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Time-resolved diffuse scattering experiments have gained increasing attention due to their poten-
tial to reveal non-equilibrium dynamics of crystal lattice vibrations with full momentum resolution.
Although progress has been made in interpreting experimental data on the basis of one-phonon scat-
tering, understanding the role of individual phonons can be sometimes hindered by multi-phonon
excitations. In Ref. [arXiv:2103.10108] we have introduced a rigorous approach for the calculation
of the all-phonon inelastic scattering intensity of solids from first-principles. In the present work,
we describe our implementation in detail and show that multi-phonon interactions are captured effi-
ciently by exploiting translational and time-reversal symmetries of the crystal. We demonstrate its
predictive power by calculating the diffraction patterns of monolayer molybdenum disulfide (MoS3),
bulk MoS2, and black phosphorus (bP), and we obtain excellent agreement with our measurements
of thermal electron diffuse scattering. Remarkably, our results show that multi-phonon excitations
dominate in bP across multiple Brillouin zones, while in MoS2 play a less pronounced role. We
expand our analysis for each system and we examine the effect of individual atomic and interatomic
vibrational motion on the diffuse scattering signals. Our findings indicate that distinct features are
explained by the collective displacement of MoS and specific pairs of P atoms. We further demon-
strate that the special displacement method reproduces the thermally distorted configuration which
generates precisely the all-phonon diffraction pattern. The present methodology opens the way for
high-throughput calculations of the scattering intensity in crystals and the accurate interpretation

of static and time-resolved diffuse scattering experiments.

I. INTRODUCTION

Nonequilibrium phenomena as diverse as phase tran-
sitions, polaron formation, electrical and thermal man-
agement in semiconductor devices, all derive from mi-
croscopic interactions between electrons and phonons,
spins and phonons, as well as phonons with phonons [1-
4]. Our understanding of such phenomena hinges on the
development of joint experimental and theoretical tools
which can access these interactions at the mode-resolved
level with sufficient temporal resolution. Towards this
goal, exciting methodological developments were recently
achieved on the experimental side with structural probes,
either using Femtosecond X-ray Diffuse Scattering or
Femtosecond Electron Diffuse Scattering (FEDS) [5-14].
For the first time, these methods yield access to nonequi-
librium phonon populations in momentum space, beyond
the zone-center modes traditionally accessible with opti-
cal spectroscopies.

In these experiments, the observable depends on the

* marios.zacharias@cut.ac.cy

T ernstorfer@fhi-berlin.mpg.de

temporal evolution of the scattering intensity I(Q,t),
where Q is an arbitrary scattering wavevector determined
by the difference in momentum of the incident and scat-
tered radiation. The key information obtained is the
changes in the diffracted intensities, as they reflect how
different phonons get populated as a function of time
t. In FEDS, these changes are visualized by computing
the difference diffraction pattern AI(Q,t) [13, 15]. In
Figs. 1(a) and (b) we present a schematic illustration of
FEDS and an exemplary AT(Q,t) of bulk molybdenum
disulfide (MoSs). The left subplot in Fig. 1(b) simply
shows the diffraction intensity as collected on the detec-
tor. Each Q on this pattern can be expressed as a sum-
mation of a Bragg peak vector G (centers of the Bril-
louin zones), and reduced phonon wavevectors q. The
right subplot shows AI(Q, 100 ps) and displays a hot but
thermalized distribution of phonons in the MoS, sample.
The blue/red features represent a decrease/increase in
the signal due to Bragg/diffuse scattering. The larger
the intensity of the red features indicates regions of re-
ciprocal space with higher phonon scattering probability.
Recent works have shown that AI(Q,t) can change pro-
foundly and qualitatively as time evolves, reflecting non-
thermal lattice dynamics [7, 9, 13]. Phonon populations
typically evolve towards a hot, but thermal distribution
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FIG. 1. (a) Schematic illustration of FEDS experiment on
bulk MoS2. More details about the setup can be found in
Sed. IITA and Ref. [16]. (b) Exemplary diffraction pattern
of bulk MoSz. Left subplot shows the raw diffraction pat-
tern as collected on the detector. G indicates the Bragg
peak vector (110), q the reduced phonon wavevector and
Q = G + g the scattering vector. A hexagonal Brillouin
zone with the high-symmetry points I, K, and M are also
shown. Right subplot shows the difference diffraction pat-
tern AI(Q,100ps) = I(Q,100ps) — I(Q,t < to), where
I(Q,t < to) is the average diffraction pattern prior to pho-
toexcitation.

[e.g. right subplot of Fig. 1(b)] with a highly material-
specific timescale.

Although FEDS measurements possess a wealth of
information, data interpretation is rather complex due
to the energy-integrated nature of the experiment and
the multiple scattering phenomena involved. There-
fore, before analysing the highly non-equilibrium phonon
distributions, it is necessary to fully understand ther-
mal diffuse scattering, i.e., inelastic scattering induced
by phonons, using first-principles calculations. Recent
first-principles calculations of diffuse diffraction [10, 12—
14, 17-19] rely on the quantum theory of one-phonon
scattering [20, 21]. Despite their great success in explain-
ing some of the main features in the diffraction pattern,
one-phonon interactions are considered inadequate to ex-
plain diffuse scattering at large |Q| and/or high temper-
atures [21, 22]. In fact, in these cases, the intensity con-
tributed by multi-phonon can become comparable with,
and even larger than, that of one-phonon excitations. A
multi-phonon process occurs when the momentum trans-
fer to the beam in a single scattering event is specified
by more than one phonons. Other mechanisms that
contribute to diffraction signals, usually forming a dif-
fuse background, are multiple-phonon interactions (i.e.
more than one electron scattering events [21]), inelastic
scattering on plasmons and defects, or surface imperfec-
tions making the role of multi-phonon scattering incon-
clusive [23]. This situation highlights the need for com-
putational tools that directly probe multi-phonon con-
tributions and, in essence, go a step forward to extract
phonon population dynamics across the entire Brillouin
zone [12].

