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Recently, in Zhang et al. (Phys. Rev. Lett., vol. 124, 2020, 084505), it was found that, in
rapidly rotating turbulent Rayleigh–Bénard convection in slender cylindrical containers
(with diameter-to-height aspect ratio Γ = 1/2) filled with a small-Prandtl-number fluid
(Pr ≈ 0.8), the large-scale circulation is suppressed and a boundary zonal flow (BZF)
develops near the sidewall, characterized by a bimodal probability density function of the
temperature, cyclonic fluid motion and anticyclonic drift of the flow pattern (with respect
to the rotating frame). This BZF carries a disproportionate amount (>60 %) of the total
heat transport for Pr < 1, but decreases rather abruptly for larger Pr to approximately
35 %. In this work, we show that the BZF is robust and appears in rapidly rotating turbulent
Rayleigh–Bénard convection in containers of different Γ and over a broad range of Pr and
Ra. Direct numerical simulations for Prandtl number 0.1 ≤ Pr ≤ 12.3, Rayleigh number
107 ≤ Ra ≤ 5 × 109, inverse Ekman number 105 ≤ 1/Ek ≤ 107 and Γ = 1/3, 1/2, 3/4, 1
and 2 show that the BZF width δ0 scales with the Rayleigh number Ra and Ekman number
Ek as δ0/H ∼ Γ 0Pr{−1/4,0}Ra1/4Ek2/3 ({Pr < 1, Pr > 1}) and with the drift frequency
scales as ω/Ω ∼ Γ 0Pr−4/3Ra Ek5/3, where H is the cell height and Ω the angular rotation
rate. The mode number of the BZF is 1 for Γ � 1 and 2Γ for Γ = {1, 2} independent of
Ra and Pr. The BZF is quite reminiscent of wall mode states in rotating convection.
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1. Introduction

Turbulent convection driven by buoyancy and subject to background rotation is a
phenomenon of great relevance in many physical disciplines, especially in geo- and
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astrophysics and also in engineering applications. In a model system of Rayleigh–Bénard
convection (RBC) (Bodenschatz, Pesch & Ahlers 2000; Ahlers, Grossmann & Lohse 2009;
Lohse & Xia 2010), a fluid is confined in a container where the bottom is heated, the
top is cooled and the vertical walls are adiabatic. The temperature inhomogeneity leads
to a fluid density variation, which, in the presence of gravity, produces convective fluid
motion. When the system rotates with respect to the vertical axis, significant modification
of the flow occurs owing to the rotational influence, including the suppression of the
onset of convection (Nakagawa & Frenzen 1955; Chandrasekhar 1961), the enhancement
or suppression of turbulent heat transport over different ranges of Rayleigh number Ra and
Prandtl number Pr (Rossby 1969; Pfotenhauer, Niemela & Donnelly 1987; Zhong, Ecke
& Steinberg 1993; Julien et al. 1996; Liu & Ecke 1997), the transformation of thermal
plumes into thermal vortices with a rich variety of local structure dynamics (Boubnov &
Golitsyn 1986, 1990; Hart, Kittelman & Ohlsen 2002; Vorobieff & Ecke 2002) and the
emergence of robust wall modes before the onset of the bulk mode (Buell & Catton 1983;
Pfotenhauer et al. 1987; Zhong, Ecke & Steinberg 1991; Ecke, Zhong & Knobloch 1992;
Goldstein et al. 1993; Herrmann & Busse 1993; Kuo & Cross 1993).

The dimensionless control parameters in rotating RBC are the Rayleigh number Ra ≡
αgΔH3/(κν), the Prandtl number Pr ≡ ν/κ , the Ekman number Ek ≡ ν/(2ΩH2) and the
diameter-to-height aspect ratio of the container, Γ ≡ D/H. Here α denotes the isobaric
thermal expansion coefficient, ν the kinematic viscosity, κ the thermal diffusivity of
the fluid, g the acceleration due to gravity, Ω the angular rotation rate, Δ ≡ T+ − T−
the difference between the temperatures at the bottom (T+) and top (T−) plates, H the
distance between the isothermal plates (the cylinder height) and D ≡ 2R the cylinder
diameter. The Rossby number Ro ≡ √

αgΔH/(2ΩH) = √
Ra/Pr Ek is another important

non-dimensional parameter that provides a measure of the balance between buoyancy and
rotation and is independent of dissipation coefficients.

The important global response parameter in thermal convection is the averaged total
heat transport between the bottom and top plates, described by the Nusselt number, Nu ≡
(〈uzT〉z − κ∂z〈T〉z)/(κΔ/H). Here, T denotes the temperature, u is the velocity field with
component uz in the vertical direction, and 〈·〉z denotes the average in time and over a
horizontal cross-section at height z from the bottom.

Rotation has various effects on the structure of the convective flow and on the global
heat transport in the system. Rotation inhibits convection and causes an increase of the
critical Rac ∼ Ek−4/3 at which the quiescent fluid layer becomes unstable throughout the
layer (Nakagawa & Frenzen 1955; Chandrasekhar 1961; Rossby 1969; Lucas, Pfotenhauer
& Donnelly 1983; Zhong et al. 1993). In finite containers and at sufficiently large
rotation rates, however, a different instability occurs at lower Raw ∼ Ek−1 in the form of
anticyclonically drifting wall modes (Buell & Catton 1983; Pfotenhauer et al. 1987; Zhong
et al. 1991; Ecke et al. 1992; Goldstein et al. 1993; Herrmann & Busse 1993; Kuo & Cross
1993; Ning & Ecke 1993; Zhong et al. 1993; Goldstein et al. 1994; Liu & Ecke 1997,
1999; Zhang & Liao 2009; Favier & Knobloch 2020). The relative contribution of the wall
modes to the total heat transport depends on Γ (Rossby 1969; Pfotenhauer et al. 1987;
Ning & Ecke 1993; Zhong et al. 1993; Liu & Ecke 1999) with decreasing contribution –
roughly as the perimeter-to-area ratio – with increasing Γ .

There are several regions of bulk rotating convection where rotation plays an important
role, namely a rotation-affected regime and a rotation-dominated regime. In the former,
where Ro � 1, heat transport varies as a power law in Ra, i.e. Nu = A(Ek)Ra0.3, and can
be enhanced or weakly suppressed by rotation relative to the heat transport without rotation
(Rossby 1969; Zhong et al. 1991; Julien et al. 1996; Liu & Ecke 1997; King et al. 2009;
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Liu & Ecke 2009; Zhong et al. 2009) depending on the range of Ra and Pr. In the latter
case, in which Ro 	 1, heat transport changes much more rapidly with Ra in what is
known as the geostrophic regime of rotating convection (Sakai 1997; Grooms et al. 2010;
Julien et al. 2012; Ecke & Niemela 2014; Stellmach et al. 2014; Cheng et al. 2020).

