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A B S T R A C T

In this article, fifth order finite volume multi-resolution weighted essentially non-oscillatory (MR-WENO)
scheme is developed for solving one-dimensional non linear viscous quantum hydrodynamical model for
semiconductor devices with constant temperature. This non linear model consists of three equations, two
equations for the current density and electron density, and third equation is the Poisson equation. The first two
equations include the viscous and quantum correction terms. Further, numerical technique is used to obtain
the solution due to high non linearity of considered model. The multi-resolution technique is used to reduce
the computational cost of high resolution numerical scheme. In the procedure of derivation of the MR-WENO
scheme unequal central spatial stencils are used and linear weights can be chosen any positive numbers with
only restriction that their total sum is one. Various numerical test problems are considered to check the validity
and accuracy of the derived numerical scheme. Further, the results obtained from considered numerical scheme
are compared with those of kinetic flux vector splitting numerical scheme.
Introduction

Modeling and numerical simulation of semiconductor processes
are essential to increase the efficiency of new quantum devices and
equally important to reduce manufacturing cost and time. Quantum
semiconductor devices are playing an increasingly important role in
advanced micro-electronic applications, including multiple-state logic
and memory devices [1–4]. To model such type of devices, the clas-
sical hydrodynamic model for semiconductor devices was extended to
include 0(ℎ2) quantum corrections [5]. In simulation of the semicon-
ductor devices, the small sizes (0.1 micro meter) of the characteristics
devices length make the modeling of quantum effects more important
and these effects are included by using the microscopic equations
such as Schrodinger or Wigner equations [6,7]. Initially, the kinetic
Wigner equation [6,7] is used to model the quantum semiconductor
devices. But in this equation the Wigner distribution function depends
on various parameters such as, wave vector, space and time, therefore
numerical simulation of such equation is computationally expensive.
So in recent years, macroscopic quantum equations are presented and
used for simulations of quantum devices, for further detail, the reader
is referred to [8–13]. This presentation of quantum equations has
various advantages such that, these equations are computationally less
expensive, can be described in the macroscopic quantities like current
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density and particle density, and the macroscopic boundary conditions
can be introduced [14]. By keeping all these advantages in mind, here
we have numerically investigated the viscous quantum hydrodynamical
model (VQHDM) that is derived from Wigner–Fokker–Planck equations.
For extensive detail about derivation of the proposed model, the reader
is referred to [14,15].

Due to the importance of viscous quantum hydrodynamical model
for semiconductor devices, many researchers have paid special atten-
tion to analyze theoretically and numerically these types of models, for
detail see [14,16–21]. In the article [14], the viscous quantum hydro-
dynamic model was approximated by two different numerical schemes
namely central finite difference and relaxation schemes. The authors
show that central finite difference scheme is more appropriate to com-
pute the model numerically as compare to the relaxation scheme since
the presence of numerical viscosity in the relaxtion scheme changes the
nature of the numerical solutions. Subsequently, the authors used the
kinetic flux vector splitting (KFVS) scheme to numerically investigate
the viscous quantum hydrodynamic model [21].

In this article, fifth order finite volume multi-resolution WENO
scheme is developed to simulate the flow of electrons in semicon-
ductor devices based on the viscous quantum hydrodynamic model.
We borrow the idea of MR-WENO scheme from [22]. Just like the
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classical finite volume WENO schemes [23,24], the proposed numerical
scheme also resolves the sharp discontinuities efficiently and ensures
high order accuracy in the smooth regions, but the proposed numerical
scheme uses the series of unequal sized hierarchical central spatial
stencils, for further detail the reader is referred to the articles [22] and
references therein. Basically, the multi-resolution techniques [25,26]
were designed to reduce the computational costs of high resolution
numerical algorithms. Since these multi-resolution schemes concentrate
the regions of computational domain which include sharp gradients.

The organization of remaining article is as follow. In ‘Viscous quan-
tum hydrodynamic Model’, the mathematical form of viscous quantum
hydrodynamic model for semiconductor devices is explained. Next in
‘Scaling of parameters’, the scaling of proposed model is given and
then compact form of the proposed model and boundary conditions
are presented. In ‘The multi-resolution WENO scheme for viscous quan-
tum hydrodynamic model’, the multi-resolution finite volume WENO
numerical scheme is derived for the considered model. Subsequently,
in ‘Numerical test problems’, the numerical solutions obtained from the
considered numerical methods are compared with the results of the
kinetic flux vector splitting numerical scheme [21] and with results are
presented in [14]. Finally, in the section ‘Conclusions’, the conclusions
are presented.

