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Metallaphotocatalytic cross-coupling reactions are typically
carried out by combining homogeneous or heterogeneous
photocatalysts with a soluble nickel complex. Previous attempts
to realize recyclable catalytic systems use immobilized iridium
complexes to harvest light. We present bifunctional materials
based on semiconductors for metallaphotocatalytic C� S cross-
coupling reactions that can be reused without losing their
catalytic activity. Key to the success is the permanent immobi-
lization of a nickel complex on the surface of a heterogeneous
semiconductor through phosphonic acid anchors. The opti-
mized catalyst harvests a broad range of the visible light
spectrum and requires a nickel loading of only ~0.1 mol%.

Visible light is a powerful reagent in organic synthesis.[1] In
particular, the merger of photo- and nickel catalysis (metal-
laphotocatalysis) has emerged as an attractive strategy to
achieve carbon–carbon and carbon–heteroatom bond forma-
tions under mild conditions.[2] The cross-coupling of thiols with
(hetero)aryl halides, for example, was carried out by combining
a nickel catalyst with an iridium, or ruthenium polypyridyl
complex as photoredox catalyst (Figure 1, A).[3] Similar C� S
cross-couplings were also reported using an organic
photocatalyst.[4]

A semi-heterogeneous method using a carbon nitride
material as photocatalyst was developed to partially recycle the
catalytic system (Figure 1, B).[5]

More recently, a bifunctional polymeric catalyst was
prepared using building units that were functionalized with an
iridium polypyridyl photocatalyst and a nickel complex.[6] Metal
leaching during recycling experiments resulted in a gradual
decrease of the yield. Heterogeneous metal-organic frame-
works that can be reused in C� S bond formations were synthesized by coordinating iridium- and nickel complexes to

zirconium[7] or hafnium clusters.[8] However, these bifunctional
catalysts are difficult to prepare and rely on immobilized noble-
metal complexes as photocatalysts.

We recently developed a self-assembling catalyst system, in
which a nickel complex and a dye adsorb to the surface of TiO2

(dye-sensitized metallaphotocatalysts, DSMPs) that catalyzes
several cross-couplings.[9] Key to the success was that the nickel
complex and the dye are equipped with carboxylic acid groups
that bind to the semiconductor’s surface. However, recycling
studies suffered from a gradual decrease of the yield due to
leaching of the nickel catalyst and the dye because of the weak
interaction between carboxylic acid groups and TiO2.

[10]

Various functional groups are known to bind to the surface
of semiconducting materials and are intensively studied for
dye-sensitized solar cells (DSSCs).[11] Carboxylic acids are
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Figure 1. Catalytic systems for metallaphotocatalytic C� S cross-couplings.
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commonly used, because this functional group enables facile
electron injection from the excited dye into the conduction
band of the semiconductor.[12] Phosphonic acid groups have a
significantly higher adsorption strength than carboxylic
acids,[10,13] but their low electron injection rates make them
often unsuitable for DSSCs.[14]

Here we demonstrate that the strong interaction of
phosphonic acid moieties with the surface of semiconducting
materials accesses recyclable metallaphotocatalysts for C� S
cross-coupling reactions (Figure 1, C).[9]

Our investigations started by studying different semicon-
ductors as photocatalysts in the metallaphotocatalytic cross-
coupling of methyl 4-iododbenzoate and 2-mercaptoethanol in
presence of catalytic amounts of NiBr2 · 3H2O, a bipyridine
ligand that is equipped with phosphonic acid groups (dpbpy=

[2,2’-bipyridine]-4,4’-diyldiphosphonic acid), and a base (Ta-
ble 1). Using blue light (440 nm), two carbon nitride materials
(CN-OA-m[15] and mpg-CN[16]), TiO2 P25, dye-sensitized TiO2 P25
(pre-functionalized with a ruthenium dye that contains a
phosphonic acid anchoring group (Ru(bpy)2(dpbpy)-TiO2)

[17]),
and CdS resulted in the formation of the desired coupling
product (Entry 1–5). Bismuth oxide was unsuitable as photo-
catalyst (Entry 6–7).

We also studied this reaction at longer wavelengths
(Entry 8–14), because the high energy of blue light potentially
causes deactivation of nickel catalysts through the formation of
nickel black,[18] and can lead to undesired side reactions.[9,19]

Quantitative product formation was observed at 525 nm using
CN-OA-m, (Entry 8). In addition, Ru(bpy)2(dpbpy)-TiO2 also
catalysed the desired reaction and resulted in 69% of the
desired coupling product (Entry 11). All other tested semi-
conductors showed low catalytic activities using green light.

Next, we sought to optimize the two most promising
catalytic systems. In case of CN-OA-m, a careful investigation of

all reaction parameters showed that 1.67 mg/mL of the semi-
conductor in combination with 5 mol% of NiBr2 · 3H2O and
dpbpy are sufficient to quantitatively form the desired product
within 17 h using 525 nm LEDs (Table 2, Entry 1). Under the
same conditions, methyl 4- bromobenzoate resulted in low
amounts of 1 (Table 2, Entry 2). When Ru(bpy)2(dpbpy)-TiO2

was used as photocatalyst, a longer reaction time in combina-
tion with a higher loading of the nickel complex was necessary,
but the high selectivity towards the desired product was
maintained (Entry 3). Control studies showed that no reaction
occurred in the absence of CN-OA-m, dpbpy, the base, or light
(Entry 4–7). Only small amounts of the coupling product were
formed without the NiII salt, or in the presence of oxygen
(Entry 8–9). Using a 440 nm irradiation source, full conversion
was obtained after 3 h (Entry 10).