Despite considerable previous work, the spatial distribution of flow and heat transport
in confined geometries has not been well studied for high Ra and low Ro when one
is significantly above the onset of bulk convection but still highly affected by rotation.
Recently, Zhang et al. (2020) demonstrated in direct numerical simulations (DNS) and
experiments that a boundary zonal flow (BZF) develops near the vertical wall of a
slender cylindrical container (Γ = 1/2) in rapidly rotating turbulent RBC for Pr = 0.8
(pressurized gas SF6) and over broad ranges of Ra (Ra = 109 in DNS and for 1011 � Ra �
1014 in experiments) and Ek (10−6 � Ek � 10−5 in the DNS and for 3 × 10−8 � Ek �
3 × 10−6 in experiments). The BZF becomes the dominant mean flow structure in the cell
for Ro � 1, at which the large-scale mean circulation (termed the large-scale circulation;
LSC) vanishes (Vorobieff & Ecke 2002; Kunnen et al. 2008; Weiss & Ahlers 2011a,b).
Further, it contributes a disproportionately large fraction of the total heat transport.

Another group (de Wit et al. 2020) also showed the existence of the BZF and its strong
influence on heat transport using DNS for Pr = 5 (water) and Γ = 1/5 for Ek = 10−7

in the range 5 × 1010 � Ra � 5 × 1011. Thus, the BZF has been observed in different
fluids, in cells of different aspect ratios and over a wide range of parameter values. Given
the strongly enhanced heat transport in the BZF region (de Wit et al. 2020; Zhang et al.
2020), it is important to explore the BZF in detail. Here we investigate the robustness of
the BZF with respect to Pr and to Γ in the geostrophic regime; we do not address here the
transition from the low rotation state to the BZF.

Recently, Favier & Knobloch (2020) demonstrated for Ek = 10−6 through DNS that the
linear wall modes of rotating convection (Buell & Catton 1983; Zhong et al. 1991; Ecke
et al. 1992; Goldstein et al. 1993; Herrmann & Busse 1993; Kuo & Cross 1993; Ning &
Ecke 1993; Zhong et al. 1993; Liu & Ecke 1997, 1999; Sánchez-Álvarez et al. 2005; Horn
& Schmid 2017; Aurnou et al. 2018) evolve with increasing Ra and appear to be robust
with respect to the emergence of bulk convection even with well-developed turbulence.
They suggested that the BZF may be the nonlinear evolution of wall modes, an idea that
we address briefly but that requires significantly more analysis and comparison than can
be included here.

In the present work, a series of DNS is carried out to study the robustness and the scaling
properties of the BZF with respect to Rayleigh number Ra, Ekman number Ek, Prandtl
number Pr and cell aspect ratio Γ . We explore the extended scalings of the characteristics
of the BZF, including the width of the BZF, the drift frequency of the BZF and the heat
transport within the BZF in terms of these non-dimensional parameters. We first present
our numerical methods, then discuss the results of our calculations and conclude with our
main findings.

2. Numerical method

We present results of DNS of rotating RBC in a cylindrical cell obtained using the
GOLDFISH code (Shishkina et al. 2015; Kooij et al. 2018) for Ra up to 5 × 109 and Ek
down to 10−7. In the DNS, the Oberbeck–Boussinesq approximation is assumed as in
Horn & Shishkina (2014). Centrifugal force effects are neglected since the Froude number
in experiments is typically small (see Zhong et al. 2009; Horn & Shishkina 2015).
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The governing equations based on the Oberbeck–Boussinesq approximation are

∇ · u = 0, (2.1)

∂tu + (u · ∇)u = − 1
ρ

∇p + ν∇2u − 2Ω × u + α(T − T0)gez, (2.2)

∂tT + (u · ∇)T = κ∇2T. (2.3)

Here, u = (ur, uφ, uz) is the velocity with radial, azimuthal and vertical coordinates,
respectively, ρ is the density, p is the reduced pressure, Ω = Ωez is the angular
rotation-rate vector, T is the temperature with T0 = (T+ + T−)/2, and ez is the unit vector
in the vertical direction. The applied boundary conditions are no slip for the velocity on all
surfaces, constant temperature for the top and bottom plates and adiabatic for the sidewall.
To non-dimensionalize the governing equations, we use Δ = T+ − T− as the temperature
scale, the cylinder height H as the length scale and the free-fall velocity

√
αgΔH as the

velocity scale (the corresponding time scale is τff = √
H/(αgΔ)).

To evaluate the grid requirements for the simulations, we consider the thermal and
velocity boundary layers (BLs) near solid boundaries. The thickness of the BLs near the
heated and cooled plates are calculated as

δth = H/(2Nu). (2.4)

This is the standard way to define the thermal BL thickness under the assumption of
pure conductive heat transport within this layer (cf. Ahlers et al. 2009). The viscous
BL thicknesses near the plates (δu) and near the sidewall (δsw) are defined as the
distances from the corresponding walls to the location where the maxima of, respectively,√

〈ur2〉t,φ,r + 〈uφ
2〉t,φ,r (z) and

√
〈uφ

2〉t,φ,z + 〈uz2〉t,φ,z (r) are obtained. The velocity
components are all averaged in time and over the surface parallel to the corresponding
wall. The same criterion was used previously in studies of the sidewall layers in rotating
convection (see Kunnen et al. 2011).

The computational grids are set to be sufficiently fine to resolve the mean Kolmogorov
microscales (Shishkina et al. 2010) in the bulk and within the BLs (see table 2 in the
Appendix). Grid nodes are clustered near the walls to resolve thermal and velocity BLs,
resulting in grids that are non-equidistant in both the radial and vertical directions. As
rotation increases, the viscous BL gets thinner (Kunnen et al. 2008; Stevens, Verzicco &
Lohse 2010; Horn & Shishkina 2015) so more points are required near boundaries: we
take at least seven points within each BL. The details of all simulated parameters and the
corresponding grid resolution are listed in table 2 along with a benchmark comparison
between Nu data from these simulations and from experimental data in compressed gases
with similar Pr from Wedi et al. (2021); the agreement is excellent. To explore the
robustness of the BZF with respect to Ra, Pr and Γ , we conducted simulations in three
groups, i.e. in every group we vary only one parameter while keeping the others fixed.
The specific parameter ranges are shown in table 1 (also included in several figures with
Ra = 109 and Pr = 0.8 are data in the range 0.5 ≤ 1/Ro ≤ 5 from Zhang et al. (2020);
the calculation details for those values are included in the Appendix).

3. Results

3.1. Boundary zonal flow structure
Our goal here is to explore the robustness of the BZF with respect to variations of
control parameters. We follow closely the approach and characterization presented in
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Γ Pr Ra (107) 1/Ro Ek (10−6)

1/2 0.8 5–500 10 1.3–13
1/2 0.1–12.3 10 10 3.2–35
1/3–2 0.8 10 10 8.9
1/2 0.8 100 5.6–33.3 0.85–5.1

Table 1. Ranges of Γ , Ra, Pr, Ro−1 and Ek. For details, see the Appendix.