In Ref. [22] we have introduced a methodology for the
calculation of the all-phonon scattering in solids, which
enables us to single out the contribution of phonon in-

teractions, and thus isolate their scattering signatures.
In the present work, we further validate our implementa-
tion by first calculating one- and multi-phonon diffraction
patterns of monolayer MoS,. Using the same system, we
also demonstrate that the special displacement method
(SDM) [24, 25] can provide an alternative route for the
assessment of multi-phonon contributions. We then ap-
ply our technique for the calculation of bulk MoS,; and
black phosphorus (bP) diffraction patterns and obtain
excellent agreement with experiment. Importantly, our
results reveal that multi-phonon interactions are more
manifested in bP than in MoSs. For all systems, we
also analyse the response of elastic and inelastic scat-
tering to individual atomic and interatomic thermal mo-
tion. Our findings reveal that collective displacements
of specific pairs of atoms are responsible for the distinct
features observed in the scattering signals. Although this
work focuses on a comparison between theory and FEDS
measurements, we emphasize that the developments pre-
sented here are fully applicable to X-ray, or neutron, dif-
fuse scattering.

The organization of this manuscript is as follows: in
Secs. ITA and IIB we describe the theory of quantum
mechanical scattering in solids and derive the main equa-
tions used to evaluate the respective phonon contribu-
tions. In Sec. IIC and Appendix A we demonstrate that
SDM can serve as an equivalent, but different, approach
for calculating the all-phonon scattering intensity. In
Sec. ITD we describe the Einstein model for diffuse scat-
tering. Sections IIT A and IIIB report all experimental
and computational details of the measurements and cal-
culations performed in this work. In Sec. IV we present
our results for three semiconductors. More specifically in
Sec. IV A we report scattering intensity calculations of
2D MoS, using the exact theory, special displacements,
and the Einstein model. In Secs IV B and IV C we re-
port the phonon scattering intensities of bulk MoSs and
bP, respectively, and compare our calculations of the dif-
ference diffraction patterns with experiment. The results
are accompanied by an analysis of the multi-phonon con-
tribution across multiple Brillouin zones, as well as of the
diffuse scattering signatures of individual atomic and in-
teratomic thermal motion. Our conclusions and outlook
are presented in Sec. V.

II. THEORY

In this section we present the theoretical framework
underpinning the evaluation of mutli-phonon scattering
intensity. Starting from the Laval-Born-James [26-28]
theory, we derive the zero-phonon, one-phonon, and all-
phonon scattering intensities in the harmonic approxi-
mation. We also demonstrate that exact diffraction pat-
terns can be evaluated using SDM in the limit of dense
Brillouin sampling. We stress that all subsequent ex-
pressions apply for electron, X-ray, and neutron diffuse
scattering under the assumption of the kinematic approx-



imation [21]. In the following we adopt a similar notation
as in Ref. [29].

A. Scattering intensity

Based on the adiabatic formulation of the quantum
mechanical scattering theory, originally developed by
Laval [26], Born [27], and James [28] (LBJ), the intensity
of the wave scattered by the atoms in a crystal is given
by [30]:
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Here the many-body electron-nuclear system is decribed
in terms of the Born-Huang expansion [31], with | X,)
and | Xg,,) representing the initial » and final m Born-
Oppenheimer vibrational states which are associated
with electronic states denoted by the Greek indices «a
and 8. The summations run over all atoms & in the unit
cell and over all p indices of the direct lattice vectors R,,.
The lattice vectors define a Born-von Karman supercell
which contains N, unit cells. The atomic scattering am-
plitude is denoted by f,(Q) and is evaluated at the scat-
tering vector Q. The displacement vector of the atom x
from its equilibrium position vector 7,; is represented by
ATy.. We note that for generality and brevity reasons,
the scattering intensity 7(Q) is expressed in scattering
units depending on the probe-sample interaction [30].

If we set the initial and final electrons in their Born-
Oppenheimer ground state, i.e. o« = § = 0, perform
the summation over all final vibrational states of the
scatterer in Eq. (1), and use the closure relationship
> m | Xom) (Xom| =1, then we obtain:

I0n(Q) = (Xon| ITH(Q) [Xon) (2)

where
2
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represents the scattering intensity arising from an instan-
taneous atomic configuration defined by the set of atomic
displacements {AT,.}. We note that setting the elec-
tronic states at their ground level is justified for a system
at thermal equilibrium before, and after, diffraction [27].
The LBJ scattering intensity at finite temperature T
is obtained from Eq. (2) by taking the ensemble average
over all possible configurations of the nuclei. That is:

Q1) = 5 3 exp(-Fon/lsT) Ion(@), ()

where FEy, stands for the energy of the nuclear state
| Xon), Z = >, exp(—FEo,/ksT) is the canonical par-
tition function, and kg is the Boltzmann constant. The

above relation can also be recognized as the Williams-
Lax [32, 33] thermal average of the scattering intensity.
This can be understood by writting the scattering inten-
sity as a Fermi Golden rule [similar to Eq. (3) of Ref. [25]],
consider no electronic excitations, and integrate over the
energy transfer to the crystal [20].

B. Exact evaluation: Zero-phonon, one-phonon and
all-phonon scattering intensities

Now, starting from Eq. (4) and employing the har-
monic approximation, we derive the formulas of the
zero-phonon (elastic scattering), one-phonon and multi-
phonon (inelastic scattering) contributions. To this aim
we adopt the normal mode coordinate formalism and first
write the atomic displacement vector as:

M, 1/2 n
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where zy, are the complex-valued normal coordinates
associated with the mode of reduced wavevector q and
branch index v, M, is the mass of the xth atom, and My
is the atomic mass unit. The phonon polarization vector
of the normal mode is denoted as e, (q) with Cartesian
components €4, (q).

In the framework of the harmonic approximation, the
nuclear wavefunction |Xy,) is expressed as a Hartree
product of uncoupled quantum harmonic oscillators and
the nuclear energy Fp, as a summation over the as-
sociated energy quanta. Writing the harmonic oscilla-
tors in terms of Hermite polynomials and employing the
Mehler’s sum rule [34] leads to the following integral form
for the LBJ scattering intensity [25, 35]:

1Q,7) = (I'"(Q)) (6)

T

dZV_Z 2 /02 -
:H/%e a2/ 107} (Q).

