## **Supplementary Information for**

Incipient genome erosion and metabolic streamlining for antibiotic production in a defensive symbiont.

Taras Y. Nechitaylo<sup>1,§</sup>, Mario Sandoval-Calderón<sup>2,§</sup>, Tobias Engl<sup>1,2</sup>, Natalie Wielsch<sup>3</sup>, Diane M. Dunn<sup>4</sup>, Alexander Goesmann<sup>5</sup>, Erhard Strohm<sup>6</sup>, Aleš Svatoš<sup>3</sup>, Colin Dale<sup>7</sup>, Robert B. Weiss<sup>4</sup>, Martin Kaltenpoth<sup>1,2,4,6,7,8,\*</sup>

<sup>1</sup>Research Group Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
<sup>2</sup>Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany.
<sup>3</sup>Research Group Mass Spectrometry, Max Planck Institute for Chemical Ecology, Jena, Germany.
<sup>4</sup>Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA.
<sup>5</sup>Research Group Computational Genomics, CeBiTec, Bielefeld University, Germany.
<sup>6</sup>Department of Zoology, University of Regensburg, Regensburg, Germany.
<sup>7</sup>Department of Biology, University of Utah, Salt Lake City, Utah, USA.
<sup>8</sup>Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany.
<sup>8</sup>Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany.

\*Corresponding author Email: <u>kaltenpoth@ice.mpg.de</u>

## This PDF file includes:

Figures S1 to S7 Table S1 SI References



**Figure S1.** Synteny plots of "*S. philanthi*" bv. *triangulum* vs. *S. bingchenggensis* and *S. hygroscopicus* (**A** and **B**); and *S. bingchenggensis* vs. *S. hygroscopicus* (**C**). The dot-plots were performed with D-Genies (1). Position in the corresponding chromosome is indicated in the x and y axis. The "core" of the reference chromosome is indicated in dark blue, and the "arms" in light blue.



**Figure S2.** Phylogenomic tree of "*S. philanthi*" and other *Streptomyces* species with fully sequenced genomes. The tree was constructed using PhyML (2) from a concatenated set of 85 genes obtained with Phyla-AMPHORA (3). Bipartition support was obtained from 100 bootstrap pseudoreplicates. *Salinispora tropica* was used to root the tree. Length of the branches is proportional to the number of substitutions per site. Genome size of each species is indicated in the graph on the right side. The clade containing the beewolf symbiont (arrowhead) is highlighted with grey shading



**Figure S3.** Expression of intact genes, pseudogenes and hypothetical protein-coding genes in *"S. philanthi" in vitro* cultures and antennal samples, respectively. Frameshifted and hypothetical protein coding genes showed lower expression levels in comparison to intact genes. TPM values are shown for the RNAseq experiments of *in vitro* cultures and antennal samples. Dunn post hoc test for Kruskal-Wallis with multiple comparisons was performed, p-values adjusted with the Benjamini-Hochberg method. \*\*\* indicates comparisons where p< 10<sup>-5</sup>.



**Figure S4. A.** Sina plots showing the TPM of genes in the transcriptome, separated according to whether they were detected in the proteome or not. Using a generalized linear model we found that having an intact coding sequence is a strong predictor of whether their corresponding peptides were found in the proteomic analysis (binomial logistic regression, p<2e-16). Strength of transcription, as measured through gene TPM values is also a predictor of protein expression (p<2e-16). **B.** Predictor effect plots (4) on the probability of protein expression, showing the effect of gene intactness (left) and gene TPM (right).



**Figure S5.** Classification of all protein coding genes in the genome of "*S. philanthi*" according to their COG categories, in comparison to the subset of genes which are transcribed or translated. The absolute number is indicated inside the bars.

S. philanthi 23Af2 in vitro cultures vs. antennal samples



**Figure S6. A.** Volcano plot showing the differentially expressed genes between antennal and *in vitro* "S. *philanthi*" samples. Genes with a fold change > 2 and a q-value < 0.05 are shown in light red. **B.** Peptide hits to molecular chaperones in comparison to the rest of the proteome from *in vitro* cultures of "S. *philanthi*".