〈T〉t

T+

1/Ro = 0.5 1/Ro = 10
T–

PP P⊥ P⊥

(e)(b)(a) (c) (d ) ( f )

Figure 1. Isosurfaces of instantaneous temperature T (a) and time-averaged flow fields (b,c), visualized by
streamlines (arrows) and temperature (colours), for Ra = 109 and 1/Ro = 10, in vertical orthogonal planes P
(b,e) and P⊥ (c,f ). In the case of weak rotation (a–c), P is the plane of the LSC (b). Averaging in (b,c) is
conducted over 1000 free-fall time units. For strong rotation (e,f ), mean radial and axial velocity magnitudes
are approximately 10-fold smaller than those for weak rotation (b,c).

Zhang et al. (2020) but focus on the geostrophic regime where the BZF is well developed.
After presenting our main results, we consider the BZF with respect to wall mode
structures. We begin with the influence of rotation on the overall temperature and velocity
fields in the cell. In figure 1, for particular cases of 1/Ro = 0.5 (weak rotation) and 1/Ro =
10 (fast rotation), three-dimensional instantaneous temperature distributions (figure 1a,d)
and two-dimensional vertical cross-sections (figure 1b,c,e, f ) of the time-averaged flow
fields are shown. The two-dimensional views are taken in a plane P (figure 1b,e), which
in the case of a weak rotation is the LSC plane, and additionally in a plane P⊥ that is
perpendicular to P (figure 1c, f ). For slow rotation, an LSC spanning the entire cell with
two secondary corner rolls is observed in P whereas a four-roll structure is seen in P⊥,
typical of classical RBC at large Ra and for Γ ∼ 1 (see e.g. Shishkina, Wagner & Horn
2014; Zwirner et al. 2020). Near the plates, the LSC and the secondary corner flows move
the fluid towards the sidewall (figure 1b) so the Coriolis acceleration (−2Ωez × u) induces
anticyclonic fluid motion close to the plates.

In the central part of the cell, at z = H/2, the radial component of the mean velocity,
〈ur〉t, always points towards the cell centre (figure 1a,b). Therefore, Coriolis acceleration
results in cyclonic fluid motion in the central part of the cell, as is also observed in the
time-averaged azimuthal velocity field uφ in figure 2(a). Cases at higher rotation rates
are shown in figures 1(d–f ) and 2 (see also Kunnen et al. 2011). For both small and
large rotation rates, the presence of viscous BLs near the plates implies anticyclonic
motion of the fluid there. For strong rotation, the subject of this paper, with high and
constant angular velocity Ω , the fluid velocity becomes more uniform along ez owing
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Cyclonic

Anticyclonic

Ω

(b)(a) (c) (d )

Figure 2. Time-averaged fields 〈uφ〉t for Pr = 0.8, Γ = 1/2, Ra = 109 and (a) 1/Ro = 0.5, (b) 1/Ro = 2,
(c) 1/Ro = 10 and (d) 1/Ro = 20.

to the Taylor–Proudman constraint with larger components of lateral velocity compared
to the vertical component as in figure 1(e, f ). Thus, anticyclonic fluid motion not only is
present in the vicinity of the plates, but also involves more and more fluid volume with
increasing Ro−1. With increasing rotation rate, anticyclonic motion grows from the plates
towards the cell centre whereas cyclonic motion at z = H/2 remains near the sidewall and
becomes increasingly more localized there (figure 2c,d).

As introduced in Zhang et al. (2020), the BZF in rapidly rotating turbulent convection is
characterized by an anticyclonic bulk flow, cyclonic vortices clustering near the sidewall
and anticyclonic drift of thermal plumes (see figures 3a,b and 4). These structures are
associated with the bimodal temperature probability density functions (p.d.f.s) obtained
in the measurements and DNS near the sidewall (Zhang et al. 2020; Wedi et al.
2021). The radial location r0 where the mean fluid motion at z/H = 1/2 changes from
anticyclonic to cyclonic as indicated by the solid line in figure 3 (see also inset of
figure 6a below) is used to describe the width of the BZF δ0 = R − r0. As one might
expect, vertical coherence of the BZF is enhanced by strong rotation. In figure 4,
time–angle plots of the temperature at three different heights show that the drift frequency
ω = 2πR(dφ(rumax

φ
)/dt)/(2πR/m) = m dφ(rumax

φ
)/dt is quite constant along z without

significant phase differences, i.e. the BZF maintains good vertical coherence. Here, the
mode number m equals 1 and dφ(rumax

φ
)/dt denotes the angular velocity of the temperature

drift at r = rumax
φ

, where the maximum of the time-averaged azimuthal velocity is obtained.
In the lower half of the cell, for z = H/4, warm plumes dominate, so the warm regions
(pink stripes) are wider, whereas in the upper half of the cell, for z = 3H/4, cold plumes
dominate, resulting in wider cooler regions (blue stripes). Similarly, figures 2(c,d) and
5(a,d) show that the zonal flow develops away from the top and bottom plates and extends
vertically throughout the bulk. Figure 5 illustrates that, owing to the drift, time-averaged
fields in the vertical plane average to zero and do not capture important features of the
flow motion, in particular, the uz field. The averaged u2

z , however, does retain important
information about the locations of the Stewartson ‘1/3’ and ‘1/4’ layers (dashed lines) and
the BZF (solid line).

3.2. Contribution to heat transport
An important and unexpected property of the BZF in rotating RBC is its disproportionately
large contribution to the heat transport in the system. Figures 3(a) and 6 show that the
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〈Fz〉t
ωz

−ωz
max 0 ωz

max0 1 Fz
max

(b)(a)

Figure 3. For Ra = 109, 1/Ro = 10, Pr = 0.8, Γ = 1/2 and z = H/2: (a,b) horizontal cross-sections of (a)

time-averaged vertical heat flux 〈Fz〉t and (b) instantaneous vertical component of vorticity ωz (negative values
correspond to anticyclonic fluid motion), together with two-dimensional streamlines. The solid line indicates
the radial position r0 that defines the BZF by the condition 〈uφ(r0, z = H/2)〉t = 0. In (a), the dash-dotted
line (inner circle) and the dashed line (outer circle) are, respectively, the radial locations of 〈Fz〉t = 1 (global
averaged heat flux) and umax

φ , the maximum of the time-averaged azimuthal velocity.

