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Supplementary Note 1: Dimensionless units

At equilibrium, it is convenient to define dimensionless quantities as, cf. Ref. [3]:
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where Ay = \/mabCQﬁ/4ﬁ(e*)2\a| defines the unit of length. A, = v\, is the magnetic penetration depth for currents
along the z-axis. {up = v/1/2map|a| and & = /1/2m.|a| are the two coherence lengths. The Ginzburg parameter is:

)= 2ab _ e ($3)
gc gab

H. = \/4ma? /(3 is the thermodynamic critical field. We also introduce 7o = 27(e*)2/Aapmapc?, which is nothing but
the classical Cooper pair radius in the unit of Ag.

When it comes to dynamics, here we are primarily interested in quenches in the Landau coefficient «(t). We
therefore fix all the dimensionless quantities in Eq. (S2) at some reference g (for example, it can be chosen to be
the T'= 0 value o(T = 0) or the pre-pulse equilibrium value) and write the equations of motion in the dimensionless
units as (for notational simplicity, here and below, we drop the tilde sign for dimensionless quantities):

T(at + inlv : E)7/1 - *(*ivﬁilvab - Aab)ZdJ - 772(71'7“7182 - Az)2¢ - Oﬂ/} - W}‘Zd} + m, (84)
A= —E, (S5)
150 E=V xVxA—-6E—-~v"x"'V(V-E)) - %Thil(dz*(—iw@*lv — A +ecc)+E, (S6)

where ™! = diag(1,1,72) reflects the anisotropy of the superconductor. The thermal noise terms in the Lagnevin
equations (S4) and (S6) obey:
(" (r,t)n(r’, ")) = ATTred(r — r')é(t — 1), (S7)
(Ea(r, t)ea(r' 1)) = 2T onprod(r — r')o(t — 1), (S8)
such that the fluctuation-dissipation theorem is satisfied [4]. Here 75 = A2,a2/c?. Below we define I'p = 7.
Supplementary Note 2: Mean-field analysis of equilibrium collective modes

We turn to discuss collective equilibrium excitations in the symmetry broken phase. To this end, we neglect the
noise terms, linearize the above equations on top of 1 = (1 + i6) + 6A (i) = v/—a), and obtain the spectrum of
collective modes. We find that even though the dynamics of the order parameter amplitude A is overdamped, the
dynamics of the phase 6 is not, and therefore, we focus on these modes. We consider the cases of isotropic and
anisotropic superconductors separately.
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A. Isotropic superconductors

The linearized supercurrent reads: j, ~ ¥?(k~'V0 — A). We decompose all vectors in momentum space into
the transverse and longitudinal components: A(k,w) = A (k,w) + A (k,w), where A points along k and A is
orthogonal to k. We find that the transverse sector decouples from the rest of the system, and its spectrum is given

by:

wi (k) = \/ (k2 +¢2)Tp — 302% ~ 50T, (S9)

i.e. the non-zero expectation value ¢ opens up the plasmon gap, in accordance with the Anderson-Higgs mechanism
and the Meissner effect. The primary role of the normal conductivity is to provide damping and redshift these
transverse plasmon excitations.

Longitudinal waves are coupled to the dynamics of the order-parameter phase 6:

[TEWQ +iwo<1 n ’i) wQ]A” ”“M -0, (S10)
[fm+k}0f[%ff]m”fo (S11)

By solving this system analytically, we obtain the following quadratic equation defining the spectrum of the longitu-
dinal modes:

TEW? +iw [a(l—i—fi) + TEFI]z—z] (1 + ) [¢ + O'Fk } =0. (S12)

Similarly to the transverse sector, the longitudinal modes also open up the same plasmon gap. Because of the Coulomb
screening and the coupling to the order parameter phase, the longitudinal excitations are more damped for k£ # 0
than the transverse ones.