Here (.), represents the ensemble thermal average which
is taken as a multidimensional Gaussian integral over the
normal coordinates in the same way with a Williams-
Lax observable in the harmonic approximation [36]. The
widths of the Gaussians are determined by the mode-
resolved mean-square displacement of the atoms at tem-
perature T":

9 h
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where ng, (T') represents the Bose-Einstein occupation of
the phonon with frequency wq,. We note that Eq. (7)
is indefinite for the zero-frequency translational modes
(accoustic modes at I'). These modes do not impose any
change on the properties of the lattice and thus the as-
sociated mean-square displacement can be set to zero.



The exact expression for the calculation of the
temperature-dependent scattering intensity is obtained
with the aid of the Bloch identity [20]:

2
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Hence, combining Eqgs. (3) and (6) yields:
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By replacing now AT,. with the normal-coordinate
transformation of Eq. (5), considering translational

invariance of the lattice, and wusing the identity
<qu,zq o >T = uay dqq’,vv’, We obtain the following com-
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pact form for the LBJ (or all-phonon) scattering inten-
sity [37]:
(@1) = N, T3 QU@
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In this formula the exponent of the Debye-Waller factor
is defined as:

~Wh(Q,T) = - NM 3 Qe (@), (11)
qeB,v
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and the exponent of the phononic factor as:
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Here the summations are restricted to: (i) the group B
containing phonons with wavevectors that lie in the Bril-
louin zone and are not time-reversal partners, and (ii)
the group A containing phonons that remain invariant
under time-reversal [25]. Re[.] represents the function
that returns the real part of the argument inside the
square brackets. Combining the partitioning of phonons
in groups A and B with the use of translational symmetry
of the crystal enables the efficient calculation of the all-
phonon diffuse scattering intensity. This aspect is central
in this manuscript and allows for the rapid assesment of
multi-phonon excitations. The summations over different
pairs of atoms in Eq. (10) can be conveniently partioned
into different parts to examine individual (kx = ') and
distinct (k # k') scattering contributions [38].

Physically, the Debye-Waller factor, e="=, determines
the attenuation of the scattering intensity at tempera-
ture T owing to the vibrational motion of atom k. The
phononic factor, e’»=" includes all-phonon contribu-
tions to diffuse scattering associated with the individ-
ual or combined thermal motion of atoms x and «' in
unit cell p. For example, the zero-phonon, Iy, and one-
phonon, I, contributions are obtained by retaining the
zeroth and first-order terms in the Taylor expansion of
efrrs’ [20]. Hence, if we use the standard sum rule
>, exp(iQ-Ry) = N, dq,g, where G is a reciprocal lat-
tice vector and observe that Iy(G,T) = Io(-G,T), we

(

can write the zero-phonon, or Bragg scattering, term as:
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This expression is directly related to the Laue’s inter-
ference condition and has very sharp maxima whenever
Q = G, or reduces to zero otherwise.

Similarly to the zero-phonon term, one can obtain a
compact formula for the one-phonon contribution to the
scattering intensity by following a straightforward, but
more lengthy, derivation. The final result is:

T) =N, 3 £u(Q)f5(Q)°
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C. All-phonon scattering intensity using the
special displacement method

Recently, it has been shown that any Williams-Lax
thermal average in the form of Eq. (6) can be evaluated
using the special displacement method (SDM) developed
by Zacharias and Giustino (ZG) [24, 25]. SDM amounts
to applying ZG displacements on the nuclei away from



their equilibrium positions given by [25]:
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In the above relation the amplitudes of the normal co-
ordinates entering Eq. (5) are set to |zqu| = uqu, and
their signs to Sq,,. For practical calculations, the choice
of signs is made such that the following function is min-
imized:

E{Sq}, T)= (16)
Z Z Re[ena,u(Q)eZ’a’,u' (Q)]“quuqv/sququ/

fe, qeB
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We note that the above function reduces exactly to zero
in the limit of dense Brillouin zone sampling, since all
summands inside the modulus remain nearly the same
and have opposite sign for adjacent g-points [25]. More
details about the allocation of the signs Sq, , as well as the
ordering of phonons for the construction of ZG displace-
ments are given in Sec. IIIB. Minimization of Eq. (16)
guarantees that: (i) the error in the calculation of the
temperature-dependent observable is eliminated, and (ii)
the quantum mechanical anisotropic displacement tensor
of the atoms, defined as [39]

2My N
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is recovered. This quantity also determines the ther-
mal ellipsoids of the crystal and its diagonal elements
are closely related to the exponent of the Debye-Waller
factor given by Eq. (11).

The calculation of the scattering intensity at finite
temperatures using SDM requires to simply set A7, =

ATIZ,S in Eq. (3), and thus calculate Eq. (4) for a single

distorted configuration. That is:
2
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The proof that the Williams-Lax thermal average of a
generic observable can be evaluated using the ZG dis-
palcements is provided in Ref. [25]. In Appendix A, we
demonstrate, using a different approach, that Eq. (18)
is equivalent to Eq. (10), as long as Eq. (16) is mini-
mized. This finding reinforces the concept that nuclei

positions defined by ZG displacements can describe accu-
rately thermal disorder in solids and, here, can be viewed
as the collection of scatterers that best reproduce the dif-
fuse scattering intensity.

D. Scattering intensity using the Einstein model

For an Einstein solid, the scattering intensity can be
evaluated by assuming that all atoms vibrate indepen-
dently and with the same frequency [40]. These ap-
proximations allow one to replace: (i) the mode-resolved
mean-square displacement of the atoms uay by a constant
ud = h/(2Mowg)[2ne(T) + 1], where wg is the average
phonon frequency of the crystal and ng the associated
Bose-Einstein occupation, and (ii) the phonon polariza-
tion vectors ey, (q) with a normalized isotropic eigenvec-
tor [41]. Applying (i) and (ii) to Eq. (10), the scattering
intensity within the Einstein model reads:

I5(Q,T) = Np Y [x(Q)f2(Q) cos [Q - (T — Tr)]
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where Cyr (Q,T) = Mou%Q?/\/AM, M,/. The first and
second summations represent the elastic and inelastic
terms, respectively. The above oversimplified expression
provides a quick estimate of the contribution of the first
and higher order excitations based on the power series ex-
pansion of €2Cx+ (Q@T) For example, keeping terms up to
the first order in Cy. (Q,T) yields the Einstein model’s
analogue of Eq. (14).