(a) (b) (c)

T−

0

T+

200

150

100

50

0
0 02π 2π 2π0

φ φ φ

t/�
H

/(
α

g
Δ

)

Figure 4. For Pr = 0.8, Γ = 1/2, Ra = 109, 1/Ro = 20 and r = R: time evolution of temperature
distribution (space–time plot of temperature) at height (a) z = H/4, (b) z = H/2 and (c) z = 3H/4.

averaged heat flux inside the BZF is much stronger than in the region outside the BZF. To
be clear about the averaging, we define

Fi(r, φ, z) ≡ (uiT − κ∂iT)/(κΔ/H), i = r, φ, z, (3.1)

〈Nu(r, t)〉φ ≡ (2π)−1
∫ 2π

0
Fz(r, φ, z = H/2) dφ, (3.2)

〈Nu(t)〉V ≡ (πR2H)−1
∫ 2π

0

∫ R

0

∫ H

0
Fz(r, φ, z)r dr dφ dz, (3.3)

〈Nu(t)〉BZF ≡ (π(R2 − r2
0))

−1
∫ 2π

0

∫ R

r0

Fz(r, φ, z = H/2)r dr dφ, (3.4)
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0

ur
2uz

2uz
uφ

10 10 10

z/H

1

1

0

0.25

0.75 1.00 1.000.75 0.75 1.00
r/R

z/H

0.75

(e) (g) (h)

(b)(a) (c) (d )

( f )

0 maxmin 0 max

Figure 5. Time-averaged flow fields in a vertical plane, for Ra = 109, 1/Ro = 10, Pr = 0.8 and Γ = 1/2.
The ranges of variables are, respectively: (a,b,e,f ) from −0.17 to 0.17; and (c,d,g,h) from 0 to 0.0289.

Rf ≡ 〈Nu〉BZF,t/〈Nu〉V,t, (3.5)

Rh ≡ (〈Nu〉BZF,t π(R2 − r2
0))/(〈Nu〉V,t πR2) = R2 − r2

0
R2 〈Nu〉BZF,t/〈Nu〉V,t, (3.6)

where r0 = R − δ0. The quantity Rf is the ratio of the mean vertical heat flux within
the BZF to the vertical heat flux averaged over the whole cell. The quantity Rh reflects
the portion of the heat transported through the BZF compared to the total transported
heat. Especially, in figure 6(a), the time- and φ-averaged radial profile at the mid-height
for Ra = 109, Pr = 0.8 and Γ = 1/2 shows a significant peak of heat transport inside
the BZF, and the peak amplitude increases dramatically as rotation becomes stronger.
Thus, although the width of the BZF shrinks with increasing rotation, thereby reducing
the effective area of the BZF with respect to the whole domain, as shown in figure 6(b),
the increasing magnitude of the peak makes the heat transport carried by the BZF quite
significant. Note that the annular BZF region of width δ0 is smaller than the positive
contribution to the heat transport, as shown in the inset of figure 6(a).

Figure 6(c) reveals that the enhancement of the local heat transfer within the BZF
increases more rapidly when rotation is very strong (1/Ro � 10). As a result of these
properties, the heat transport carried by the BZF for these parameter values is always more
than 60 % of the total heat transport at fast rotation (see figure 6d). Note, however, that the
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Figure 6. (a) Radial profiles of normalized time- and φ-averaged heat flux 〈Nu〉φ,t(r)/〈Nu〉V,t at z = H/2, for
different rotation rates. The inset shows the radial profiles of time- and φ-averaged uφ , where solid lines pass
through 〈uφ〉φ,t = 0 (radial location corresponds to r0). (b) Ratio of BZF area to the total area at z = H/2, i.e.
A0 = (R2 − r2

0)/R2. (c) Ratio of mean vertical heat flux inside the BZF to mean global heat flux, i.e. Rf (3.5).
(d) Ratio of heat transported inside the BZF (solid circles) or in an extended zone R − 2δ0 < r < R (open
circles) to total transported heat, i.e. Rh (R∗

h) (3.6). For all panels Ra = 109, Pr = 0.8 and Γ = 1/2.

effect of the BZF on the heat transport extends over a wider range r < r0; over some range,
Nu is actually negative (see figure 6a), implying an anticorrelation of vertical velocity and
buoyancy, i.e. warm fluid going down or cooler fluid moving up. If we modify the annular
averaging to take into account the decreased Nu region as well as the inner structure of
the BZF, i.e. we average over the extended region R − 2δ0 ≤ r ≤ R, we get the ratio R∗

h,
which is also shown in figure 6(d) (open symbols) where one sees an even larger fractional
contribution.

We also consider the dependence of the heat transport ratio Rh as a function of Pr (see
inset of figure 6d). Interestingly, for Pr < 1 we find 0.6 < Rh < 0.7, whereas for Pr > 1
we have 0.3 < Rh < 0.4, with a quite sharp transition for Pr ≈ 1. The origin of this rather
sharp change emphasizes the important role that Pr plays, perhaps through the competition
between thermal and viscous BLs. Finally, comparing our computation of the total Nu
with increasing rotation with that of Wedi et al. (2021) (see figure 13 in the Appendix),
we conclude, given the close agreement, that the contribution of the BZF affects both
measures of Nu substantially and needs to be taken into account when considering the
scaling of geostrophic heat transport in experiments and also in DNS with no-slip sidewall
boundary conditions (see also de Wit et al. 2020).

3.3. Dependence on Ra, Pr and Γ

We first discuss the qualitative robustness of the BZF with respect to Ra, Pr and Γ before
we consider its quantitative spatial and temporal properties. We demonstrate the character
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Figure 7. Space–time plots of temperature T at the sidewall, r = R, and at half-height, z = H/2, for
Ra = 108, 1/Ro = 10, Γ = 1/2, and (a) Pr = 0.1, (b) Pr = 0.8 and (c) Pr = 4.38.

of the BZF with respect to variations of Pr and Γ by considering time–angle plots of
temperature T at z = H/2 and r = R. Figure 7(a) shows that the BZF exists in the flows at
different Pr = 0.1, 0.8 and 4.38 (also for Pr = 0.25, 0.5, 2, 3, 7 and 12.3, not shown),
i.e. from small to large Pr. Although there are some quantitative differences among the
three cases, they all qualitatively demonstrate the existence of the BZF for more than two
decades of Pr.