The optimized conditions were evaluated for a small set of
thiols and aryl iodides using blue and green light irradiation
(Table 3). When 2-mercaptoethanol was used, a selective C� S
bond formation (2), with no detectable amount of the
corresponding C� O coupling product was obtained. The
catalytic cocktail was also applicable for selective couplings of
secondary, tertiary and aromatic thiols with methyl 4-iodoben-
zoate (3–6). Moreover, the protocol is not limited to electron-
rich aryl iodides, and excellent yields were obtained for
iodobenzene (7) and 4-iodoanisole (8) were used.

Similar to the previously reported DSMPs, in which the
nickel complex and a dye were equipped with carboxylic acid
groups,[9] the catalytic system reported herein self-assembles
in situ. To characterize the functional heterogeneous catalysts,
an ex situ preparation was carried out (Figure 2).Therefore, the
respective semiconductor material was dispersed in MeCN,

Table 1. Semiconductor screening for C� S cross-coupling reactions using
a nickel complex that contains phosphonic acid groups.[a]

Table 2. Optimized conditions and control studies.[a]
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followed by addition of dpbpy, the nickel salt and the dye
(optional) (Figure 2, A). The mixture was stirred overnight and
the resulting material was isolated by centrifugation, washing
and lyophilization (see SI for details). Inductive coupled plasma
- optical emission spectroscopy (ICP-OES) was used to study
the amount of nickel, phosphorus and ruthenium. In case of
the functionalized carbon nitride material (Cat 1), a nickel
loading of 21.1 mgg� 1 (corresponding to 1 mol% NiBr2

.3H2O)
and a phosphorus content of 71.2 mgg� 1 (corresponding to
3 mol% dpbpy) was determined. For the variant using dye-
sensitized TiO2 (Cat 2), a nickel loading of 4.18 mg g� 1

(corresponding to 1 mol% NiBr2
.3H2O), a Ru loading of

4.59 mg g� 1 (corresponding to 0.7 mol% Ru(bpy)2(dpbpy)) and
a phosphorus content of 32.2 mg g� 1 (corresponds to 8.2 mol%
dpbpy as ligand in the nickel salt and Ru(bpy)2(dpbpy)) was
measured. The significant difference in the nickel loadings was
further confirmed by energy-dispersive X-ray spectroscopy
(EDX) analysis (Table S11 and S13), and is likely responsible for
the different catalytic activity of the functionalized materials in
the model reaction. The UV-Vis spectrum of the functionalized
carbon nitride confirms its absorption up to ~700 nm (Figure 2,
B), which is similar to the non-functionalized CN-OA-m (Fig-
ure S6).[15] TiO2 functionalized with the ruthenium dye and the
nickel complex broadly absorbs across the visible light
spectrum (Figure 2, C). Scanning electron microscopy (SEM)
analysis of both materials showed that the porous surface of
CN-OA-m and TiO2 P25 was not altered during the immobiliza-
tion (Figure S7 and S10).

Next, we studied the recyclability of the bifunctional
materials using blue (440 nm) and green (525 nm) light (Fig-
ure 3, A). In all cases, the first experiment was carried out
through in situ catalyst formation using the conditions reported
in Table 2. After the respective reaction time, the heteroge-
neous catalyst was separated, washed and reused without
adding additional nickel salt or ligand. To our delight, both
catalytic systems could be recycled multiple times without
losing their activity using both wavelengths. This provides
evidence that the ligand binds permanently to the surface of
the semiconductor, and that the nickel atoms strongly coor-
dinate to the ligand.

Table 3. Scope.[a]

Figure 2. Preparation (A) and characterization (B,C) of fully heterogeneous metallaphotocatalysts.
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A more detailed investigation was carried out using the
functionalized carbon nitride material (Figure 3, B). The hetero-
geneous catalyst was reused ten times and analyzed after each
experiment by ICP-OES. After the first experiment, a nickel
loading of 2.65 mgg� 1 and a phosphorus content of
52.2 mgg� 1 was determined, which indicates that 2.2mol% of
the ligand and 0.1mol% of the nickel salt that were initially
added to the reaction mixture were still immobilized (for
details, see Table S21). The amount of nickel and phosphorus
did not further decrease during the subsequent cycles, and the
catalytic activity was maintained. This shows that both species
are permanently immobilized on the surface of the semi-
conductor and that the catalytic system only requires
~0.1 mol% of the nickel salt and ~1.9 mol% of the ligand.
Indeed, a control experiment using this nickel and ligand
loading through the in situ method gave quantitative product
formation within 17 h (Table S23).

Unfortunately, the heterogeneous materials was not appli-
cable for the metallaphotocatalytic C� O cross-coupling of
carboxylic acids with aryl halides,[20] or the C� C coupling of α-
silylamines with aryl halides (Table S24 and S25).[21] Control
experiments using iridium polypyridyl complexes instead of the
heterogeneous semiconductor also gave no product formation
in these reactions, which indicates a detrimental effect of the
phosphonic acid groups of the nickel complex in these trans-

formations. Product formation (25%) was observed for the C� C
cross-coupling reaction of potassium benzyltrifluoroborates
with aryl halides using mpg-CN[22] in combination with
NiBr2 · 3H2O and dpbpy (Table S26), but attempts to optimize
the reaction or to recycle the catalyst failed, presumably due to
the formation of nickel black.[18]

In conclusion, we have shown that a self-assembling
heterogeneous material for metallaphotocatalytic C� S cross-
couplings can be obtained by mixing a carbon nitride material
or dye-sensitized TiO2 with a nickel complex that is functional-
ized with phosphonic acid groups. The final catalyst shows
high activity even though the nickel content is only 0.1 mol%
and absorbs broadly across the visible light spectrum. The
catalyst can be recycled at least ten times maintaining its
catalytic activity. Improved ligand designs to expand the
applicability of this concept to other cross-coupling reactions
are currently evaluated in our laboratory.
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