Viscous quantum hydrodynamic model

In this section, mathematical form of viscous quantum hydrody-
namic model is explained. The current and electron density satisfy
Madelung equations when the Schrodinger equations in a single state
is separated into complex and real components.

𝜕𝑡𝑛 +
1
𝑞
∇.𝐽 = 0, (1)

𝑡𝐽 + 1
𝑞
∇.

(𝐽 ⊗ 𝐽
𝑛

)

−
𝑞2

𝑚
𝑛∇𝑉 −

ℎ2𝑞
6𝑚2

𝑛∇

(

△
√

𝑛
√

𝑛

)

= 0, (2)

here, spatial derivatives are represented by ∇ and 𝐽 ⊗ 𝐽 represents
ensor whose components are 𝐽𝑖𝐽𝑘 for 1 ≤ 𝑖 ≤ 𝑑 also 1 ≤ 𝑘 ≤ 𝑑

and 𝑑 is the number of dimension. The other symbols of well known
quantum hydrodynamic model are defined as: 𝑛—electron density,
𝐽—current density, 𝑞—elementary charge, 𝑚—effective electron mass,
𝑉 —voltage and ℎ—reduced Planck constant. In the article [27], the
author has also expressed the above model as pressure-less Euler equa-
tions. The quantum hydrodynamic models (QHDM) have no impurities
of the semiconductors such as electron’s collision. For all intents and
purposes these investigations of quantum hypothesis are in starting
stages, for detail see [9,11,28]. The Wigner equation with the help of
Fokker–Planck-type collision operator [29–31] can be re-written as

𝜕𝑡𝑤 + ℎ
𝑚
𝑘∇𝑥𝑤 +

𝑞
ℎ
𝛩 [𝑉 ] (𝑤)

=
𝐷𝑝𝑝

ℎ2
△𝑘 𝑤 + 1

𝜏0
∇𝑘 (𝑘𝑤) +

𝐷𝑝𝑞

ℎ
∇𝑥.

(

∇𝑘𝑤
)

+𝐷𝑞𝑞 △𝑥 𝑤, (3)

with

𝐷𝑝𝑝 =
𝑚𝑘𝑏𝑇0
𝜏0

, 𝐷𝑝𝑞 =
𝛺ℎ2

6𝜋𝑘𝑏𝑇0𝜏0
, 𝐷𝑞𝑞 =

ℎ2

12𝑚𝑘𝑏𝑇0𝜏0
,

ere, the cut-off frequency is represented by 𝛺 and the momentum
elaxation time of the reservoir oscillators are represented by 𝜏0. The

phase-space diffusion matrix is established by the constant terms 𝐷𝑞𝑞 ,
𝑝𝑝 and 𝐷𝑝𝑞 . and fraction term is represented by ∇𝑘(𝑘𝑤)

𝜏0
as discussed

n [14]. By using Wigner–Fokker–Planck Eq. (3), the viscous quantum
ydrodynamics model for semiconductor devices can be derived [15]
s follows

𝑡𝑛 +
1
𝑞
∇.𝐽 = 𝐷𝑞𝑞 △ 𝑛, (4)

𝑡𝐽 + 1∇.
(𝐽 ⊗ 𝐽 )

+
𝑞𝑘𝑏𝑇0

(

1 +
𝐷𝑝𝑞

)

△ 𝑛
2

𝑞 𝑛 𝑚 𝑘𝑏𝑇0
−
𝑞2

𝑚
𝑛∇𝑉 −

ℎ2𝑞
6𝑚2

𝑛∇

(

△
√

𝑛
√

𝑛

)

= − 𝐽
𝜏0

+𝐷𝑞𝑞 △ 𝐽 , (5)

with Poisson equation

𝑑𝑖𝑣𝑥(𝜀𝑠∇𝑥𝑉 ) = 𝑞 (𝑛 − 𝐶(𝑥)) , 𝑥 ∈ R𝑑 (6)

ere, the permittivity of semiconductor is represented by 𝜀𝑠, charge is
epresented by 𝑞 and 𝐶 is used for doping density profile. We treated
𝑝𝑝 △ 𝑛 and 𝐷𝑞𝑞 △ 𝐽 as viscous terms of order two.

caling of parameters

We introduce the characteristic length L (i.e device diameter) for
caling the VQHD Eq. (4) to (6) and all other quantities are defined
s 𝐶∗ = sup |𝐶| is the characteristics density , 𝐽 ∗ = 𝐶∗𝑡∗𝑞𝑘𝐵𝑇0

