary neopterin as a biomarker to
investigate the effects of age, environment, and sex on cell-
mediated immune ontogeny across the first 18 years of life
in the bonobo, a long-lived primate species with a slow
life-history. As predicted, urinary neopterin values declined
progressively from birth until the age of approximately five years,
after which they remained mostly stable at low levels. In
contrast to our expectations, urinary neopterin levels were not
influenced by environmental condition nor were changes with
age environment-specific. However, sex influenced the pattern of
age-related neopterin levels, with males having higher neopterin
levels than females in the first three years of life and lower levels
between six and eight years of age.

Neopterin Levels Decline With Age
In wild and zoo-housed bonobos, urinary neopterin levels
declined after birth and stabilized between four and five years
of age. These age-related changes in urinary neopterin levels of
immature bonobos are in line with data from humans (Fuchs
et al., 1992; Winkler et al., 2003a; Girgin et al., 2012). The decline
in neopterin levels may represent the shift from predominantly
cell-mediated toward more humoral immune responses during
immune ontogeny. This could be verified by assessing humoral
immunity markers, but this is challenging in non-invasive
samples like urine.

Neopterin is produced by activated macrophages and
monocytes, when these immune cells are stimulated by the
cytokine interferon gamma (Fuchs et al., 1993; Murr et al.,

TABLE 1 | Estimates of parametric coefficients and effective degrees of freedom of
smooth terms for urinary neopterin levels in bonobos between birth and 18 years
of age (generalized additive model, R2 = 0.22, deviance explained = 24.4%).

Parametric coefficients Estimate SE P-value

Intercept 5.22 0.23

Environmental condition (zoo) −0.02 0.02 0.924

Sex (male) −0.01 0.08 0.865

Daytime −0.01 0.03 0.625

Smooth terms Edf P-value

Storage time 2.78 0.013

Age 3.37 <0.001

Age × environment (zoo) 1.00 0.274

Age × sex (male) 3.19 0.018

Statistically significant results (P ≤ 0.05) appear in bold.

2002) and other stimuli such as lipopolysaccharide (Troppmair
et al., 1988; Sghiri et al., 2005; Mosser and Edwards, 2008).
Importantly, interferon gamma is produced by adaptive immune
cells (specifically T helper cells type 1) in response to intracellular
infections (Murr et al., 2002) and by innate immune cells such
as natural killer cells (Yu et al., 2006). Therefore, neopterin
secretion represents both innate and adaptive immune responses.
Both types of immune responses will be challenged frequently
during early development when the organism is confronted
with pathogens for the first time (Winkler et al., 2003a,b).
Consequently, changes in neopterin levels during ontogeny
reflect the activation of cell-mediated immunity but cannot
be used to distinguish between the activation of innate and
adaptive immune responses. The higher urinary neopterin
levels in the first five years of life in bonobos therefore
indicate that infant bonobos rely predominantly on cell-mediated
immunity during infancy and that humoral immune responses
become more important with time. A more differentiated view
of immune ontogeny requires additional markers of specific
immune responses, in particular, humoral immune responses,
but many of these markers can so far only be measured in
blood samples. Our results on bonobo immune ontogeny are
not only interesting in the context of ecoimmunology, but they
also have practical implications for conservation efforts of this
endangered species, given that the transmission of diseases,
particularly respiratory diseases, threatens wild and zoo-housed
ape populations (e.g., King et al., 2005; Leendertz et al., 2006;
Scully et al., 2018). As immature apes are important vectors of
disease transmission within social groups (Kuehl et al., 2008),
identification of sensitive windows during immune ontogeny can
support management and conservation efforts.