III. METHODS
A. Experiment

The FEDS measurements are performed in transmis-
sion using the compact diffractometer described in detail
elsewhere [16]. Briefly, the output of a REGEN ampli-
fier (Astrella, Coherent, 4 kHz, pulse duration 50 fs) is
split into a pump arm and a probe arm. A commercial
optical parametric amplifier is used to generate pump
pulses with tunable wavelength. The electron probe is
generated from two-photon absorption of around 500 nm
photons obtained from a home-built NOPA and subse-
quent photoemission from a gold photo-cathode. The
photo-emitted electron bunches are accelerated towards
the anode to reach 60-90 keV as they exit the gun. Each
electron bunch is estimated to contain ~ 10% electrons,
with an estimated duration at the sample of ~ 200 fs.
Diffraction patterns are recorded with a phosphor screen
fiber-coupled to a CMOS detector (TVIPS).



For sample preparation, bulk black phosphorus and
MoSs crystals were purchased from HQ Graphene. Free-
standing thin films were obtained in both cases by me-
chanical exfoliation and subsequent transfer to TEM
grids using the floating technique [42]. Due to their air-
sensitivity, the bP flakes were transferred to vacuum im-
mediately after preparation to prevent degradation of the
bulk film.

All data were processed using the open-source python
module scikit-ued [43]. In particular, a six-fold (two-
fold) symmetrization operation was performed on the raw
MoS; (bP) diffraction patterns for visualization purposes
only.

B. Computational details

Ab initio calculations were performed using planewaves
basis sets and the PBE generalized gradient approx-
imation [44] to density-functional theory (DFT), as
implemented in the Quantum ESPRESSO software pack-
age [45, 46]. We used the primitive cells of monolayer
MoSs (space group P6m2), bulk MoS, (space group
P63/mmc), and bp (space group Cmce) that contain 3,
6, and 4 atoms, respectively. We employed Hartwigsen-
Goedecker-Hutter [47] norm-conserving pseudopoten-
tials for bulk and monolayer MoSse, and Troullier-
Martins [48] norm-conserving pseudopotentials for bP.
The planewaves kinetic energy cutoff was set to 120 Ry
for bulk and monolayer MoSs, and 90 Ry for bP. Self-
consistent-field calculations were performed using Bril-
louin zone k-grids of 10x10x1 (monolayer MoSs), 10x10x3
(bulk MoS,), and 12x10x 10 (bP) points. To limit in-
teractions between periodic replicas of the monolayer,
we used an interlayer vacuum of 15 A. The optimized
lattice parameters were a = 3.168 A for monolayer
MoSy: a = 3.191 A and ¢ = 12.431 A for bulk MoSs:
a=3.307 A, b=4554 A, and ¢ = 11.256 A for bP. We
determined the interatomic force constants by means of
density-functional perturbation theory calculations [49]
using Brillouin-zone g-grids of 8x8x1 (monolayer MoS,),
8x8x2 (bulk MoSs), and 5x5x5 (bP) points.

The zero (1), one (I1), and all (1) phonon scattering
intensities were calculated using Eqgs. (13), (14) and (10),
respectively. For the calculation of the exponent of the
Debye-Waller [Eq. (11)] and phononic [Eq. (12)] factors,
the full set of phonon eigenmodes and eigenfrequencies
was obtained by using standard Fourier interpolation of
dynamical matrices on g-grids of 50x50x 1 (monolayer)
and 50 x 50 x 50 (bulk systems) points, unless specified
otherwise. Equivalent modulo G scattering vector grids
(Q-grids) were employed to sample the diffraction pat-
tern per Brillouin zone of each system. We must em-
phasize that it is erroneous to compute the all-phonon
scattering intensity using nonequivalent Q- and g-grids,
since this violates the momentum selection rule and gives
rise to artefacts in the diffraction pattern. For MoS,
systems we show diffraction patterns calculated in the

Q-Qy planes at @, = 0, where @, @y, and @, are
the Cartesian components of Q. bP diffractions patterns
are obtained as the average of the scattering intensities
at Q. = 0 and Q. = 2n/c = 0.56 A~! planes. The
atomic scattering amplitudes f,;(Q) for each atom were
obtained analytically as a sum of Gaussian functions [50]
using the parameters in Ref. [51]. For the calculation of
the full diffraction maps of MoS, and bP crystals, we ap-
plied a six-fold and four-fold rotation symmetry around
the I'-point, respectively.

The sets of special displacements [Eq. (15)] of each
structure were generated via the ZG executable (ZG.x)
under the EPW software package [52]. The general proce-
dure for applying SDM is described in Ref. [25]. In short,
here we (i) used the same g-grid as for the Debye-Waller
and phononic factors, (ii) ordered the phonon eigenmodes
and frequencies along a simple space-filling curve that
passes through all g-points, (iii) ensured similarity by en-
forcing a smooth Berry connection between the phonon
eigemodes at adjacent g-points, and (iv) assigned 27!
unique combinations of n signs {Squ, - ,S9q} to ev-
ery 2"~ g-points, where n is equal to the number of
phonon branches. These choices together with the dense
grids employed guarantee fast minimization of Eq. (16).
The ZG scattering intensity was calculated with Eq. (18)
using the same Q-grid as for the all-phonon scattering
intensity. We emphasize that implementing Eq. (18) is
much more straightforward than Eq. (10). Hence, SDM
serves as a guide for validating the calculations of the
all-phonon diffuse scattering intensity.