𝐿𝑚 is the
current density and 𝑉 ∗ = 𝑘𝐵𝑇0

𝑞 is the voltage and the mean free-path

𝑙 is given as 𝑙2 =
𝑘𝑏𝑇0𝜏20

𝑚 . We will get the value of 𝑡∗ from the relation

𝐿2 = (𝑡∗)2𝑘𝐵𝑇0
𝑚 . The dimensionless parameters are given as

𝑥 = 𝑥
𝐿
, 𝑡 = 𝑡

𝑡∗
, 𝐶 = 𝐶

𝐶∗ , 𝑛 = 𝑛
𝐶∗ , 𝐽 = 𝐽

𝐽 ∗ , 𝑉 = 𝑉
𝑉 ∗ ,

𝜏 =
𝜏0
𝑡∗
, 𝑣 = 𝑡∗

6𝜏0

(

𝐿𝑏
𝐿

)2
, 𝜖2 = 2

3

(

𝐿𝑏
𝐿

)2
, 𝜆2 =

𝜖𝑠𝑘𝐵𝑇0
𝑞2𝐿2𝐶 ∗

,

𝑇 = 1 +
𝛺𝐿𝑏ℎ

√

18𝜋𝑘𝐵𝑇0𝑙
,

here, the constant value 𝐿𝑏 =
ℎ

√

2𝑘𝐵𝑚𝑇0
is called de Broglie length. The

scaled VQHDM is written by:

𝜕𝑡𝑛 + ∇.𝐽 = 𝑣△ 𝑛, (7)

𝜕𝑡𝐽+∇.
(𝐽 ⊗ 𝐽

𝑛

)

−𝑛∇
(

𝑉 + 𝑉𝑒𝑥𝑡
)

+𝑇∇𝑛− 𝜖2

2
𝑛∇

(

△
√

𝑛
√

𝑛

)

= −𝐽
𝜏
+𝑣△𝐽 ,

(8)

𝜆2 △ 𝑉 = (𝑛 − 𝐶) (9)

where, the viscosity constant 𝑣 is positive. The heterogeneous semi-
conductor materials are modeled by the external potential 𝑉𝑒𝑥𝑡 (𝑥)
ntroduced in Eq. (8). The value 𝐶∗ = 1024 m3 is assumed to consider
oping in m3 The values of parameters obtained after scaling are given
s 𝜆2 = 3.032×10−4, 𝜖2 = 3.893×10−3, 𝑇 = 1.00585 and 𝑣 = 9.935×10−4.

ompact form of the model

The compact form of the one dimensional VQHDM is presented in
his section. The VQHDM given in Eqs. (7) and (8) is written as

𝑡 + 𝐅 (𝐖)𝑥 =
(

𝐁
(

𝐖;𝐖𝑥
))

𝑥 + 𝐒(𝐖), (10)

long with the following Poisson equation
2𝑉𝑥𝑥 = 𝑛 − 𝐶 (𝑥) . (11)

n Eq. (10), the left hand side shows a quasi-linear hyperbolic operator
nd the right hand side shows the diffusive terms. Also, 𝐖, 𝐅, 𝐁 and 𝐒
re the vector quantities which are defined as

=
[

𝑛
𝐽

]

, 𝐅 (𝐖) =

[

𝐽
𝐽2

𝑛 + 𝑇 𝑛

]

,

𝐁
(

𝐖,𝐖𝑥
)

=
[

𝑣𝑛𝑥
𝑣𝐽𝑥

]

, 𝐒 (𝐖) =
[

0
−𝐽 + 𝑛

(

𝑉 +𝑄
)

𝑥

]

,

where, 𝑄 and 𝑉 are defined as 𝑄 = 𝜖2𝜕𝑥𝑥
√

𝑛
2
√

𝑛
and 𝑉 = 𝑉 + 𝑉𝑒𝑥𝑡

respectively. we assuming 𝐿 for representing the length of typical
device.
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The initial conditions and boundary conditions are as under

𝑛(𝑥, 0) = 𝐶(𝑥), 𝐽 (𝑥, 0) = 0. (12)

𝑥(0, 𝑡) = 𝑛𝑥(𝐿, 𝑡) = 0, 𝐽𝑥(0, 𝑡) = 𝐽𝑥(𝐿, 𝑡) = 0. (13)

e considered the fixed-type boundary conditions for the density 𝑛 due
o the conservation of electron such as 𝑛(𝐿, 𝑡) = 𝐶(𝐿) and 𝑛 (0, 𝑡) = 𝐶 (0).