Neopterin Levels Are Independent of
Environmental Context
Contrary to our predictions, cell-mediated immune ontogeny
in bonobos was not affected by environmental conditions.
Urinary neopterin levels in wild and zoo-housed bonobos
showed comparable changes with age, suggesting that these
aspects of immune ontogeny during early life are stereotypic
and more determined by genetic factors than modulated by
environmental factors. This result corresponds with findings in
humans. Only small differences in immune functioning (blood
cultures and cytokine assays) were found between children
growing up in urban vs. rural environments in the Tropics
(Teran et al., 2011), which are also expected to differ in
pathogen exposure. In the first three months of life, early
immune ontogeny was found to follow a stereotypical pattern,
and within this time, pre-term and term children converged
on a shared trajectory (Olin et al., 2018). Other environmental
factors, such as early-life adversity and/or early-life stress,
are known to affect immune ontogeny and have long-term
consequences on immune responses (Garner et al., 2015; Danese
and Baldwin, 2017; Brenhouse et al., 2018). For example,
humans that were subject to early-life adversity during childhood
show greater cell-mediated inflammatory reactions (Altemus
et al., 2003), and a higher pro-inflammatory state in adulthood
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FIGURE 3 | Estimated differences in age-related urinary neopterin levels for male and female bonobos. Negative values represent higher neopterin levels in males
and positive values represent higher neopterin levels in females. Age periods with significantly different neopterin levels between the sexes are indicated in red: Males
have significantly higher neopterin levels between 0.4 and 2.7 years of age, while females have significantly higher levels between 5.9 and 7.7 years of age. Total
N = 806 urine samples.

(Baumeister et al., 2016). Considering variation in the social
environment will contribute to interpret individual differences in
immune ontogeny in apes.

The finding that urinary neopterin levels in wild and zoo-
housed bonobos are similar was unexpected because neopterin
levels of adult wild chimpanzees were found to be significantly
higher than those of zoo-housed individuals, and this finding
was assumed to reflect environmental differences in pathogen
exposure (Behringer et al., 2019). Interestingly, urinary neopterin
levels of immature bonobos (both zoo-housed and wild around
360 ng/mL corr. SG) in our study were on average nearly half
of those of immature wild chimpanzees [average 759 (ng/mL
corr. SG)] (Löhrich et al., 2018). This difference could indicate
species-specific differences in immune functioning, different
past and current environmental conditions, or a combination
of both. While some wild chimpanzee populations live in
fragmented habitats and in close vicinity to human settlements
(e.g., Hockings et al., 2009; McCarthy et al., 2017; Garriga
et al., 2019), bonobos inhabit large forests tracts where human
population densities are very low and human encroachment
is of modest intensity (IUCN and ICCN, 2012). Accordingly,
direct contact between bonobos and humans and hence exposure
to human-transmitted pathogens may be much lower than for
most populations of chimpanzees and gorillas (Devaux et al.,
2019). High neopterin levels in wild chimpanzees compared
to bonobos might therefore reflect human-associated or other
habitat-specific conditions in virus prevalence. Additionally, low
neopterin levels in bonobos compared to chimpanzees could

also indicate past selection for elevated immune resistance
toward specific pathogens in bonobos. African apes differ in
their susceptibility to Plasmodium parasite species which cause
malaria. In humans, malaria infections increase neopterin levels
when cell-mediated immune responses are mounted against these
intracellular parasites (Brown et al., 1990, 1991; Fuchs et al.,
1992; Biemba et al., 2000; te Witt et al., 2010). Wild chimpanzees
also suffer from malaria infections, caused by a diversity of
Plasmodium species (De Nys et al., 2014; Otto et al., 2014; Herbert
et al., 2015) and likely have the same neopterin response to this
infection as humans.

Although, bonobos live in an area of high malaria prevalence,
malaria infections are almost absent in bonobos (Krief et al., 2010;
Liu et al., 2017), presumably due to past selection for particular
malaria protecting MHC allotypes (Sanchez-Mazas et al., 2017; de
Groot et al., 2018). The low neopterin levels of bonobos compared
to chimpanzees reported in this study might therefore be a result
of malaria resistance and/or reflect more profound differences in
immune functioning between the species. Other viruses known
to increase neopterin levels also differ in prevalence between
humans, chimpanzees and bonobos. Human immunodeficiency
virus infections markedly increase neopterin levels in humans
(Fuchs et al., 1992), and a similar immune response is reported
for macaques infected with the related simian immunodeficiency
virus (SIV) (Higham et al., 2015). SIV infections are common and
widespread in wild chimpanzees (Gao et al., 1999; Li et al., 2012),
but no bonobo sample from the wild or sanctuary has tested
positive for SIV (Li et al., 2012; Medkour et al., 2021). Therefore,
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low neopterin levels in wild bonobos could also reflect differences
in SIV prevalence between these species.