The FORTRAN code used for the calculation of all-
phonon contributions to the scattering intensity to-
gether with instructions for reproducing the results
of this manuscript is available at the EPW/ZG tree
(https://gitlab.com/...). The ZG scattering intensity was
computed with ZG.x. It is worth noting that the fine
grids employed for the purposes of this work do not have
high computational requirements since they do not in-
volve extra DFT steps. In fact, these codes act as post-
processing steps and allow for the rapid evaluation of
the (ZG or LBJ) scattering intensity of any material,
provided that the interatomic force constants have been
already computed. No restrictions are imposed on the
methodology followed for the evaluation of interatomic
force constants; this can be by means, for example, of
density-functional perturbation theory [49], the frozen-
phonon method [53], the self-consistent harmonic approx-
imation [54], or ab-initio molecular dynamics [55].

IV. RESULTS
A. DMonolayer MoS.

Figures 2(a), (b), and (c) show the all-phonon scat-
tering intensity at 7' = 300 K in the reciprocal space
of monolayer MoSs and its decomposition into zero-
plus-one-phonon, and multi-phonon contributions, re-
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FIG. 2. (a) Zero-plus-one-phonon, (b) all-phonon, (c¢) multi-phonon, and (d) Einstein model scattering intensity of monolayer
MoS, calculated for 7' = 300 K. In plot (a) we show the fundamental Brillouin zone together with the high-symmetry points T,
K and M. We also show the (1 0) and (0 1) Bragg peaks, as well as an example of diffuse scattering signal. Blue circle indicates
a rapid decrease in the diffuse scattering intensity. The sampling of the Brillouin zone was performed using a 50 x 50 g-grid.
For all plots the scattering intensity is divided by the Bragg peak at the centre of the Brillouin zone, i.e with Io(Q = 0,T).
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FIG. 3. Individual and distinct atomic contributions to the
all-phonon scattering intensity of monolayer MoSs calculated
for T = 300 K. (a) and (b) is for the Mo and S individual
scattering terms. (c) and (d) is for the MoS and S;S2 distinct
scattering terms. The Brillouin zone sampling was performed
using a 50 x 50 g-grid. Data is divided by the total Bragg
intensity at the centre of the Brillouin zone, i.e with Ip(Q =
0,7).

spectively. All-phonon and zero-plus-one-phonon exci-
tations were accounted for via Eq. (10) and combining
Egs. (11) and (12), respectively; full computational de-
tails are provided in Sec. III B. Both sets of data have
been normalized such that the scattering intensity at the
zone-center is equal to 1. The multi-phonon scattering
intensity was obtained from Iy = lay — Io — I1. Our
results show that the diffuse diffraction pattern of mono-
layer MoSs is determined to a large extent by one-phonon

scattering, while multi-phonon interactions play a sec-
ondary role without introducing new features. To quan-
titatively assess the effect of multi-phonon processes on
the diffraction pattern we report in Fig. 5(a) the percent-
age P = I/ (11 + Imuii) X 100 as a function of |Q], i.e.
the distance of the scattering vector from the zone-center.
The response of the scattering intensity to multi-phonon
excitations increases as we move radially outwards from
the center, exceeding 50% for |Q| > 12A~!. However,
when Q ~ G (centers of Brillouin zones), we find that
single-phonon contributions dominate and P reduces sig-
nificantly.

In Fig. 2(d), we present the total scattering intensity
in the Einstein model calculated using Eq. (19) and set-
ting wg = 287.4 cm™!. With no surprise, the Einstein
model fails completely to explain diffuse scattering in
2D MoSs resembling diffraction patterns calculated for
isotropic systems [56]. However, this approximation can
provide a rough prediction of the multi-phonon contribu-
tions to diffuse scattering by evaluating the total energy
transfer to the crystal, AE, as defined in Ref. [22]. For
the range presented in Fig. 2, the Einstein model yields
A& = 10% in very close agreement with the exact value
A& = 11% obtained within the LBJ theory. It is worth
nothing that a corresponding calculation of the percent-
age P will miss the reduced contribution of multi-phonon
interactions at the Bragg peaks [22].

To understand the main features in the diffraction
pattern of monolayer MoSs we examine the individual
atomic (k = k') and interatomic (k # k') terms entering
Eq. (14). Figures 3(a) and (b) show our calculations for
the Mo and S individual contributions to the all-phonon
scattering intensity. In both cases, the Bragg scattering
amplitude decreases gradually with the distance from the
zone-center. In view of Eq. (13), this gradual decrease
is attributed solely to the attenuation coming from the
Debye-Waller and atomic form factors, since the modula-
tion factor cos[Q - (7, — T)] simplifies to 1 for the indi-
vidual terms. The same holds for the strong diffuse scat-
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FIG. 4. (a)-(d) Convergence of the ZG scattering intensity of monolayer MoSs at 7' = 300 K with respect to the Brillouin
sampling. (e) Exact all-phonon scattering intensity calculated using Eq. (10). All data is divided by the Bragg peak at the

centre of the Brillouin zone, i.e with Ip(Q = 0,T).

tering concentrated in the vicinity of the Bragg peaks.
Within the first Brillouin zone, the diffraction maps ex-
hibit a relatively weak intensity as a result of the small
transferred momenta.

Figures 3(c) and (d) show the response of the all-
phonon scattering intensity to each inequivalent dis-
tinct pairing: MoS and S1Ss. It is evident that MoS
collective displacements tend to decrease, or increase,
the Bragg scattering intensity depending on the factor
cos[Q- (T — Twv)] and the symmetry of the structure. In
particular, our analysis shows that for a Bragg scatter-
ing vector Q = (h k), the MoS pairs enhance (suppress)
the total intensity when |h — k| = 3n (# 3n), where
h, k and n are integers. MoS paired thermal fluctuations
also contribute to the diffuse scattering constructively, or
destructively, explaining the rapid decrease in the scat-
tering probability between adjacent Bragg peaks, as in-
dicated in Fig. 2(a). For S;Ss distinct terms, the cosine
modulation factor simplifies to 1 owing to the positions of
the two inequivalent S atoms, thereby enhancing Bragg
scattering. The correlated vibrational motion between
sulfide atoms tends to reduce diffuse scattering in a way
that a star-like domain is formed in the diffraction pat-
tern of monolayer MoSs.