Whereas, the boundary conditions for the potential 𝑉 and applied
voltage 𝑉𝑏 in the Poisson equation are given in the form

𝑉 (𝐿) = 𝑉𝑏, 𝑉 (0) = 0. (14)

The multi-resolution WENO scheme for viscous quantum hydrody-
namic model

This section includes the extension of FV MR-WENO scheme for
solving the viscous quantum hydrodynamic model. First we consider
the homogeneous form of the considered model given in Eq. (10) as
follow

𝐖𝑡 + 𝐅(𝐖)𝑥 = 𝟎, 𝑡 > 0, 𝑥 ∈ D (15)

and subdivide the domain D into cells 𝐶𝑖 = [𝑥𝑖− 1
2
, 𝑥𝑖+ 1

2
] and 𝑖 = 1,… , 𝑁 .

The expression 𝑥𝑖 =
1
2

(

𝑥𝑖− 1
2
+ 𝑥𝑖+ 1

2

)

represents the center of the 𝑖-th
cell and ▵ 𝑥𝑖. represents the 𝑖-th cell size. Integrating Eq. (15) over the
cell 𝐶𝑖 yields

𝑑
𝑑𝑡

𝐖(𝑥𝑖, 𝑡) +
1

▵ 𝑥𝑖

(

𝐅(𝐖(𝑥𝑖+ 1
2
, 𝑡)) − 𝐅(𝐖(𝑥𝑖− 1

2
, 𝑡))

)

= 𝟎, (16)

where 𝐖(𝑥𝑖, 𝑡) =
1

▵𝑥𝑖
∫
𝑥
𝑖+ 1

2
𝑥
𝑖− 1

2

𝐖(𝑥, 𝑡)𝑑𝑥. The Eq. (16) is approximated as

𝑑
𝑑𝑡

𝐖𝑖(𝑡) +
1

▵ 𝑥𝑖

(

𝐅̂𝑖+ 1
2
− 𝐅̂𝑖− 1

2

)

= 𝟎, (17)

with monotone numerical flux 𝐅̂𝑖+ 1
2

= ϝ
(

𝐖−
𝑖+ 1

2

,𝐖+
𝑖+ 1

2

)

and point-

wise approximations to 𝐖(𝑥𝑖+ 1
2
, 𝑡) are 𝐖−

𝑖+ 1
2

and 𝐖+
𝑖+ 1

2

. Moreover,
Lax-Friedrichs flux (LFF)is used as a monotone numerical flux given
as

ϝ
(

𝐖−
𝑖+ 1

2
,𝐖+

𝑖+ 1
2

)

= 1
2

(

𝐅(𝐖−
𝑖+ 1

2
) + 𝐅(𝐖+

𝑖+ 1
2

) − 𝜗(𝐖+
𝑖+ 1

2

−𝐖−
𝑖+ 1

2
)
)

, (18)

where 𝜗 = max𝐖 |𝐅′(𝐖)|. Now we compute the variables 𝐖𝑖(𝑡) which
is used to approximate the cell average 𝐖(𝑥𝑖, 𝑡). The point-wise ap-
proximations 𝐖−

𝑖+ 1
2

and 𝐖+
𝑖+ 1

2

are calculated through the adjacent cell

verage values 𝐖𝑖 by WENO reconstruction. For the fifth order WENO
reconstruction, we choose three central candidate stencils, S1(𝑖) =
𝐶𝑖}, S2(𝑖) = {𝐶𝑖−1, 𝐶𝑖, 𝐶𝑖+1} and S3(𝑖) = {𝐶𝑖−2, 𝐶𝑖−1, 𝐶𝑖, 𝐶𝑖+1, 𝐶𝑖+2}
nd reconstruct the zeroth, second and fourth degree polynomials
1(𝑥), 𝑝2(𝑥) and 𝑝3(𝑥) respectively, which satisfy

1
▵ 𝑥𝑖 ∫

𝑥
𝑗+ 1

2

𝑥
𝑗− 1

2

𝑝1(𝑥)𝑑𝑥 = 𝐖𝑗 , 𝑗 = 𝑖, (19)

1
▵ 𝑥𝑖 ∫

𝑥
𝑗+ 1

2

𝑥
𝑗− 1

2

𝑝2(𝑥)𝑑𝑥 = 𝐖𝑗 , 𝑗 = 𝑖 − 1, 𝑖, 𝑖 + 1 (20)

1
▵ 𝑥𝑖 ∫

𝑥
𝑗+ 1

2

𝑥
𝑗− 1

2

𝑝3(𝑥)𝑑𝑥 = 𝐖𝑗 , 𝑗 = 𝑖 − 2, 𝑖 − 1, 𝑖, 𝑖 + 1, 𝑖 + 2. (21)
3

More precisely, the explicit expressions for 𝑝1(𝑥), 𝑝2(𝑥) and 𝑝3(𝑥) are
iven as follow