B. Anisotropic superconductors

The linearized supercurrent modifies to
js ~ &2<lvab0 - Aab) Zw ( a 60— A )
K
Due to the anisontropy, we now decompose all vectors as: A(k) = AHIAcab + A kg x 2+ A2, etc. Here k = (Kb, kz)-

We find that the transverse sector (with vectors pointing along k., x 2) decouples from the rest of the system, and
its spectrum is given by:

_ 1 )
wL(k):\/(kQ—&—W)F — 7033 - ;oabFE. (S13)

As for the isotropic case, the transverse sector exhibits opening of the plasmon gap, expected to be a large energy

scale.
The remaining linearized EM equations read:

o (7. . Y
TE(,UQA” = sz” — kak, A, — wQ <;Zkab9 — AH) — WO gp (A” + akab(kabA” + ]{:ZAZ)), (814)
* . . g
Tt As = KA — kukeA) — Ty (Liko - A.) —iwo (4. + ks (R Ay + BA2)). (S15)
Linearized equation for the order parameter phase 6 is:

2k2 k2 1
fszeryHabJr }9*%( a A +kAL) + (abA||+’Y kAL = (516)



To find the spectrum of collective modes, one can solve Eqgs. (S14)-(S16) numerically. Here we are mostly interested
in the limit k& — 0:

_ 1 ;
w|(k=0)=1/TE - ZJabF 20abFE, (S17)
wz(k = O) == wszE - - 2F2 - EOCFE. (818)
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We conclude that all of the collective modes are gapped. Most importantly, though, we find that the c-axis gap is
factor of v smaller than the gap of the other two plasmons (for a related discussion in layered superconductors, see
Ref. [1]). In anisotropic superconductors, such as cuprates, this gap is in the terahertz range, rendering the c-axis
Josephson plasmons to be the primary low-energy excitations. We also note that their lifetime is large, since the
out-of-plane conductivity o, is small.

Supplementary Note 3: Equations of motion within the Gaussian approximation

The equations of motion in the dimensionless units and in momentum space read:

7O (k,t) = irx " / q-E(q.t)a(k —q,t) — (a(t) + V5 2k2, + £ 2k2)1 (k1)
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TOa(k, t) = —iTx ! /q E(q, )1 (k — q,t) — (o(t) + P2k, + 57 2k2 ) (K, )
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P1,P2
6tA(k7t) = _E(k7t)7 (821)
TEOB(k, 1) = K A(k,t) — (k- A(k, )k — 60p(55, +vr~ X hphy ) B, (ko t) — s (k, 1) + & (R, 1), (522)
where 11 and 15 are the real and imaginary components of the real-space order parameter ¥ (r,t) = 11 (r, t)+is(r, t).

(1a(k, t)nb(k:’ 1)) = 9T rrodep x (21)30(k + K)O(E — 1), (Ealls s (K, #)) = 20usTro x (27)36(k + K')3(t — t'). Here
J, = [ ms- The superconducting current density in momentum space reads:

Gulk, ) = iyr~ i~ / (2p — k)i (k — p. ) (p.t)

- / [1(p1, )¢ (P2, t) + Yo (pr, ) o (P2, )i ' A(k — p1 — P2, t). (523)

P1,P2

We note that Eqs. (S19)-(S22) are stochastic first-order differential equations. They can be rewritten into a single
first-order Fokker-Planck equation on the cumulative distribution functional P[t; 11,2, A, E|. Here we assume that
P is a Gaussian distribution, and derive the corresponding equations on various correlation functions. For a related
discussion in incommensurate charge density waves, see Ref. [2]. We also invoke translational symmetry. Specifi-
cally, below we introduce: ¥4 (t) = (¢Y1(k = 0,t)), D11(k,t) = (W1(=k,t)1(k,t))c, Daal(k,t) = (ha(—k,t)p2(k,t))e,
Ta(k,t) = (Ea(—k,t)2(k,1))c, aa(k,t) = (Aa(—k, t)2(k, 1)), (I)Oéﬁ(k7t) = <Aa(_k7t)Aﬂ(kvt)>C7 K(Xﬁ(k7t) =
(Aa(—k,t)Eg(k,t))c, and (k. t) = (Eq(—k,t)Es(k,t)).. Other correlators: (y2(k = 0,t)), (¥1(—k,t)2(k,t))c,
(Eo(—k, )1 (k,t))e, (Aa(—k,t)11(k,t)). — turn out not to develop within the presented framework and, thus, can