Based on our findings, we hypothesize that the low levels
of urinary neopterin in immature wild bonobos could be
explained by a lower prevalence of intracellular pathogens in their
environment. If the bonobo immune system is adapted to familiar
pathogens prevalent in their environment (i.e., malaria), then it
is possible that infections with these pathogens do not elicit a
strong immune response (old friends hypothesis, see Rook et al.,
2003), and that certain aspects of their immune system function
differently because of these past selection events (Sommer, 2005;
de Groot et al., 2017).

However, the low urinary neopterin levels reported in
our study could also reflect prevalence, frequency, and type
of pathogens specific to our study population that are not
representative of bonobos as a species, or are specific to younger
individuals. Additional studies are therefore needed to determine
if this species difference in neopterin levels persists in adult
bonobos, and if acute neopterin responses to specific pathogen
infections differ between wild bonobos and chimpanzees.
Examining broad differences in pathogen susceptibility and
prevalence between the two species and how they shape species-
specific age-related immune patterns will require integrating
neopterin measurements with local disease ecology of wild
bonobos and chimpanzees living in diverse habitats.

The bonobo-chimpanzee-human comparison can serve as a
model to investigate consequences of past selection pressures
on present immune systems, highlighting extant species-
specific differences in immune ontogeny and functioning.
Immune system differences between the species might reflect
consequences of past environmental changes and isolation of
certain populations. For example, the selection for malaria
resistance in bonobos might have resulted in a greater
susceptibility to viruses and/or other pathogens, therefore
limiting species distribution to specific habitats (Inogwabini
and Leader-Williams, 2012). These differences may have had
far reaching consequences for the adaptive potential to new
environments during the evolution of these species. Today, these
immunological differences might also impact current risks of
extinction because of changing disease landscapes with climate
change and globalization.

Changes in Neopterin Levels During
Ontogeny Are Sex-Specific
We found support for our prediction that differences in the
age of onset of reproductive maturation should influence sex-
specific patterns of cell-mediated immune ontogeny. Compared
to females, males had higher neopterin levels during the first
three years of life, and lower levels between the ages 6–
8 years. There are various, not mutually exclusive, explanations
for the sex differences in neopterin levels, including effects of
steroid sex hormones, sex-biased maternal investment, genetic
disposition, and differences in maturation pace. Testing them
remains an interesting but challenging topic for future work.
Sex-biased maternal investment in offspring until weaning age
is a widespread phenomenon in animals e.g., apes (Boesch,

1997) monkeys (Hinde, 2009), voles (Koskela et al., 2004), and
ungulates (Hewison and Gaillard, 1999). Apart from maternal
effects caused by caregiving behavior (Bercovitch, 2002; Koskela
et al., 2004), maternal milk composition may vary in relation to
offspring sex (Hinde, 2009; Galante et al., 2018). Of particular
relevance to immune ontogeny is the finding that human mothers
provide less secretory immunoglobulin to sons than to daughters
with their milk (Fujita et al., 2019). Intriguingly, the sex-specific
differences in neopterin levels found in our study diminish
around weaning age in apes (de Lathouwers and Van Elsacker,
2006; Fahy et al., 2014; Bãdescu et al., 2016). Thus, it is tempting
to speculate that the early life sex differences in bonobo neopterin
production reflect lower activation of cell-mediated immunity in
breastfeeding female offspring caused by the higher availability of
immunoglobulins through breastmilk.