𝑝1(𝑥) = 𝐖𝑖,

𝑝2(𝑥) =
𝐖𝑖+1 − 2𝐖𝑖 +𝐖𝑖−1

2(▵ 𝑥𝑖)2
(𝑥 − 𝑥𝑖)2 +

𝐖𝑖+1 −𝐖𝑖−1

2(▵ 𝑥𝑖)
(𝑥 − 𝑥𝑖)

+
−𝐖𝑖+1 + 26𝐖𝑖 −𝐖𝑖−1

24
,

𝑝3(𝑥) =
1

1920

[ (80𝐖𝑖−2 − 320𝐖𝑖−1 + 480𝐖𝑖 − 320𝐖𝑖+1 + 80𝐖𝑖+2)
(▵ 𝑥𝑖)4

(𝑥 − 𝑥𝑖)4

+
(160𝐖𝑖−2 − 320𝐖𝑖−1 + 320𝐖𝑖+1 − 160𝐖𝑖+2)

(▵ 𝑥𝑖)3
(𝑥 − 𝑥𝑖)3

+
(120𝐖𝑖−2 − 1440𝐖𝑖−1 + 2640𝐖𝑖 − 1440𝐖𝑖+1 + 120𝐖𝑖+2)

(▵ 𝑥𝑖)2
(𝑥 − 𝑥𝑖)2

+
(200𝐖𝑖−2 − 1360𝐖𝑖−1 + 1360𝐖𝑖+1 − 200𝐖𝑖+2)

(▵ 𝑥𝑖)
(𝑥 − 𝑥𝑖)

+ (9𝐖𝑖−2 − 116𝐖𝑖−1 + 2134𝐖𝑖 − 116𝐖𝑖+1 + 9𝐖𝑖+2)
]

.

The point-wise reconstructed values 𝐖+
𝑖+ 1

2

and 𝐖−
𝑖+ 1

2

are obtained
by the following relations

𝐖+
𝑖+ 1

2

= 𝜔1𝐖̂1
𝑖+ 1

2
+ 𝜔2𝐖̂2

𝑖+ 1
2
+ 𝜔3𝐖̂3

𝑖+ 1
2
, (22)

𝐖−
𝑖+ 1

2
= 𝜔̃1𝐖̃1

𝑖− 1
2
+ 𝜔̃2𝐖̃2

𝑖− 1
2
+ 𝜔̃2𝐖̃2

𝑖− 1
2
, (23)

where 𝐖̂𝑙
𝑖+ 1

2

and 𝐖̃𝑙
𝑖− 1

2

, for 𝑙 = 1, 2, 3, are reconstructed values and
defined as

𝐖̂1
𝑖+ 1

2
= 𝑝1(𝑥𝑖+ 1

2
), (24)

𝐖̂2
𝑖+ 1

2
= 1

𝜉2,2
𝑝2(𝑥𝑖+ 1

2
) −

𝜉1,2
𝜉2,2

𝐖̂1
𝑖+ 1

2
, (25)

𝐖̂3
𝑖+ 1

2
= 1

𝜉3,3
𝑝3(𝑥𝑖+ 1

2
) −

𝜉1,3
𝜉3,3

𝐖̂1
𝑖+ 1

2
−

𝜉2,3
𝜉3,3

𝐖̂2
𝑖+ 1

2
, (26)

with

𝑝1(𝑥𝑖+ 1
2
) = 𝐖𝑖, (27)

𝑝2(𝑥𝑖+ 1
2
) = −1

6
𝐖𝑖−1 +

5
6
𝐖𝑖 +

1
3
𝐖𝑖+1, (28)

𝑝3(𝑥𝑖+ 1
2
) = 1

30
𝐖𝑖−2 −

13
60

𝐖𝑖−1 +
47
60

𝐖𝑖 +
9
20

𝐖𝑖+1 +
1
20

𝐖𝑖+2. (29)

Where 𝜉1,2 + 𝜉2,2 = 1, 𝜉1,3 + 𝜉2,3 + 𝜉3,3 = 1 and 𝜉2,2, 𝜉3,3 ≠ 0. In these
xpressions, 𝜉1,2, 𝜉2,2 are the linear weights. For a balance between the
harp and essentially non-oscillatory shock transitions in non-smooth
egions and accuracy in smooth regions, we set the linear weights as
1,2 = 1∕11, 𝜉2,2 = 10∕11, 𝜉1,3 = 1∕111, 𝜉2,3 = 10∕111 and 𝜉3,3 = 100∕111
or the fifth order approximation, as described in [22].