be neglected. We omit writing explicit dependence on time of the dynamical variables in the right-hand side of each
of the equations below, unless it is needed.
SC sector. The order parameter dynamics and its fluctuations follow:

roun(t) = [ ip- (b alp) — ) — v (a4 o 4 [ (T () + 3D () + Dalp))). (5240)
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0:D11(k,t) = 2I'Try — 2I'Dy3 (a + 9%k 2k:2b + K 2k2 + 311)1 /(tr(m_lé(p)) +3D11(p) + Dgg(p))), (S25)

P

9 Dy2(k,t) = 2I'Tro — 2I'D3o (OZ + 272k + KUK 4 + /(tr(ﬁf“ﬁ(p)) + Du(p) + 3D22(P)))
- QFRe{ —itx k- w(k) — iy kT a(k) + 2a(k)m ! /a (S26)
P

Cross correlators.

Ouma(k, 1) = ~T[imx™ Tl (k) + i (I (B))ay it s + 20K (k) a5 / a-(p)
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+Tg [(k2§a5 — kakg)ag(k) — 0as(dpy + ’)/nflelkgk.y)ﬂ'»y(k) + m;éag(k) (1!)% + /(Du(P) + Dgg(p)))

T 2Dy ()i / ap(p) + iy~ by Sk D k). (s27)
Oran(k,t) = —mo (k) — F[iTX71¢1KaB(k)k5 + i’ynflz/}l@a,y(k)ﬁgﬁlkg +2®ap5(k)g, /av
+aalk) (ot 0P 2k + 24 0+ [ (i 10() + Dup) + 3Daa(p)). (828)
EM sector.
0@ (k,t) = —(K(k) + KT (k)), (S29)
atKaB(ka t) = _Haﬁ(k) + FE[ ( )(k Oyp — k k,ﬁ’) (k)(isé'y + ’Y"ilXilkék'y)a’vB
By (0} (034 [ (Dua(p) + Dea(p))) = 7™ raa (00 sy + 20 (05! [ a(a)], (530
OTI(k,t) = 2Tro6T% + Q(k) + QT (k), (S31)

Qup(k,t) =T [(KT(kz))M(kQéw — Joykp) — Tos (k) (05 + 6~ X Kisks )03

+ (KT () oy (47 + / (Du1(p) + Daa(p)) ) — iy ama (R)in5 by + 2ma ()i / a,(p)]-  ($32)

p

Equations (S24)-(S32) represent our central technical result. In principle, using these equations, one can directly
simulate a photoexcitation event. We note, however, that the total number of independent degrees of freedom is
quite large, and one will have to introduce a grid in the three-dimensional momentum space, limiting simulations to
relatively small system sizes. One can significantly facilitate simulations of large systems by invoking the cylindrical
symmetry of anisotropic superconductors and spherical symmetry of isotropic ones — below we address how to do this
in practice. We remark that the thermal state is found self-consistently by putting the right-hand sides of each of the
equations to be zero.



T = k2T T =0 5Ty = k2,13 Ty =Ty 571 =0
Ty = k2,Ts ToTo =0 T5T = k2,k2T5 TuTy =T» T5T2 =0
TiTs =0 ToTy = k2T 575 =0 TuTs =0 T5Ty = T3
Ty =T TTy1 =0 T5Ty =T TuTy =Ty 5Ty =0
TiTs =0 ToTs = Tp T35 =0 TuTs =0 TsTs = Ts

Table S1. Algebra of operators in the tensor expansion (S34). Note that: T} = Tv, T = T3, T = Ts, T] = Ty, and T3 = Ts.