Evaluation of the all-phonon scattering intensity
using the ZG displacement

As described in Secs. II C and IIIB, SDM constitutes
an alternative way for the evaluation of the scattering
intensity and can be used as a tool to further verify our
implementation of Eq. (10). Here we provide a detailed
convergence test, using the example of monolayer MoS,,
and demonstrate that the two approaches give identical
results in the limit of dense Brillouin sampling.

In order to analyze the convergence behavior of the
SDM, in Figs. 4(a)-(d) we plot the dependence of the ZG
scattering intensity on the g-grid used to generate special
displacements. For comparison purposes, in Fig. 4(e) we
also present the data obtained using the exact expression
in Eq. (10). The ZG scattering intensity calculated for a
15x15 g-grid, commensurate with the supercell size of re-

alistic ZG DFT-calculations, compares well with the ex-
act result and reveals all main features in the diffraction
map. Deviations from the Bragg and inelastic scatter-
ing, which appear as a statistical background noise, are
explained by the error in the evaluation of the ZG observ-
able. As shown in Figs. 4(b)-(d), this error is alleviated
by using finer g-grids and vanishes in the limit of dense
Brillouin sampling, i.e. for a 300 x 300 g-grid. The agree-
ment between the two methods is further substantiated
in Fig. A.1, where the multi-phonon contribution to the
all-phonon scattering intensity is identical when calcu-
lated with ZG displacements, or with Eq. (10). A similar
conclusion can be drawn by comparing P in Figs. 5(a)
and (b). This successful comparison provides the first
rigorous numerical proof that SDM can seamlessly cap-
ture higher-order terms in the Taylor expansion of the
observable.

Following the above analysis, it becomes apparent
that ZG displacements lead precisely to the thermally
distorted structure that reproduces the all-phonon dif-
fuse scattering. Although thermal diffuse scattering is
fundamentally related to the phonon properties of the
crystal, this concept reinforces the use of ZG displace-
ments for the evaluation of temperature-dependent elec-
tronic and optical properties of solids, as attested in
Refs. [24, 25, 57-70]. It is also evident that ZG cal-
culations can capture accurately all terms in the Tay-
lor expansion of the observable of interest, and thus can
serve as a tool for the assessment of multi-phonon ef-
fects, including electron-multi-phonon coupling. On top
of that, SDM can be upgraded straightforwardly for the
calculation of ultrafast electron-phonon mediated prop-
erties [13]. In particular, nonequilibrium phonon occupa-
tions computed by the Boltzmann transport equation [4]
can enter directly Eq. (7), and hence allow for the gen-
eration of time-resolved ZG displacements via Eq. (15).

B. Bulk MoS;

Figures 6(a)-(c) show the zero-plus-one phonon, all-
phonon, and ZG diffraction patterns of bulk MoSs at
T = 300 K. All sets of data have been normalized such
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FIG. 5. Percentage contribution of multi-phonon interactions to diffuse scattering of (a),(b) monolayer MoS2, (c) bulk MoS,,
and (d) bulk black Phosphorous (bP) calculated as P = Imuti/({1 + Imuii) x 100 at 7' = 300 K. (a), (c), and (d) represent
calculations within the LBJ theory and (b) using ZG displacements. Diffraction maps are separated into Brillouin zones to

highlight the extent of multi-phonon interactions.
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FIG. 6. (a) Zero-plus-one-phonon, (b) all-phonon, (¢) ZG (all-phonon), and (d) multi-phonon scattering intensity of bulk MoS,
calculated for T' = 300 K. The calculated intensities are divided by the Bragg intensity at the centre of the Brillouin zone, i.e
with Io(Q = 0,7T). In plot (a) we show the fundamental Brillouin zone together with the high-symmetry points ', K, and M.
We also show the (1 0) and (0 1) Bragg peaks, as well as an example of diffuse scattering signal. In plot (a) we indicate the
(1 0) and (0 1) Bragg peaks, as well as regions of diffuse and Bragg scattering. (e) Zero-plus-one-phonon, (f) all-phonon and

(g) ZG (all-phonon) diffraction maps of bulk MoS; calculated as AI(Q,300K) = I(Q, 300 K)

—1(Q,100K). (h) Experimental

diffraction signals of bulk MoS2 measured at 100 ps. Signals are divided by the maximum count due to elastic scattering. For
comparison purposes, the simulated data is multiplied by 500000 to match the experiment. The sampling of the Brillouin zone

was performed using a 50 x 50 x 50 g-grid.

that the scattering intensity at the zone-center is equal
to 1. The diffraction pattern of bulk MoS, is qualita-
tively identical to the diffraction pattern of its mono-
layer counterpart shown in Fig. 2. Quantitatively, the
major difference is that the intensity of Bragg scattering
in bulk MoS2 is about two orders of magnitude higher.
These findings suggest that collective displacements be-
tween any two atoms that lie in separate MoSs layers do
not participate actively in diffuse scattering. Indeed, our
analysis (not shown) confirms that these distinct pairs
contribute predominantly to Bragg scattering and very

little to diffuse scattering. Similarly to the monolayer
MoS,, the main characteristics in the diffraction pattern
arise from the MoS correlated displacements, while the
star-like domain is due to the S;S, pair.

In Fig. 6(d) we present the multi-phonon structure fac-
tor map of bulk MoS,, obtained as the difference between
the all-phonon and zero-plus-one-phonon diffraction pat-
terns, i.e. Inuii = Our results reveal
that scattering beyond one phonon does not smear out
the fundamental information enhancing slighlty the scat-
tering signal. This observation is further supported by

al — Io — Iy
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FIG. 7. (a) Zero-plus-one-phonon, (b) all-phonon, (¢) ZG (all-phonon), and (d) multi-phonon scattering intensity of bulk black
Phosphorous (bP) calculated for T = 300 K. The calculated intensities are divided by the elastic scattering at the central
Bragg peak, [o(Q = 0,7). In plot (a) we show the fundamental Brillouin zone together with the high-symmetry points
', A and X. We also show the (2 0) and (0 2) Bragg peaks, as well as an example of diffuse scattering signal. (e) Zero-
plus-one-phonon, (f) all-phonon, and (g) ZG (all-phonon) difference diffraction maps of bulk black Phosphorous calculated
as AI(Q,300K) = I(Q,300K) — I(Q, 100K). (h) Experimental difference diffraction signals measured at 50 ps. Signals are
divided by the maximum count due to elastic scattering. Simulations are multiplied by 400000 to match the experimental
maximum intensity [22]. The sampling of the Brillouin zone was performed using a 50 x 50 x 50 g-grid.