The non linear weights 𝜔𝑙 in Eq. (22) are defined as The non linear
eights are then given as

𝑙 =
𝜔̄𝑙

∑𝑚
𝑙=1 𝜔̄𝑙

, 𝜔̄𝑙 = 𝜉𝑙,𝑚

(

1 + 𝜏
𝜀 +B𝑙

)

, 𝑙 = 1,… , 𝑚; 𝑚 = 3. (30)

Here 𝜀 is taken as 10−10 in all the simulations. Here, 𝜉𝑙 and B𝑙
respectively denote the linear weights and smoothness indicators. These
smoothness indicators in general form is written as

B𝑚 =
𝑘
∑

𝑗=1
∫

𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

ℎ2𝑗−1
(

𝑑𝑗𝑝𝑚(𝑥)
𝑑𝑥𝑗

)2

𝑑𝑥, 𝑚 = 2, 3, (31)

here 𝑘 = 2(𝑚−1) for 𝑚 = 2, 3, respectively. Here, the values of B1,B2
nd B3 are defined in the same way as described in [22,32,33]. More
recisely, these smooth indicators are defined as follow

= 13 (

𝐖 − 2𝐖 +𝐖
)2

+ 1 (

𝐖 −𝐖
)2

, (32)
2 12 𝑖−1 𝑖 𝑖+1 4 𝑖−1 𝑖+1
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Table 1
𝐿1-error and numerical order of accuracy for 𝑈 = 0 in Test problem 1.
No of cells n

𝐿1-error Order

100 0.97 –
200 0.041 4.56
400 0.0015 4.77
800 0.00006 4.644
1600 0.0000021 4.8365

B3 =
(

𝜂1 +
1
10

𝜂3
)2

+ 13
3

(

𝜂2 +
123
455

𝜂4
)2

+ 781
20

(

𝜂3
)2 + 1421461

2275
(

𝜂4
)

,

(33)

here

1 =
1
120

(

11𝐖𝑖−2 − 82𝐖𝑖−1 + 82𝐖𝑖+1 − 11𝐖𝑖+2

)

, (34)

2 =
1
56

(

−3𝐖𝑖−2 + 40𝐖𝑖−1 − 74𝐖𝑖+1 + 40𝐖𝑖+1 − 3𝐖𝑖+2

)

, (35)

3 =
1
12

(

−𝐖𝑖−2 + 2𝐖𝑖−1 − 2𝐖𝑖+1 +𝐖𝑖+2

)

, (36)

4 =
1
24

(

𝐖𝑖−2 − 4𝐖𝑖−1 + 6𝐖𝑖 − 4𝐖𝑖+1 +𝐖𝑖+2

)

. (37)

ow for resolving the discontinuities efficiently, the expression of B1
s defined as follow

𝛿0 =
(

𝐖𝑖 −𝐖𝑖−1

)2
, 𝛿1 =

(

𝐖𝑖+1 −𝐖𝑖,
)2

(38)

̄0,1 =
{

1, 𝛿0 > 𝛿1,
10, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 𝜉1,1 = 1 − 𝜉0,1, (39)

0,1 =
𝜉0,1

𝜉0,1 + 𝜉1,1
, 𝜉1,1 = 1 − 𝜉0,1, (40)

𝜎0 = 𝜉0,1

(

1 +
|

|

𝛿0 − 𝛿1||
2

𝛿0 + 𝜀

)

, 𝜎1 = 𝜉1,1

(

1 +
|

|

𝛿0 − 𝛿1||
2

𝛿1 + 𝜀

)

, 𝜎 = 𝜎0 + 𝜎1.

(41)

In Eq. (41), 𝜀 is a small positive number to avoid the denominator to
ecome zero. Finally we set

1 =
1
𝜎2

(

𝜎0(𝐖𝑖 −𝐖𝑖−1) + 𝜎1(𝐖𝑖+1 −𝐖𝑖)
)

. (42)

he term 𝜏 in Eq. (30) is given as

=

(

∑2
𝑙=1

|

|

B3 −B𝑙
|

|

2

)

. (43)

This completes the spatial reconstruction procedure.
Next, we discretize the right hand side of (10). We denote the 𝐁𝑖 and

𝐒𝑖 are approximations of the ∫
𝑥
𝑖+ 1

2
𝑥
𝑖− 1

2

(

𝐁
(

𝑈 ;𝑈𝑥
))