The qualitative dependence of the BZF on the aspect ratio Γ is shown in figure 8 for
three different aspect ratios: Γ = 1/2, 1 and 2. The BZF is present in all three cases,
has the same scaling of BZF width when scaled by H, i.e. δ0/H is independent of Γ

(see figure 9d inset), and has a drift period (in units of free-fall time τff = √
H/(αgΔ) =

τκPr−1/2Ra−1/2, where τκ = H2/κ is the thermal diffusion time) of approximately 70.
The quantitative scaling of the drift frequency is analysed later, and the data are tabulated
in the Appendix (see table 2). The wavelength λ of the travelling BZF mode is independent
of Γ for these three values in a straightforward way, as seen in figure 8, namely λ/H =
π/2, so that the number of wavelengths around the circumference is m = 2Γ and the
wavenumber is k = 2π/λ = 4/H. We note, however, that this relationship is for a limited
number of values of Γ and control parameters Ra and Ro. Thus, we make no strong
claims to its generality. Indeed, there is already evidence from de Wit et al. (2020) that
for Γ = 1/5 one gets m = 1 /= 2Γ , and we made additional measurements with Γ = 1/3
and 3/4 that also yield m = 1. We conjecture that, owing to periodic azimuthal symmetry,
m will take on only integer values, similar to the situation for wall mode states (Ecke
et al. 1992; Goldstein et al. 1993; Ning & Ecke 1993; Zhong et al. 1993; Liu & Ecke
1999) in cylindrical convection cells. Because of this periodic constraint, one cannot have
m < 1, so small aspect ratios with Γ � 1 have m = 1. We also note that the mode-number
dependence on Γ of the BZF is similar to that of the Γ dependence of linear wall state
mode number, i.e. m ≈ 3Γ (Goldstein et al. 1993; Herrmann & Busse 1993; Kuo & Cross
1993; Ning & Ecke 1993; Liu & Ecke 1999; Zhang & Liao 2009). Given that our states
have values of Ra that are 10–100 times greater than the linear wall mode onset Raw, this
difference is not unreasonable and the correspondence is very suggestive. In particular,
a range of mode numbers are stable near onset (Ning & Ecke 1993; Zhong et al. 1993;
Liu & Ecke 1999) owing to the azimuthally periodic boundary conditions. Significantly
above onset there seems to be a selection towards lower mode numbers: for example,
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Figure 8. Space–time plots of temperature T at the sidewall, r = R, and at half-height, z = H/2, for
Ra = 108, 1/Ro = 10, Pr = 0.8, and (a) Γ = 1/2, (b) Γ = 1 and (c) Γ = 2.

Zhong et al. (1993, figures 3 and 8) with Γ = 2 show stable wall modes with m = 4, 5, 6
and 7 near onset but only the m = 4 and 5 modes persist for higher Ra, which yields
m = 2Γ and m = 2.5Γ , respectively, consistent with our results for the BZF (see also
Favier & Knobloch 2020).

3.4. Spatial and temporal scales
We next consider the quantitative dependence of the different layer widths on Ra, Ek
and Pr, looking for a universal scaling of the form δ/H ∼ Prξ RaβEkγ . In figure 9(a),
the dependence of δ0/H on Ek for Ra = 109, Pr = 0.8 and 2 < 1/Ro < 20 is shown to
be consistent with an Ek2/3 scaling, whereas the widths based on other measures scale
closely as Ek1/3, i.e. γ takes on values of 2/3 and 1/3 for BZF width and velocity layer
widths, respectively. (Because the statistical uncertainty in our reported exponents is of
the order of 5 %–10 %, we report fractional scalings consistent with the data to within
these uncertainties; they are not intended to denote exact results.) As mentioned in Zhang
et al. (2020), the BZF is characterized by bimodal temperature p.d.f.s near the sidewall.
This property was used in both DNS and experimental measurements to identify the
BZF over a wide range of Ra. Here, we conduct a more detailed analysis of the DNS
data to explore how the width of the BZF changes with Ra. We compute the width at
fixed Ro = Ra1/2Pr−1/2Ek so Ek = Ro Ra−1/2Pr1/2. To determine the scaling with Ra at
fixed Ro = 1/10, we have that δ/H ∼ Raβ−γ /2. By multiplying by Raγ /2 we obtain the
scaling exponent β. In figure 9(b), we plot (δ0/H)Ra1/3 and (δ/H)Ra1/6 corresponding
to γ values of 2/3 and 1/3, respectively. From this plot, we obtain values for β of 1/4 and
0, respectively. Similarly for the dependence on Pr, we plot in figure 9(c) the corrected
quantities (δ/H)Prγ /2, which yields δ0/H scalings for ξ of −1/4 for Pr < 1 and 0 for
Pr > 1. The other layer widths based on uφ , uz and Fz are independent of Pr for Pr < 1
but do not collapse for Pr > 1. The separation of the different widths for Pr > 1 suggests
some interesting behaviour not captured by our scaling ansatz.

Finally, we can collapse all the data for BZF width onto a single scaling curve by plotting
in figure 9(d) δ∗

0/H = δ0/H(Pr{1/4, 0}Ra−1/4) versus Ek (to compact the different scalings
with Pr we denote them as Pr{1/4,0} for scaling with Pr < 1 and Pr > 1, respectively)
so that we can conclude that δ0/H ∼ Pr{−1/4,0}Ra1/4Ek2/3. The results at one set of
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Figure 9. (a) Scaling with Ek of characteristic widths δ/H ∼ Ekγ (for δ0, the distance from the vertical wall to
the location where 〈uφ〉t = 0), for Ra = 109, Pr = 0.8 and Γ = 1/2. For δ0/H, one obtains γ ∼ 2/3, whereas
for other δ/H, one has γ = 1/3. (b) Scaling with Ra of compensated width Raγ /2δ0/H for fixed 1/Ro = 10
and Pr = 0.8. (c) Scaling with Pr of compensated width Pr−γ /2δ0/H for Ra = 108 and 1/Ro = 10. (d) Scaling
with Ek of normalized BZF width δ∗

0/H = Ra−1/4Pr1/4δ0/H (for Pr < 1) and δ∗
0/H = Ra−1/4Pr0δ0/H (for

Pr > 1); for compactness, we write the two scalings with Pr as Pr{−1/4, 0}. The inset shows δ∗
0/H versus Γ .

(e) Compensated plot of BZF width (δ0/H)/(0.85Pr{−1/4, 0}Ra1/4Ek2/3) versus Ek (all data from table 2 are
shown; open symbols are cases with larger statistical uncertainty owing to shorter averaging time).

parameter values {Ra, Pr, Ro} are independent of Γ (see figure 9d inset), which implies
that δ0/H ∼ Γ 0 (other dependences on Γ are not ruled out for other parameter values,
although it is reasonable to assume it to be general in the absence of other data). Thus, we
plot in figure 9(d) all the data with different Γ , Pr, Ra and Ek to obtain scalings

δ0/H ≈ 0.85Γ 0Pr−1/4Ra1/4Ek2/3, for Pr < 1, (3.7)

δ0/H ≈ 0.85Γ 0Pr0Ra1/4Ek2/3, for Pr > 1. (3.8)
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Figure 10. Scalings of ωd: (a) data scaled by Pr4/3Ek−5/3 showing Ra scaling; (b) data scaled by Ra−1Ek−5/3

showing Pr−4/3 scaling; and (c) data scaled by Pr4/3Ra−1 showing Ek5/3 scaling (cases at different Ra ( grey
squares), at different Pr ( red triangles) and at different Ro (blue circles)).