Fig. 5(c), which shows that the multi-phonon contribu-
tion to inelastic scattering, P, never dominates over one-
phonon processes for any |Q| < 14 A~1,

In Figs. 6(e)-(h) we compare the zero-plus-one-phonon,
all-phonon, and ZG difference diffraction patterns of
bulk MoSs with the experimental signals measured at
a pump-probe delay of 100 ps, AI(Q,t = 100ps). At
this time delay, we assume that phonon thermalization
is reached [13]. Blue and red colouring represent a de-
crease and an increase in the relative scattering intensity,
respectively. Bragg peaks appear as blue dots since the
exponent of the Debye-Waller factor, —W,(Q,T), is re-
duced with increasing temperature. The agreement be-
tween theory and experiment is excellent, except that we
underestimate the background diffuse scattering. This
discrepancy is diminished when multi-phonon interac-
tions via Eq. (10), or ZG displacements, are accounted
for. Despite multi-phonon scattering, the background ob-
served experimentally can be due to many others factors,
such as multiple phonon scattering events and inelastic
scattering on plasmons [15, 21, 71].

C. Bulk black phosphorus

Figures 7(a) and (b) show the diffraction patterns of
bulk bP at T' = 300 K calculated using the zero-plus-
one-phonon and all-phonon expressions, respectively. For

completeness, we also report the ZG scattering inten-
sity at the same temperature in Fig. 7(c). In Fig. 7(d),
we show the multi-phonon scattering pattern of bulk
bP. Unlike 2D and bulk MoSs, multi-phonon processes
in bP strongly enhance diffraction away from the zone-
center revealing, essentially, new diamond-like patterns.
In Fig. 5(d), we also disclose the percentage contribution
of multi-phonon excitations to diffuse scattering inten-
sity, P. We find that higher-order processes play the pri-
mary role to diffuse scattering for |Q| > 8 A~! reaching a
maximum of 83% at |Q| = 13 A~1. Tt is also evident from
Fig. 5 that P is much more prominent in bP than in MoS,
crystals. Using our toy model developed in Ref. [22] and
observe that the mean frequencies of the three crystals
are similar, we can then attribute this different behaviour
to the lighter mass of phosphorus.

For completeness, in Figs. 6(e)-(h) we reproduce the re-
sults of Ref. [22] and compare the zero-plus-one-phonon,
all-phonon, and ZG difference diffraction patterns of bulk
bP with the experimental thermalized signals measured
at a pump-probe delay of 50 ps, AI(Q,t = 50ps) [13].
Blue/red areas represent decrease/increase in the rela-
tive scattering signal. Bragg peaks appear as blue dots
as a result of the Debye-Waller effect. The zero intensity
Bragg peaks, present in both calculations and measure-
ments, are connected with the symmetry of the structure
and can be explained by analysing the interatomic cor-
relations (see below). The agreement between the all-
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FIG. 8. Individual and distinct atomic contributions to the
all-phonon scattering intensity of bulk black Phosphorous cal-
culated for 7' = 300 K. (a) and (b) is for the individual P1, P»,
P3, and P4 contributions. (c), (d), (e) and (f) is for the dis-
tinct (and inequivalent) P;P; contributions. We also report a
ball-stick model of bP. The Brillouin zone sampling was per-
formed using a 50 x 50 x 50 g-grid. and data is divided by
the total Bragg intensity at the centre of the Brillouin zone,
i.e with Io(Q =0,T).

phonon theory and experiment is striking, confirming
the significance of multi-phonon excitations in bP [22].
In essence, scattering beyond one-phonon is the main
mechanism of the formation of the outer diamond-like
domains. These features are also present in the ZG scat-
tering difference pattern, validating once again the phys-
ical meaning of the ZG distorted structure.

In Figs. 8(a) and (b) we report the contribution to
the all-phonon scattering intensity emerging from the dis-
placements of individual phosphorus atoms. The diffrac-
tion pattern is mostly structureless and the total signal
fades out with the distance from the central Bragg peak,
as a result of the Debye-Waller and atomic form factors.
As expected, all Bragg peaks are reproduced since scat-
tered waves by individual atoms will undergo construc-
tive interference.

Figures 8(c)-(f) show the response of the all-phonon
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scattering intensity to displacements between pairs of P
atoms. The ball-stick model shows the geometric ar-
rangement of atoms in bP. It is evident that electrons
scattered by the collective motion between atoms that
lie in the same basal plane, i.e. P1P3 and P,P,, inter-
fere constructively, or destructively, forming diamond-
like domains which explain, essentially, the characteristic
diffraction pattern observed in the experiment. Regard-
ing other pairs of bP atoms, diffuse scattering is rather
insensitive to their collective motion. This result demon-
strates the potential of diffuse scattering experiments
to probe microscopic phenomena that occur in specific
chemical bonds in solids.

V. CONCLUSIONS

In this manuscript we have benchmarked a new first-
principles theory for the calculation of diffuse scattering
in solids, as introduced first in Ref. [22]. In a nutshell,
we have demonstrated that our method can calculate effi-
ciently and accurately multi-phonon scattering processes
using as test cases 2D MoSs, bulk MoS,, and bP.

Starting from 2D MoSy we have validated our method-
ology by comparing successfully our results obtained
within the LBJ and SDM theories. These theories en-
able one to calculate diffraction patterns in a different
fashion and at the same time justify the accuracy of
each other. For completeness, we have explored in de-
tail the formal mathematical link between the two theo-
ries. We emphasize that SDM is a broad approach with
several applications in DFT and beyond [25]; here we
have simply demonstrated the physical significance of
SDM in reproducing all-phonon diffraction patterns. As
a side point, we have also shown that the Einstein model,
although fails completely in describing diffuse scatter-
ing, can provide a crude estimate for the contribution of
multi-phonon interactions.