𝑥 𝑑𝑥 and ∫
𝑥
𝑖+ 1

2
𝑥
𝑖− 1

2

𝐒(𝑈 )𝑑𝑥

espectively and defined as follow

𝑖 =
(

𝜈
𝑛𝑖−1 − 2𝑛𝑖 + 𝑛𝑖+1

(▵ 𝑥𝑖)2
, 𝜈

𝑗𝑖−1 − 2𝑗𝑖 + 𝑗𝑖+1
(▵ 𝑥𝑖)2

)𝑇
, (44)

and

𝐒𝑖 =
(

0, (−𝑗𝑖) + (
𝑛𝑖

2 ▵ 𝑥𝑖
)(𝑉𝑖+1 − 𝑉𝑖−1 + 𝑄̃𝑖+1 − 𝑄̃𝑖−1)

)𝑇
, (45)

here 𝑇 denotes the transpose. Next, the Poisson Eq. (11) is discretized
s follow

2
(

𝑉𝑖+1 − 2𝑉𝑖 + 𝑉𝑖−1
(▵ 𝑥𝑖)2

)

= 𝑛𝑖 − 𝐶(𝑥𝑖), 𝑖 = 1,… , 𝑁 − 1 (46)

and obtain the potential 𝑉𝑖 at the 𝑛𝑡ℎ time level, by using the boundary
conditions that are described in Eq. (14). Finally, we end up with the
semi-discrete equation as follow

𝑑 𝐖𝑖(𝑡) = − 1
(

𝐅̂ 1 − 𝐅̂ 1

)

+ 1 (

𝐁𝑖 + 𝐒𝑖
)

, (47)
4

𝑑𝑡 ▵ 𝑥𝑖 𝑖+ 2 𝑖− 2 ▵ 𝑥𝑖 t
r the above equation can be written as
𝑑
𝑑𝑡

𝐖𝑖(𝑡) = (𝐖). (48)

ow, for solving the system of ordinary differential eq. (48), we apply
he third order TVD RK method [22] as follow

𝐖(1) = 𝐖𝑛 + 𝑑𝑡(𝗎𝑛),

𝐖(2) = 3
4
𝐖𝑛 + 1

4
(

𝐖(1) + 𝑑𝑡(𝐖(1))
)

,

𝐖(𝑛+1) = 1
3
𝐖𝑛 + 2

3
(

𝐖(2) + 𝑑𝑡(𝐖(2))
)

,

(49)

where (𝗎) is the spatial operator.

Numerical test problems

In this section, the performance and accuracy of the proposed
scheme is checked by taking various test problems. Further, the kinetic
flux vector splitting numerical scheme is used to compare the results
those obtained by proposed numerical scheme.

Test problem 1: First we investigate the effect of viscous and
quantum terms on a ballistic 𝑛+ − 𝑛− 𝑛+ diode. Here we consider same
initial data as taken in [14], for checking the efficiency of proposed
numerical scheme. The doping profile is taken as

𝐶(𝑥) = 1 + 0.45(tanh(1000𝑥 − 600) − tanh(1000𝑥 − 400)), 0 ≤ 𝑥 ≤ 1, (50)

nd scaled parameters are taken as follow

= 4.267 × 10−3, 𝜖 = 0.00289, 𝜆 = 0.1 and 𝜏 = 0.125.

he solution profiles of density of electron for different scaled applied
oltages are given in Fig. 1. These different values are (𝑖)U = 0, (𝑖𝑖)U =
, (𝑖𝑖𝑖)U = 5, (𝑖𝑣)U = 6. The oscillations in solution profiles for the
alues of applied voltages U = 5 and U = 6 as shown in Fig. 1 are not
numerical artifact. These oscillations are produced by the quantum

erm, for more detail see [14]. The results obtained by KFVS scheme
nd proposed scheme are compared with each other. From Fig. 1,
learly, there is a good agreement between both schemes but KFVS
umerical scheme is more diffusive as compare to MR-WENO scheme.

Further, the order of numerical accuracy is calculated for the values
f applied voltage 𝑈 = 0. The reference solution is calculated at 10,000
rid cells and treated as the exact solution. The 𝐿1-error and order of
umerical accuracy for the MR-WENO scheme are given in Table 1.