We plot in figure 9(e) the scaled BZF width (δ0/H)/(0.85Γ 0Pr{−1/4, 0}Ra1/4Ek2/3). One
sees that the data scatter randomly within ±10 %, quite good agreement.

The BZF drifts anticyclonically, the same as the direction of travelling wall modes of
rotating convection (Zhong et al. 1991; Ecke et al. 1992; Herrmann & Busse 1993; Kuo
& Cross 1993). We plot in figure 10(a) the drift frequency ωd ≡ ω/Ω versus Ra showing
scaling as Ra and in figure 10(b) versus Pr showing scaling as Pr−4/3(data in both are
corrected for constant-Ro conditions). In figure 10(c), we scale out the dependence on Ra
and Pr, i.e. ωdRa−1Pr4/3, and observe reasonable collapse with Ek5/3 scaling. From the
cases listed in table 2, we get the frequency scaling in terms of Ra, Pr, Γ and Ek as

ωd ≈ 0.03Γ 0Pr−4/3Ra Ek5/3. (3.9)

The linear dependence on Ra is consistent with earlier results (Horn & Schmid 2017;
Favier & Knobloch 2020; de Wit et al. 2020) and suggests that there is a correspondence
between the states we observe and the nonlinear manifestation of linear wall mode states.
The scalings we have determined for ωd with Ek and Pr will be useful in making a more
quantitative comparison with the wall mode hypothesis among datasets with different Ek
and Pr. Such an analysis is beyond the scope of the present work and will be presented
elsewhere. These scalings, of course, depend on the definition of the time unit. Using the
free-fall time or the vertical thermal diffusion time, respectively, we obtain

ω/
√

αgΔ/H ≈ 0.015Γ 0Pr−5/6Ra1/2Ek2/3, (3.10)

ω/(κ/H2) ≈ 0.015Γ 0Pr−1/3Ra Ek2/3, (3.11)

which both show the same Ek scaling as δ0, i.e. Ek2/3 (see figure 9a). For the three choices
of time scale, the drift frequency decreases with increasing Pr for all Pr as opposed to
the scaling of δ0/H, which has different scaling for small and large Pr (see figures 9c and
12b).

As reported in Zhang et al. (2020) and shown here in figure 3, the thermal structures drift
anticyclonically, opposite to the azimuthal velocity, which is cyclonic near the sidewall,
as shown in figure 2(b–d). We show in figure 11(a) that the drift frequency decreases
as rotation increases with a scaling Ek2/3. In figure 11(b), we show that the near-plate
azimuthal velocity upeak

φ is also anticyclonic and shows the same scaling behaviour with
Ek (see figure 10b) as the BZF width and drift frequency. Based on this observation, we
believe that the drift characteristics of the BZF are determined not only by the presence of
the vertical wall but also by the near-plate region.
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Figure 12. (a) The Ra–Pr phase diagram. Different rotating convective states are labelled. The dashed
horizontal line corresponds to Ra = 109. Critical Ek values Ekw, Ekc and Ekt are indicated. The Ek data (solid
circles) correspond to values in (b). (b) Widths of BZF δ0 and Stewartson ∼Ek1/3 layer δrms

uz
at Ra = 109

(DNS) versus Ek. Vertical dashed lines (black, blue and red, respectively) are the critical Ekman numbers for
onset of wall modes (Ekw), onset of bulk convection (Chandrasekhar 1961; Niiler & Bisshopp 1965) (Ekc), and
transition to rotation-dominated regimes (Ekt) for Pr = 0.8, Ra = 109 and Γ = 1/2.

Finally, we consider the range of Ra and Ek in which the BZF is observed in this
study. There are three regions defined by the onset of wall mode convection Raw ≈
32Ek−1, the onset of bulk convection Rac = AEk−4/3 and the transition from geostrophic
convection (Grooms et al. 2010; Julien et al. 2012) to buoyancy-dominated convection
Rat = Pr Ro2

t Ek−2, where Rot ≈ 1 (see figure 13 in the Appendix) is the transition Rossby
number out of the geostrophic regime (Julien et al. 1996; King et al. 2009; Liu & Ecke
2009; Weiss & Ahlers 2011b) as indicated in the Ra–Ek phase diagram in figure 12(a).
Our data fall solely within the geostrophic regime of bulk convection, but we include the
other zones for context. According to Chandrasekhar (1961) (see also Clune & Knobloch
1993), the critical Rayleigh number for the onset of convection is Rac ∼ Ek−4/3 with a
prefactor A that is weakly dependent on Ek, in the range 6–8.7 (Chandrasekhar 1961; Niiler
& Bisshopp 1965); we use a value of 7.5 consistent with our range of Ek.

To illustrate one aspect of this range, we consider the BZF width δ0/H versus
Ek for Ra = 109 in figure 12(b). A path of constant Ra = 109 (figure 12a)
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Figure 13. Double-logarithmic scale plot of Nu/Nu0 versus PrRo2. The horizontal line indicates Nu/Nu0 = 1;
the vertical dashed line indicates the value Rot, i.e. a transition between buoyancy-dominated convection at
larger Ro (Nu ≈ Nu0) and the rotation-dominated regime at smaller Ro (Nu < Nu0). Experimental data are
from Wedi et al. (2021).

yields Ekw ≈ 32Ra−1 = 3.2 × 10−8, Ekc = (A Ra−1)3/4 = 8 × 10−7 and Ekt = RotPr1/2

Ra−1/2 = 2.8 × 10−5. Here the subscripts ‘w’, ‘c’ and ‘t’ correspond, respectively, to the
onset of wall mode, bulk convection and transition from rotation to buoyancy-dominated
regime. These values are indicated by vertical dashed lines in figure 12(b). Knowing the
dependence of the critical Rac and Ek, and using the relations (3.7) and (3.8), we can
evaluate the smallest possible δ0 for any fixed Ek, i.e. δmin

0 ∼ Ra1/4
c Ek2/3 ∼ Ek1/3 (see

δmin
0 in figure 12b). Connecting these onset points, we obtain the black line in the diagram,

which is parallel to the Stewartson ‘1/3’ layer scaling. The gap between these two black
solid lines depends slightly on A, but the ratio of the BZF width to the Stewartson layer
width is constant (based on δrms

uz
) at the onset of convection (the fixed gap). Thus, although

the BZF width decreases faster than the Stewartson layer as rotation increases, there is
no crossing of the BZF boundary and the boundary of the Stewartson layer at extremely
fast rotation because bulk convection ceases before they can cross. Note that all the data
considered here fall within the geostrophic range of rotating convection; what happens in
the wall mode region is not addressed.

