Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Experimental observation of the elastic range scaling in turbulent flow with polymer additives

MPG-Autoren
/persons/resource/persons251525

Bodenschatz,  Eberhard
Laboratory for Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zhang, Y.-B., Bodenschatz, E., Xu, H., & Xi, H.-D. (2021). Experimental observation of the elastic range scaling in turbulent flow with polymer additives. Science Advances, 7: 14, pp. eabd3525. doi:10.1126/sciadv.abd3525.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-5682-4
Zusammenfassung
A minute amount of long-chain flexible polymer dissolved in a turbulent flow can drastically change flow properties, such as reducing the drag and enhancing mixing. One fundamental riddle is how these polymer additives interact with the eddies of different spatial scales existing in the turbulent flow and, in turn, alter the turbulence energy transfer. Here, we show how turbulent kinetic energy is transferred through different scales in the presence of the polymer additives. In particular, we observed experimentally the emerging of a previously unidentified scaling range, referred to as the elastic range, where increasing amount of energy is transferred by the elasticity of the polymers. In addition, the existence of the elastic range prescribes the scaling of high-order velocity statistics. Our findings have important implications to many turbulence systems, such as turbulence in plasmas or superfluids where interaction between turbulent eddies and other nonlinear physical mechanisms are often involved.