Between six and eight years of age female bonobos showed
significantly higher neopterin levels than males. This timing
corresponds to the onset of sexual maturation in female bonobos,
which occurs on average three years earlier than in male bonobos.
In humans, the onset of sexual maturation affects immune
responses and the corresponding increases in sex hormone levels
seem to be potent immune system modulators (Fischer et al.,
2015; Klein and Flanagan, 2016). The onset of maturation in
female bonobos, indicated by rising testosterone levels, happens
around 5–6 years of age (Behringer et al., 2014). Rising estrogen
levels during puberty are suspected to increase inflammatory
immune responses in girls (Flanagan et al., 2017) and this could
possibly be associated with elevated neopterin levels at this age.
The same mechanism could be responsible for the elevated
neopterin levels in maturing bonobo females. Another possible
explanation is that the change of neopterin in adolescent females
is stimulated by exposure to novel pathogen environments. At the
age of 5–6 years, females start to emigrate from their natal group
by visiting neighboring groups until they become an established
resident in one of them (Lee et al., 2020; Sakamaki et al., 2015).
In the process, they are probably in contact with a large number
of unfamiliar individuals and this may expose them to new
pathogens (Ryu et al., 2020). But as the effect was also seen in zoo-
housed female bonobos, increased pathogen exposure may not be
the proximate cause for increased neopterin levels at this age. To
conclude, our findings indicate that hormonal changes with the
onset of sexual maturation potentially influence the timing and
magnitude of shifts in cell-mediated immune system responses
during development in bonobos.

CONCLUSION

We investigated the effects of environment and sex on cell-
mediated immune ontogeny from birth to adulthood in a long-
lived primate using urinary neopterin. Our results suggest that
cell-mediated immune ontogeny follows a stereotypical pattern
in the first years of life that is unaffected by environmental
context but differs between the sexes. The findings contrast
hypotheses predicting that differences in pathogen exposure and
energy availability during ontogeny affect immune ontogeny and
cause differences in adult immune functioning. Our results also
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indicate that sex can be an important, yet often overlooked
factor shaping patterns of immune ontogeny. We propose that
sex biases in maternal investment and changes in androgenic
and estrogenic hormone levels associated with the onset of
sexual maturation are drivers for sex-specific differences in cell-
mediated immune ontogeny. In comparison to wild immature
chimpanzees, wild immature bonobos had low neopterin levels.
These macroimmunological differences between the species
can be caused by adaptive genetic differences in immunity,
environmental pathogen exposure, and interactions between
these factors. In conjunction these findings highlight that a
species’ ecology and evolutionary history should be considered
when interpreting species differences in immune functioning.

Our findings are relevant for ecoimmunology and
macroimmunology because current hypotheses emphasize
environmental factors during ontogeny in shaping adult immune
functioning. The results of our study indicate that genetic and
sex-specific processes are also important and future studies
should take them into account. This can be achieved by
integrating hormone measurements, behavioral observations,
and assessment of specific pathogen exposure with genetic and
immunological data.

By comparing bonobos, chimpanzees, and humans, we can
investigate the extent of species-specific differences in immune
ontogeny and functioning among closely related hominids.
Underlying differences may have resulted from past selection
pressures on immune systems and may have had far reaching
consequences for the adaptive potential during the evolution
of these species. These evolutionary signals might also make
certain species more vulnerable to extinction as climate change,
globalization, and increasing human contact are currently rapidly
transforming disease landscapes.

We are aware that our study has looked at only one aspect of
immunity with a functional biomarker that indicates activity of
only a part of the cell-mediated immune response. Therefore, our
conclusions are limited to this aspect of immune ontogeny, and
do not necessarily translate directly to other aspects of immunity.
In the future, studies should try to measure a complementary
set of biomarkers that provide specific information about
certain aspects of immune functioning. This means that current
methods have to be adapted and extended for their use in non-
invasive samples.

Investigating the causes and consequences of variation in
immunity throughout life is critical for our understanding of life-
history, sexual selection and population dynamics. Insights into
immune ontogeny are a crucial step in this direction, but they
need to be investigated in the context of a species’ ecology and
evolutionary history. The frameworks of ecoimmunology and
macroimmunology offer crucial guidance for these endeavors,
and clinical research about the developmental origins of health
and disease can benefit by integrating these different viewpoints.
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