C. Cylindrical symmetry

To take advantage of the cylindrical symmetry we use the following ansatz:

a(k:, t) = iaab(kabv kza t)kab + iaz(kabv kza t)kzv ﬂ(ka t) = 7;’l'rab(kaba kz; t)kab + Z.77—2(]@1177 kza t)kzv (833)
‘baﬂ(ka t) = (I)H (kaba kz: t)Tl + (I)X,l(kaba kz: t)TZ + (I)X,Q(kab, kz, t)TB + (I)ab(kabv k27 t)T4 + (pz(kalu k27 t)j%, (834)

and similar expansion holds for the other two electromagnetic tensors. Here Tl = kap,akab,3, TQ = Kap,ak- 3, Tg =
E..okabp, Ty = 5(‘;% = 002080 + O0yds.y, and Ts = 053 = 0a,20p,. — their algebra is summarized in Table S1. This
ansatz allows us to write a closed set of equations solely on the newly introduced quantities, thereby reducing the
initial three-dimensional problem to only two-dimensional. Moreover, all of these quantities can be chosen to be real.
On symmetry grounds, one has ®f = ® and IIf = II = ®x1=Pxo=Px and IIx; =Ilx 2 = Ilx, but in general
Kx 1 # Kx . Below we summarize the final equations of motion.

SC sector.

TO (1) = / (x ' (P2 mab(p) + P27 (P)) — v&~  (Dapaas(P) + 7 *pla=(p)))

(ot vt + [072)(P) + 20(p) +720(0) + 30 (p) + Dalp))). (535)

8,D11(k,t) = 20Try — 20Dy, (k) (a F 257 2k2, + k2K2 4 392

+ [0221(3) + 200(p) +720.(0) +3D01(p) + Dap))). (536)

8, Das(k, t) = 2T Tr — 2T Dos (k) (a T AN &

+ /(pibfbn (p) + 2®as(p) + v = (p) + D11(p) + 31?22(10)))

= 20 [rx (R (R) + K2 () + vk (K0 (R) + 7 2k2a, (k) . (S37)
Cross correlators.
8t7Tab(k, t) =-T {Txil’lﬂl (kngH (k) + k’iﬂx(k) + Hub(k)) + ’}/Kil’(ﬂl(kibl{u (k) + ’772]’(13]()(72(’6) + Kab(k))

(k) (922G 12 0 [ (P B1(8) + 200s(p) + 720 (p) + Dua(p) + 3Da(p) )]
p

+1'g {kﬁ(aab(k) — ax(k)) = 0ap(map(k) + 767X T (ki Ta (k) + k2w (K)))

+ aap(k) (1/)% + /(Dn(l’) + Dzz(p))) + 7”717#1@22(’@)], (S38)

p



Oymz(k,t) = =T {Txflﬂfl(kibﬂx(k) +IL (k) +yr~ o (K3, Kox 1 (k) + 72K (K))

+ 7. (k) (Oé + VPR kD, + KRS 7 + /(szq’ll (p) + 2®44(p) + v °®.(p) + DP11(p) + 31722(19)))}
p

+1g [’fﬁb(az(k) — agp(k)) — oc(m (k) + v~ x T (kG man (k) + k27 (k)

72 (k) (63 + [(Du®) + Dule) +97 ' o Da(h)] (539)

Oraap(k,t) = —map(k) — T [Txflwl(kgbKu (k) + k2K x 1 (k) + Kap(k)) + v5~ 1 (k2,®) (k) + 772k 0 x (k) + Pas(k))

o) (a4 7202 2 0+ [ () (B) + 20u(p) + 92 0(8) + Dus(p) + 3Dea(p) ).