**Figure S7.** Metabolic network linking fatty acid and branched-chain amino acid catabolism with piericidin/actinopyrone biosynthesis, showing in red the genes upregulated in the antennae. Genes with frameshifts are in orange and genes downregulated in antenna are in grey.

| Region    | Туре          | From      | То        | Most similar known cluster     | Similarity | MIBIG BGC-ID |
|-----------|---------------|-----------|-----------|--------------------------------|------------|--------------|
| Region 1  | siderophore   | 351,102   | 363,597   | -                              | -          | -            |
| Region 2  | T1PKS         | 407,045   | 448,901   | Azalomycin F                   | 52%        | BGC0001523   |
| Region 3  | bacteriocin   | 509,320   | 518,188   | -                              | -          | -            |
| Region 4  | lanthipeptide | 847,667   | 870,630   | Griselimycin                   | 7%         | BGC0001414   |
| Region 5  | T1PKS         | 1,643,642 | 1,687,932 | Zincophorin                    | 76%        | BGC0001828   |
| Region 6  | terpene       | 1,708,094 | 1,727,585 | Merochlorin                    | 7%         | BGC0001083   |
| Region 7  | NRPS-like     | 1,761,747 | 1,802,830 | Echosides                      | 76%        | BGC0000340   |
| Region 8  | terpene       | 2,030,141 | 2,049,379 | Xiamycin                       | 13%        | BGC0000666   |
| Region 9  | terpene       | 2,685,354 | 2,706,064 | Geosmin                        | 100%       | BGC0001181   |
| Region 10 | arylpolyene   | 3,563,466 | 3,604,356 | Skyllamycin                    | 10%        | BGC0000429   |
| Region 11 | terpene       | 3,819,940 | 3,839,905 | -                              | -          | -            |
| Region 12 | other         | 4,420,192 | 4,472,315 | A-503083                       | 5%         | BGC0000288   |
| Region 13 | siderophore   | 4,822,135 | 4,835,992 | Ficellomycin                   | 5%         | BGC0001593   |
| Region 14 | bacteriocin   | 5,098,868 | 5,110,643 | -                              | -          | -            |
| Region 15 | T3PKS         | 5,125,171 | 5,166,259 | Thiotetronate TŸ 3010          | 8%         | BGC0001352   |
| Region 16 | NRPS          | 5,234,055 | 5,279,555 | Diisonitrile antibiotic SF2768 | 66%        | BGC0001574   |
| Region 17 | ectoine       | 5,603,927 | 5,614,331 | Ectoine                        | 100%       | BGC0000853   |
| Region 18 | NRPS          | 6,118,594 | 6,186,851 | Cahuitamycins                  | 33%        | BGC0001351   |
| Region 19 | NRPS          | 6,310,372 | 6,357,386 | Griseobactin                   | 41%        | BGC0000368   |
| Region 20 | terpene       | 6,509,367 | 6,534,065 | Hopene                         | 61%        | BGC0000663   |
| Region 21 | T1PKS         | 6,752,447 | 6,835,492 | Piericidin A1                  | 100%       | BGC0000124   |
| Region 22 | terpene       | 6,828,880 | 6,853,613 | Isorenieratene                 | 71%        | BGC0000664   |
| Region 23 | T1PKS         | 6,850,019 | 6,895,522 | -                              | -          | -            |

**Table S1.** Secondary metabolite gene clusters found in the genome of "*S. philanthi*" bv. *triangulum* 23Af2. These biosynthetic clusters were identified using antiSMASH v.5.0.0 (5).

## SI References

- 1. Cabanettes F & Klopp C (2018) D-GENIES: dot plot large genomes in an interactive, efficient and simple way. *PeerJ* 6:e4958.
- 2. Guindon S, et al. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic biology 59(3):307-321.
- 3. Wang Z & Wu M (2013) A phylum-level bacterial phylogenetic marker database. *Molecular biology and evolution* 30(6):1258-1262.
- 4. Fox J (2003) Effect Displays in R for Generalised Linear Models. 2003 8(15):27.
- 5. Blin K, et al. (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47(W1):W81-W87.