The other bound on the BZF scaling depends on when rotation becomes significant.
An estimate is made based on a plot of Nu/Nu0 versus Pr Ro2 for our DNS and for
experimental data from Wedi et al. (2021) (see figure 13 in the Appendix), where
the data for Ra from 108 to 1014 merge onto a single curve. Here Nu0 is the Nusselt
number in the non-rotating case. Using an empirical estimate Rot ≈ 1 for the onset of the
rotation-dominated regimes, i.e. the geostrophic regime, we get an estimate for the largest
possible δ0, for any Ek (grey line in figure 12, that is, δmax

0 ∝ Ra1/4
t Ek2/3 ∝ Ro1/2

t Ek1/6 ≈
Ek1/6). (The value Pr Ro2

t ≈ 1 is the onset in figure 13, but in the experiments Pr varies
from 0.7 to 0.9 and in the DNS Pr = 0.8; thus here we take Pr = 1, which gives Rot ≈ 1,
for simplicity.)
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It is remarkable that the BZF regime is confined by these two critical lines (∼ Ek1/6 and
∼ Ek1/3) and the range confined in between gets broader for higher Ra. In other words,
at low Ra, the BZF is only observed over a small range of rotation rates. At large Ra,
the BZF exists over a much broader range of rotation rates (Zhang et al. 2020; Wedi
et al. 2021). For any fixed Ra, the BZF exists in a certain Ek range that is determined
by the grey and black lines in figure 12(b) and the BZF width changes as δ0 ∼ Ek2/3

over that range. How the BZF contributes to the heat transport relative to the contribution
of the laterally unbounded system in the geostrophic regime remains an open question.
Further, the connection between the BZF and linear wall modes requires additional work
to understand the relationship between the two convective states.

4. Conclusion

The BZF is found to be an important flow structure in rapidly rotating turbulent
Rayleigh–Bénard convection in the geostrophic regime and is robust over considerable
ranges of Ra, Ek, Pr and Γ . The main structure, drift of plume pairs, is found to be a
m = 2Γ mode for the choices of Γ = 1/2, 1 and 2; additional values of Γ = 1/3 and 3/4
yield m = 1, suggesting mode 1 for Γ � 1. In addition, the BZF carries a large portion of
the total heat; its contribution to the total heat transport is approximately 60 % of the heat
transport at fast rotation, Ro < 0.1, and for Pr < 1. For Pr > 1, the BZF heat transport
contribution drops to approximately 35 %. Understanding this important contribution to
the heat transport is essential in analysing experiments in rotating convection in the
geostrophic regime.

The scaling of the BZF width δ0 depends on Pr, Ra and Ek as δ0/H ∼
Γ 0Pr{−1/4, 0}Ra1/4Ek2/3 (that is, Pr−1/4 for small-to-moderate Pr and independent of
Pr for large Pr). The universal scaling of the BZF and the sidewall BLs is very
clean for Pr < 1 but the BZF is less coherent for Pr > 1 and the sidewall BL widths
behave differently for those conditions. Further, the sharp decrease in the BZF heat
transport contribution similarly marks a transition to a perhaps more complex BZF state
for Pr > 1. The drift frequency of the BZF shows scaling ω/Ω ∼ Γ 0Pr−4/3Ra Ek5/3,
indicating that the drift frequency decreases significantly as Pr increases, is proportional
to Ra and decreases rapidly with increasing rotation (decreasing Ek). Interestingly,
ω seems to be more robust than δ with respect to changes in Pr. Finally, the BZF
shares qualitative and some quantitative characteristics with linear wall modes, and
establishing the connection between these two states will be an important area of future
research.
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Γ Pr Ra 1/Ro tavg/τff Nr Nφ Nz Nth Nu N sw
u δth/H δu/H δsw

u /H max(h/ηk)

1/2 0.8 5.0 × 107 10 440 90 256 380 43 49 16 3.5 × 10−2 4.5 × 10−2 2.3 × 10−2 0.63
1.0 × 108 10 500 100 256 380 39 50 17 3.0 × 10−2 4.9 × 10−2 2.0 × 10−2 0.79
5.0 × 108 10 370 128 320 620 46 89 17 1.6 × 10−2 5.4 × 10−2 1.4 × 10−2 0.67
1.0 × 109 10 1130 192 512 820 37 101 18 1.2 × 10−2 5.3 × 10−2 1.3 × 10−2 0.85
5.0 × 109 10 200 256 620 860 39 118 27 7.3 × 10−3 5.1 × 10−2 9.4 × 10−3 1.24

1/2 0.1 1.0 × 108 10 750 256 256 512 70 60 33 7.3 × 10−2 5.7 × 10−2 1.2 × 10−2 1.10
0.25 10 80 100 256 380 39 50 17 5.1 × 10−2 5.2 × 10−2 1.9 × 10−2 0.77
0.5 10 250 100 256 380 39 50 17 4.2 × 10−2 4.9 × 10−2 1.7 × 10−2 0.92
0.8 10 500 100 256 380 39 50 17 3.0 × 10−2 4.9 × 10−2 2.0 × 10−2 0.79
1 10 450 100 256 380 37 50 17 2.8 × 10−2 4.8 × 10−2 2.0 × 10−2 0.72
2 10 500 100 256 380 29 53 22 1.8 × 10−2 5.3 × 10−2 2.9 × 10−2 0.80
3 10 600 100 256 380 26 53 35 1.5 × 10−2 5.2 × 10−2 3.4 × 10−2 0.83
4.38 10 430 100 256 380 24 50 16 1.3 × 10−2 4.8 × 10−2 1.6 × 10−1 0.86
7 10 540 100 256 380 24 46 49 1.3 × 10−2 4.2 × 10−2 8.9 × 10−2 0.88

12.3 10 420 100 256 380 23 41 54 1.2 × 10−2 3.3 × 10−2 1.0 × 10−1 0.88
1/3 0.8 1.0 × 108 10 810 96 256 320 28 34 22 2.8 × 10−2 3.8 × 10−1 2.0 × 10−2 0.59
1/2 10 500 100 256 380 39 50 17 3.0 × 10−2 4.8 × 10−2 2.0 × 10−2 0.79
3/4 10 830 128 256 380 38 53 17 3.4 × 10−2 5.8 × 10−1 2.0 × 10−2 0.91
1 10 1480 180 320 320 22 36 15 3.5 × 10−2 6.5 × 10−2 2.0 × 10−2 0.90
2 10 1500 256 320 320 25 46 14 4.0 × 10−2 9.0 × 10−2 2.1 × 10−2 1.24

Table 2. For caption see next page.
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Γ Pr Ra 1/Ro tavg/τff Nr Nφ Nz Nth Nu N sw
u δth/H δu/H δsw

u /H max(h/ηk)