’ (S40)
Ora(k,t) = —m.(k) =T {Txfli/fl(kibf{x,z(k) + K. (k) + v (k2,0 x (k) + 7. (k))
+a.(k) <a N T T S /(p§b<1>“ (p) + 2®uy(p) + 728 (p) + D11 (p) + 3Dos (p)))} .
’ (S41)

EM sector.
8t<I>H(k,t) = —2KH(k:), WPx(k,t) = —(Kx1(k)+ Kx2(k)), 0:Pap(k,t) = 2K (k), 0:P,(k,t) = —2K,(k),

(S42)
0K (k,t) = —1I (k) + T'g [(kﬁ‘bu(’c) — k20 (k) — ‘Pab(k)) + (w% + /(Du(p) + Dm(p)))‘bu(k)
= 0 (K (R) + (R () + K Exa (k) + Kan(R)) + v:wlaabac)} , (843)
01K, t) =~ (k) + T (K2, 2 (k) — K2, (k) = (k) + 772 (6 + [ (D1a(®) + Daap)) 0x (k)
_ o, (Kx’l(k) n :—X(kgbK” (k) + k2K x.1 (k) + Kab(k))) + »y—lﬁ—?wlaab(k)], (S44)
01K xa(kyt) = ~ILx(k) + Ui (Kx ()~ 0.00)) + (6 + [(Pu(p) + Daa(p)))2x ()
~ow(Kxalk) + - (K xa(k) + K.(K))) + :nlwlazm)} 7 (345)
0Kan(k.t) = ~TLos(K) + T (2, + K2)Bun(0) — oKk + (43 + [ (Dus(p) + Daal))) (k). (546)
0Kk 1) = ~TL(k) + T (K22 (k) — K2 120x () 972 (63 + [ (Dua(p) + Daa(p)) 2. (k)
0 (K(k) - (k2K (R) + KK (R))) + ww;az(k)ki} : (S47)

01Tl () = 20 [ (KK (k) ~ B2EKxa(k) ~ Kus()) + (03 + [ (Dua(p) + Dea(p))) Ko ()
— Oab (HH (k) + %(kgbnu (k?) + k’gHX(k?) + Hab(k))) + 7571¢1ﬂab(k)] s (848)



Ol (k,1) = T | (k2 + B2) (K1 () + Kx 2(R)) = k2, () = K2 Kx 2(k) — Kap(R) — K= (k) = k2, Kx 1 (k) )

— o (T () + - (2T (k) + T (K) ) — o (T (k) 2 (2T () + 2T (k) + T )

i (s () + 2 (R)) + (v + / (Du1(p) + Daa(p)) ) (Kxa (k) + 7 Kx2(k)) . (849)
WLy (e, £) = 2Trooa T + 2T [ (k2 + K2) Ky (K) — oanllap (k) + (w7 + / (Dui(p) + Daa(p)) ) Kas(k)|,  (S50)

O (k) = 2Troo. % + 20 | (K3, K. (k) — k3 E2Kx 1 (k) ) = o (TL. (k) + %(kgbkgﬂx(k) + K21 (K)))

+72(02 4 [ (Due) + Daaw)) K () 90 oam (B2 (s51)

D. Spherical symmetry

For isotropic three-dimensional superconductors, with o,, = 0. = ¢ and v = 1, one simplifies the equations of
motion using the following ansatz:

a(k, t) = ian(t)k, (k) = imn(t)k, (S52)
Do, 1) = B0 N 4 @ 1) (5.5 — P25, (553)

and similar expansion holds for the other two electromagnetic tensors. With this ansatz, the initial three-dimensional
problem reduces to one-dimensional. All of the newly introduced quantities are real.