Test problem 2: Different Doping:
In this test problem, we considered 𝐶∗ = 1024 m3 for measuring

oping in m3. We also considered a semiconductor whose length is
= 125 nm. The device consists of three regions that is (𝑖) drain region

𝑖𝑖) channel and (𝑖𝑖𝑖) source. The length of drain region is [75 nm, 125 nm]
nd the length of source is [0 nm, 50 nm] whereas the length of channel
egion is [50 nm, 75 nm]. The following values are used for scaled
arameters such as 𝜆2 = 3.032×10−4, 𝜖2 = 3.893×10−3, 𝑇 = 1.00585 and
= 9.935 × 10 − 4. A doping density profile for this test problem is as
nder

(𝑥) = [1.0 + 0.4599 (tanh (10𝑥 − 750) − tanh (10𝑥 − 750))] × 1024,

𝑥 ∈ [0 nm, 125 nm] (51)

𝑒𝑥𝑡 is defined below

𝑒𝑥𝑡 =

{

0.209𝑉 , 𝑥 ∈ (50 nm, 75 nm) ,
0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒.

(52)

he length of GaAs diode is to be considered as 𝐿 = 125 nm which
s kept at 𝑇0 = 77 K and applied voltage is 𝑉𝑏 = 1.5𝑉 . Fig. 2 shows
he numerical results on 200 grid points for physical variables. We
an observe the behavior of electron density which is steady state in
oth source as well as drain region as shown in Fig. 2. we can see

he perturbation in channel by applying applied voltage and external
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Fig. 1. Solution profiles are computed by MR-WENO and KFVS numerical schemes.

Fig. 2. Solution profiles are computed by MR-WENO and KFVS numerical schemes.
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Fig. 3. Solution profiles are computed by MR-WENO and KFVS numerical schemes.

Fig. 4. The top two Solution profiles are computed by KFVS and bottom two are solution profiles are computed by MR-WENO.
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potential 𝑉𝑒𝑥𝑡. Similarly, velocity, current and potential profiles show
the same pattern. The numerical results obtained by MR-WENO scheme
and KFVS schemes are compared with each other. The MR-WENO
scheme shows better performance while capturing peaks and resolving
the sharp discontinuities.

Test problem 3: Different external potential 𝑉𝑒𝑥𝑡
The length of GaAs diode is to be considered as 𝐿 = 0.6 μm which

is kept at 𝑇0 = 77 K and applied voltage is 𝑉𝑏 = 0.8𝑉 . The doping
density profile is same as in Test problem 2. In this problem, we
checked the effect of external potential at its different values on current
density solution profiles, as shown in Fig. 3. The different values of
external potential 𝑉𝑒𝑥𝑡 = −2.09 × 10−1𝑉 and 𝑉𝑒𝑥𝑡 = −2.09 × 10−2𝑉 for
𝑥 ∈ (0.1 μm, 0.4 μm) are used in the first row of Fig. 3 and similarly
𝑉𝑒𝑥𝑡 = −2.09 × 10−3𝑉 and 𝑉𝑒𝑥𝑡 = −2.09 × 10−4𝑉 for 𝑥 ∈ (0.1 μm, 0.4 μm)
are used in the last row of Fig. 3. The Fig. 3 shows that the current flow
in device increases when external potential is decreasing, such types of
results are showed in [21]. Again both schemes behave very well but
MR-WENO scheme captures the peaks more efficiently.

Test problem 4: The effect of different viscosities
In this test problem, we will analyzed the physical parameters such

as viscosity. Here, once again we will simulate the Test problem 2
for viscosity 𝑣 = 𝑣0∕𝛾 at different values of 𝛾 such as 𝛾 = 1, 2, 4, 8.
The solutions of particle densities obtained from MR-WENO and KFVS
numerical schemes at different values of viscosity are shown in Fig. 4.
We observe that there is a smooth transition at large value of viscosity.
In other words, particles move from left side to right around the
junction and then they enter into the supersonic region at 𝑥 = 1.
However, the solution obtained from inviscid [14] and viscous model
are same at small value of viscosity 𝑖.𝑒 𝑣 = 1

8𝑣0 ≈ 5.0 × 10−5.

onclusions

Multi-resolution finite volume WENO scheme was developed to in-
estigate the non linear viscous quantum hydrodynamical model for the
emiconductor devices. Despite the non linear transport phenomenon,
harp gradients and source terms in the considered model, the pro-
osed numerical scheme captured the peaks efficiently and suppressed
he unwanted oscillations near the steep gradients. The accuracy and
obustness of proposed numerical scheme was checked by considering
he different test problems. Moreover, the results obtained by using the
onsidered scheme were compared with the results those obtained by
he KFVS numerical scheme. This comparison found the good agree-
ent between the both numerical schemes but KFVS numerical scheme
as more diffusive as compare to the MR-WENO scheme.
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