The present work helps to understand the quality of
experimental measurements and investigate primary, or
secondary, features in the diffraction patterns of solids.
For example, our results for bulk MoS; reveal that the
measured diffuse background signals cannot be explained
completely by multi-phonon interactions. Furthermore,
our multi-phonon calculations for bP demonstrate clearly
the emergence of new primary features. Importantly,
our finding here suggests that extracting band-resolved
phonon populations from the experimental data of bP by
relying only on the one-phonon theory would be inaccu-
rate.

Beyond studying the various phonon contributions to
the diffraction patterns, we examine the scattering sig-
natures arising from individual atomic and interatomic
vibrational motions. Our analysis reveals that the col-
lective displacement between specific pairs of atoms are
responsible for the main fine structures observed experi-
mentally. Clarifying the origin of these distinct features
may help interpreting the data from a bonds perspec-



tive [2], especially in materials with multiple atom species
and/or multiple atoms per unit cell.

We emphasize that our methodology creates a new
framework in the interpretation of time-resolved electron,
or X-ray, experiments allowing for a reverse-engineering
analysis to uncover transient phonon populations. In
particular, one could combine the all-phonon scatter-
ing intensity with experimental data to single out multi-
phonon contributions, and then extract phonon popula-
tion dynamics using the strategy described in Ref. [12].
This approach requires experimental data across multiple
Brillouin zones extending to regions in reciprocal space
where multi-phonon excitations are dominant.

Finally, given the efficiency of our methodology it
should be possible to apply it in a high-throughput man-
ner for studying all-phonon diffuse scattering in solids.
For systems experiencing a high-degree of anharmonicity
one could upgrade the phonons using the self-consistent
harmonic approximation [54, 72], or combine Eq. (4) with
ab-initio molecular dynamics [73]. We stress that the
present methodology is as simple as efficient and can be
implemented straightforwardly in any software package
dealing with phonon properties of materials.
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Appendix A: Equivalence between Eq. (18) and Eq. (10)

In this Appendix we show the equivalence between Eq. (18) and Eq. (10).

For the sake of clarity, we exclude

from the discussion the terms arising from the phonons in group A. This does not constitute a limitation, since the
contribution of these terms vanishes in the thermodynamic limit [25].
We start the derivation with the aid of Eq. (8) and observe that the ZG scattering intensity can be written as:

Ha(arig-arzg, )}
b

IZG Q T ZZJ(‘R lQ-[Rprpl+TK7TN/] (Al)
pp KR
Substituting Eq. (15) inside Eq. (A1) and performing some straightforward algebra yields:
L6(QT) = 3.3 fulQ)f2(Q)ei Y Rr TRy 47Tl o= Wa(QT) =W Q) Pyt (QT) 000 (QT) - (A2)
pp’ KK
where
QM()Nil )
Pyt (Q.T) = ——=Le >~ 02, > " QuQaRe {emy(q)e:,a,,y(q)emRvRm (A3)
MnMK, qeB,v aa’
and
2M Releqa.n(q)e TR Re em/’,,/(q’)eiq/'RP
pp KK’ (Q7 0 Qa Z - [ ]M [ ] — Kp & K/pl (A4)
aa’ q;é;:lé’EIB "

Re[exa(q)e’dRr]Relel, , (q)e'd Fr]

+

M,{M,{/ + Kp < R/p/] UqrUg’ v’ SqVSq/ul.

The function A,y e (Q,T) represents the deviation from the exponents of the Debye-Waller and phononic factors.
The notation kp <+ «’p’ indicates the previous term with the indices , p and &', p’ interchanged. We now take the
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Taylor expansion of e2#r’.wn’(QT) and, for simplicity, we keep only terms up to second order in atomic displacements

to obtain:
IZG Q7 _ Z ZfK ZQ-[Rprp/+TN7TN/]€7WK(Q,T) eme/(Q,T) er)/’nK,/(Q,T)
pp’ KK
+ Z Zf"”" ZQ'[Rp—Rp/+"~—7’H/]€—W~(Q,T) e W (Q.T) Appr et (Q, T). (A5)
pp’ KK’

In view of translational symmetry of the lattice, the first line of the above relation gives exactly the all-phonon term,
Ln(Q,T), as given by Eq. (10). The second line is recognized as the leading error in the evaluation of the ZG
scattering intensity. Now we substitute Eq. (A4) into Eq. (A5), perform the summations over p and p’ using twice
the relation Zp e(Q-a) Ry — N, 0Q,q+G, and apply time-reversal symmetry, i.e. Izq(Q,T) = Izq(—Q,T). Hence,
the ZG scattering intensity simplifies to:

I2¢(Q,T) = Ln(Q,T) + Y _ /+(Q)

KK/

WilQT) =W (QT) A

5 (Q)cos [Q - (T — Tw)] €™ «(Q,T), (A6)

where the error term A,/ (Q, T) is given by:

AKK/(Q7T) = p Z QaQa’(SSG Z Re emx v ) Cral v (Q)}Uququsqysqy/

qEB
v<v’

M
0 —r Z QQQ()/’(SSG Z Re SK «@ V( ) € ol ! (q)]uqyuql’/sql’sql’/

qu
v<v’

€ (J/,l/’ (q)]uqyuq,,/ Squsqu’ .

(A7)

The first and second lines of the above expression are associated with the error in the evaluation of diffuse scattering
for Q = G. By comparing now Eq. (16) with Eq. (A7), it is evident that A (Q,T) is minimized together with
E({Sqv},T) owing to the choice of signs made for the ZG displacement. We note that the same arguments also
apply for the elimination of the error arising beyond second order in atomic displacements, i.e. terms including higher
powers of A, ./ (Q,T). This completes the proof that Eq. (18) and Eq. (10) are equivalent in the thermodynamic
limit. As a numerical demonstration, in Fig. A.1 we show that multi-phonon contributions calculated with Eq. (18)

and Eq. (10) are, indeed, identical.
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