1/2 0.8 1.0 × 109 0.5 965 192 512 768 14 78 42 7.8 × 10−3 5.6 × 10−2 3.4 × 10−2 0.94
2 1020 192 512 768 14 87 28 7.8 × 10−3 6.5 × 10−2 2.1 × 10−2 0.94
2.5 1410 192 512 768 14 88 28 7.7 × 10−3 6.6 × 10−2 2.1 × 10−2 0.94
3.3 1400 192 512 768 15 90 26 8.0 × 10−3 6.8 × 10−2 2.0 × 10−2 0.94
5 1630 192 512 768 16 88 22 8.8 × 10−3 6.5 × 10−2 1.6 × 10−2 0.92
5.6 480 180 280 680 34 105 25 9.0 × 10−3 6.5 × 10−2 1.6 × 10−2 1.13
6.7 480 180 280 680 35 102 23 9.8 × 10−3 6.3 × 10−2 1.4 × 10−2 1.10
8.3 500 180 280 680 38 99 23 1.1 × 10−2 5.8 × 10−2 1.4 × 10−2 1.07

10 1130 192 512 820 37 101 18 1.2 × 10−2 5.3 × 10−2 1.3 × 10−2 0.85
12.5 400 128 320 620 45 83 15 1.5 × 10−2 4.8 × 10−2 1.2 × 10−2 1.20
16.7 400 128 320 620 54 73 13 2.1 × 10−2 3.8 × 10−2 1.1 × 10−2 1.10
20 400 128 320 620 63 65 12 2.8 × 10−2 3.0 × 10−2 9.5 × 10−3 1.03
28.6 40 128 320 620 83 49 12 4.8 × 10−2 1.8 × 10−2 9.5 × 10−3 0.90
33.3 37 128 320 620 86 48 11 5.0 × 10−2 1.7 × 10−2 8.5 × 10−3 0.89

Table 2 (cntd). Details of the DNS: including the time of statistical averaging, tavg, normalized with the free-fall time τff ; the number of nodes Nr, Nφ and Nz in the
directions r, φ and z, respectively; the numbers of nodes within the thermal BL Nth (near the plates), within the viscous BL Nu (near the plates), and within the viscous BL
N sw

u (near the sidewall); the relative thicknesses of the viscous BL δu/H and the thermal BL near the plates δth/H, and the viscous BL near the sidewall δsw
u /H; and the

maximal value of the ratio of the mesh size to the mean Kolmogorov microscale, max(h/ηk).
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Boundary zonal flows in rotating turbulent convection

Γ Pr Ra Ek 1/Ro ωκ ωff ωd ω∗
d

1/2 0.8 5.0 × 107 1.3 × 10−5 10 6.3 × 101 1.0 × 10−2 1.3 × 10−2 1.9 × 10−10

1.0 × 108 8.9 × 10−6 10 1.3 × 102 1.5 × 10−2 1.8 × 10−2 1.4 × 10−10

5.0 × 108 4.0 × 10−6 10 3.3 × 102 1.7 × 10−2 2.1 × 10−2 3.1 × 10−11

1.0 × 109 2.8 × 10−6 10 5.7 × 102 2.0 × 10−2 2.5 × 10−2 1.9 × 10−11

5.0 × 109 1.3 × 10−6 10 1.7 × 103 2.6 × 10−2 3.3 × 10−2 4.9 × 10−12

1/2 0.1 1.0 × 108 3.2 × 10−6 10 1.1 × 102 3.3 × 10−2 4.2 × 10−2 1.9 × 10−11

0.25 5.0 × 10−6 10 1.0 × 102 2.0 × 10−2 2.5 × 10−2 4.0 × 10−11

0.5 7.1 × 10−6 10 1.2 × 102 1.7 × 10−2 2.1 × 10−2 8.3 × 10−11

0.8 8.9 × 10−5 10 1.3 × 102 1.5 × 10−2 1.8 × 10−2 1.4 × 10−10

1.0 1.0 × 10−5 10 9.1 × 101 9.1 × 10−3 1.1 × 10−2 1.1 × 10−10

2.0 1.4 × 10−5 10 1.1 × 102 8.0 × 10−3 1.0 × 10−2 2.5 × 10−10

3.0 1.7 × 10−5 10 1.2 × 102 6.7 × 10−3 8.4 × 10−3 3.6 × 10−10

4.38 2.1 × 10−5 10 1.0 × 102 5.0 × 10−3 6.3 × 10−3 4.5 × 10−10

7.0 2.6 × 10−5 10 1.2 × 102 4.5 × 10−3 5.7 × 10−3 7.6 × 10−10

12.3 3.5 × 10−5 10 1.4 × 102 4.0 × 10−3 5.0 × 10−3 1.4 × 10−9

1/2 0.8 1.0 × 108 8.9 × 10−6 10 1.3 × 102 1.5 × 10−2 1.8 × 10−2 1.4 × 10−10

1 10 1.4 × 102 1.6 × 10−2 2.0 × 10−2 1.5 × 10−10

2 10 1.4 × 102 1.6 × 10−2 2.0 × 10−2 1.5 × 10−10

1/2 0.8 1.0 × 109 5.1 × 10−6 5.6 7.1 × 102 2.5 × 10−2 5.7 × 10−2 4.2 × 10−11

4.2 × 10−6 6.7 6.6 × 102 2.3 × 10−2 4.4 × 10−2 3.3 × 10−11

3.4 × 10−6 8.3 6.3 × 102 2.2 × 10−2 3.4 × 10−2 2.5 × 10−11

2.8 × 10−6 10 5.7 × 102 2.0 × 10−2 2.5 × 10−2 1.9 × 10−11

2.3 × 10−6 12.5 3.8 × 102 1.3 × 10−2 1.3 × 10−2 1.0 × 10−11

1.7 × 10−6 16.7 3.1 × 102 1.1 × 10−2 8.4 × 10−3 6.2 × 10−12

1.4 × 10−6 20 2.6 × 102 9.1 × 10−3 5.7 × 10−3 4.2 × 10−12

9.9 × 10−7 28.6 2.2 × 102 7.7 × 10−3 3.4 × 10−3 2.5 × 10−13

8.5 × 10−7 33.3 1.7 × 102 5.9 × 10−3 2.2 × 10−3 1.6 × 10−13

Table 3. Values of Γ , Ra, Pr, Ek, Ro−1, ωκ = ωH2/κ , ωff = ω(H/(gαΔ))1/2, ωd = ω/Ω and
ω∗

d = ωdPr4/3Ra−1. (For Γ = 1/3 and 3/4, there are insufficient data to determine ω.)

Appendix

We tabulate here a full characterization of the parameters in the DNS (see table 2) and
compare our results for Nu with experimental data from Wedi et al. (2021). The excellent
agreement is a strong indication that our DNS are fully resolved. We also include the
resulting numerical values of the BZF drift frequency for different choices of time scale
(see table 3), namely ωκ , ωff and ωd for different parameter values Γ , Pr, Ra, Ek and
1/Ro.
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