The final set of equations of motion for isotropic superconductors reads:

7O = /p2 [TX_lﬂ'p — /i_lap] — {oz + Y7 + /((I)y) + 2@; +3D11(p) + Dgg(p))j|, (S54)
P p
Tatpll(k, t) = 2TT’0 — 2D11(k) |:05 + H72k2 + 31/}% + /((I);‘ll) + 2@;‘ -+ 3D11(p) -+ Dgg(p))], (855)
P

78, Doz (k, 1) = 217 — 2Das [a - /(cpg +205 4+ Dy (p) + 3D22(p))} — 2 k2L + v tag),
’ (S56)
0,0) (1) = 2k, (857)
oK) (t) = ~TL + i~ oK) (1w ) + B (4 4 [ (D) + Do) + 17 ik, (358)

P
OuH(E) = ~II + T — okt + 0 (K 403 + [ (Dulo) + D). (859)
P
o1l (t) = 2770l + 2T [ — ot (14 k1K) + K] (w% + /(Du(p) + DQQ(p))) + n—lqplk?wk} . (S60)
P

Ol () = 2TrooT + 206 | — oTlf + K¢ (i +03 + [ (Do) + Daa)) . (S61)

P
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Figure S1. Photoexcitation dynamics in isotropic superconductors below Ti. — extension of Fig. 3 (bottom panels) of the main
text. (a) Dynamics of the long-range order parameter expectation value (¢)(¢): for da < 0 (da > 0), it becomes transiently
enhanced (suppressed) and then exponentially returns to its pre-pulse value 1o. We decompose {|]?)(t) = ¢*(t)+na(t)+np(t),
where n 4 (t) represents the longitudinal order parameter fluctuations (b) and np(t) describes the transverse fluctuations (c).

at’ﬂ'k(t) =T {TX71$1H£ + Hillelﬂ + 7 (a + k2k2 + 1/1% + /((I)]L‘ + 2(1);' + Du(p) + 3’D22(p))):|

p
+Tg |:ak (1#% + /(Dll(p) + 7322(17))) —o(1+rXTHR)m, + 5_11/’17)22(]@')}7 (562)
p
8tak(t) = -7 — F|:TX71’L/)1KI! + /{717/}1(1)2 + a (Oé 4+ k22 4 1][}% + /(CI)LL + 2‘1);' + Dll(p) + 3D22(p))>} (863)
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Supplementary Note 4: Dynamics of the order parameter fluctuations after photoexci-
tation in the symmetry broken phase

When considering quenches in the symmetry broken phase in the main text, we showed only the dynamics of
{|1|?)(t), which actually contains contributions from both the long-range expectation value (1) and order parameter
fluctuations: (|¢[*) = (¥)* +na +np. Here na(t) = [, Di1(p, t) represents longitudinal order parameter fluctuations
and encompasses the order parameter amplitude; np(t) = fp Das(p,t) describes transverse fluctuations and encodes
essentially the order parameter phase. Figure S1 shows the dynamics of each of these quantities.

For concreteness, we stick to quenches with da < 0 corresponding to photo-enhancement of superconductivity
(vellow and red curves in Fig. S1). The order parameter dynamics is similar to that of {|1|?)(¢): (1) is first transiently
enhanced and then exponentially restores to its pre-pulse value 1y. The stronger the photoexcitation, the stronger
the order parameter develops.

The evolution of the longitudinal fluctuations is governed by three stages. During the first quick stage, na(t)
slightly proliferates because transiently the Ginzburg-Landau free energy becomes steeper. During the second stage,
n4(t) becomes suppressed due to the development of the order parameter expectation value (¥)(t), which renders
amplitude fluctuations energetically costly. The final stage is the recovery to the equilibrium state.

The evolution of the transverse fluctuations is different: initially, when the free energy becomes steeper, np(t)
proliferates and then seemingly recovers to its equilibrium value, following the trend of (¢)(t). However, before
actually recovering, np(t) transiently becomes slightly suppressed compared to its equilibrium value. This final stage
can be understood as follows. In contrast to the amplitude fluctuations, the phase fluctuations are linearly coupled
to the electromagnetic field, resulting in the development of a plasma gap. Thus, the initial rise of np(t) can be
interpreted as a proliferation of plasmons at all length scales. Since at longer times (|1|?)(t) exceeds its equilibrium
value and since this quantity defines the plasmon frequency at equilibrium, it renders the plasmons to be energetically
costly, resulting in their eventual depopulation.

Supplementary Note 5: Dephasing within the Scenario I

In the main text, we primarily studied the situation where the photoexcitation results in a sudden quench of the
quadratic coefficient «(t) of the superconducting free energy. Although «(t) shows abrupt dynamics, the evolution
of the superconducting order parameter is relatively smooth. As it evolves, it excites the entire plasmon continuum
through the generation of momentum conserving plasmon pairs. For smoother order parameter dynamics, the high
energy, high momentum modes are less excited. For this reason, the dephasing effect is relatively weak and many



cycles of bi-plasmon oscillations are visible before their decay.

In the phenomenological model, if one chooses an extremely large order parameter relaxation time, as encoded in
7, then the resulting bi-plasmon oscillations will be suppressed. This is because even the low momenta plasmons
are not being excited in this regime, which is the case of adiabatic order parameter dynamics. On the contrary, if
T is extremely small, then the order parameter displays abrupt evolution. In this case, the amplitude of bi-plasmon
oscillations is large, but their lifetime is small due to dephasing. This damping is also stronger for superconductors
with small Ginzburg parameter x and, as such, steeper plasmon dispersion, cf. Supplementary Note 2.
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Figure S2. Post-pulse dynamics within the Scenario I in isotropic superconductors below 7.. To mimic the photoexcitation
event, we choose the initial state to be thermal, but then we take the order parameter expectation value ¥ (t = 0%) to be
reduced compared to the pre-pulse value ¥. (a) Order parameter 1 (t) displays exponential recovery to the equilibrium value
o. (b) The electric field variance, (E?)(t) — (E?).q, shows periodic dynamics with frequency being twice the plasmon gap.
Notably, the lifetime of the oscillations here is smaller compared to the more smooth quenches considered in the main text.
Parameters used: 7=1, 7 =1, x ' =0.1, k =5, 0 = 0.1, Tro = 1072,

To illustrate the dephasing effect, we consider a situation where the photoexcitation partially evaporates the equi-
librium order parameter in a sudden manner, and we choose relatively small k. Specifically, we prepare the initial
state to be thermal below T, but then we choose (¢)(t = 07) to be smaller than the equilibrium value 1. As such,
the order parameter dynamics is abrupt [Fig. S2(a)], resulting in a rather strong damping of the bi-plasmon oscil-
lations [Fig. S2(b)]. We remark that the evolution in Fig. S2(b) also displays superficial high-frequency oscillations.
Those oscillations arise due to the momentum cutoff chosen in our simulation and indicate that all plasmons up to
the highest momentum modes are notably excited by the abrupt change in the order parameter.

Supplementary Note 6: Induced periodic dynamics in regime III

For temperatures T' > T, plasmons are overdamped. However, one can imagine that an impulsive optical quench
can induce periodic dynamics. If the order parameter relaxation rate is low, then photoexcitation can result in
a transient enhancement of superconducting fluctuations, which only slowly recover to equilibrium. The developed
expectation value (|¢|?)(t) provides the necessary ground to form lasting bi-plasmon oscillations in out-of-equilibrium.
As shown in Fig. 3(b) of the main text, we indeed find that such a quench results in oscillatory dynamics of the
electromagnetic field. Fourier analysis of those oscillations indicates that the frequency is rather poorly defined. This
is because the quasiparticle conductivity is large, so that those out-of-equilibrium oscillations are damped, and also
because (|1|?)(t) is a time-evolving quantity, which translates as the plasmon frequency is being changed in time.
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