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Deficits in language production and comprehension are characteristic of schizophrenia.
To date, it remains unclear whether these deficits arise from dysfunctional linguistic
knowledge, or dysfunctional predictions derived from the linguistic context. Alternatively,
the deficits could be a result of dysfunctional neural tracking of auditory information
resulting in decreased auditory information fidelity and even distorted information.
Here, we discuss possible ways for clinical neuroscientists to employ neural tracking
methodology to independently characterize deficiencies on the auditory–sensory and
abstract linguistic levels. This might lead to a mechanistic understanding of the deficits
underlying language related disorder(s) in schizophrenia. We propose to combine
naturalistic stimulation, measures of speech–brain synchronization, and computational
modeling of abstract linguistic knowledge and predictions. These independent but likely
interacting assessments may be exploited for an objective and differential diagnosis of
schizophrenia, as well as a better understanding of the disorder on the functional level—
illustrating the potential of neural tracking methodology as translational tool in a range of
psychotic populations.

Keywords: neural tracking, neural oscillations, schizophrenia, electroencephalography, language
comprehension, speech perception

INTRODUCTION

Schizophrenia is characterized by language deficits ranging from lower acoustic and phonetic
levels to higher semantic and syntactic levels that are highly functionally relevant (Bleuler, 1950;
Chaika, 1990; DeLisi, 2001; Covington et al., 2005). Among others, key features of patients’ speech
include flattened prosody, simplified syntax, and loosened semantic associations (for review, see
Andreasen, 1979; Kircher et al., 2014). In comprehension, correspondingly, patients are impaired
in the processing of linguistic information at these levels (Leitman et al., 2005; Mohammad
and DeLisi, 2013; Javitt and Sweet, 2015; Moro et al., 2015). In addition, major symptoms of
schizophrenia such as auditory hallucinations and delusions are thought to be closely related to
impaired speech perception and language comprehension (Brown and Kuperberg, 2015). To date,
the neuropathology of language impairments in schizophrenia remains unclear (Miller and Isard,
1963; Morice and Delahunty, 1996; Crow, 1998; DeLisi, 2001; Bagner et al., 2003; Li et al., 2009;
Brown and Kuperberg, 2015; Hirano et al., 2020). In this paper, we suggest that the understanding
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of language deficits in schizophrenia could benefit from
analyzing neural oscillations with neural tracking methodology.
Oscillations can be aligned to speech and this alignment seems to
be guided by attention, especially in “cocktail party” settings (e.g.,
Vander Ghinst et al., 2016; for review, see Lakatos et al., 2019a)1.
Therefore, we propose that multi-scale (on phrasal/syllable
temporal scales) oscillatory alignment provides a novel tool for
assessing language dysfunctions on various linguistic levels.

Our Hypothesis and Theory article considers three main
issues: In the first part, we discuss possible ways to address
deficits in auditory perception and speech tracking as such.
In the second part, we delineate probable relationships
between prosodic–syntactic deficits and altered delta-band
oscillations. In the third part, we hypothesize that impaired
semantics in schizophrenia could result from altered beta–
gamma coupling. In the last section, we discuss how to
pursue these hypotheses by combining naturalistic experimental
paradigms with methodology that assesses the exogenous neural
tracking of auditory–phonetic information and the endogenous
generation of abstract linguistic information.

Auditory Perception and Speech
Tracking: Impaired Theta-Band
Oscillations
Deficits in auditory processing could underlie a range of
language-related symptoms in schizophrenia (Javitt and
Freedman, 2015). Such deficits do not include hearing per
se (McKay et al., 2000; Javitt, 2009), as detection thresholds,
sensitivity to loudness, spatial localization, and the P1/N1
complex in the event-related brain potential (ERP) for isolated
sounds are all intact (Javitt and Freedman, 2015). Yet, patients
show reduced auditory mismatch negativities (MMN; for review,
see Näätänen and Kähkönen, 2008; Todd et al., 2013; Michie
et al., 2016) to both speech and non-speech sounds (Kasai et al.,
2002, 2003). In addition, P1/N1 difference waves are altered
under repetition priming and sensory gating (Freedman et al.,
1987; Adler et al., 1998; Patterson et al., 2008), and for perception
of words differing in lexicality (Hirano et al., 2008). Moreover,
the N1 difference between self-produced and presented auditory
stimuli has been found abnormal in experiments investigating
potential deficits in corollary discharge and efference copy during
auditory speech processing (Ford et al., 2001, 2007a,b). Apart
from the MMN, P1, and N1 components, a reduction of the P300
in oddball paradigms is a robust neural marker of schizophrenia
(Ford et al., 1994, 2008; Higashima et al., 2003). In sum, despite
the fact that isolated sounds appear to be processed normally in
schizophrenia, earlier behavioral and ERP evidence suggests that
patients with schizophrenia are impaired in a range of auditory
processes—whenever patient’s perception of tones or speech
involves top-down influences—thus suggesting predictive coding

1Note that our manuscript is restricted to hypotheses on auditory processes
genuine to speech processing, as well as on higher-level linguistic processes. The
independent modulation of these processes by attention and working memory,
both of which are impaired in schizophrenia (Braff, 1993; Carter et al., 1998), is
beyond the scope of the current article.

rather than audition impairments in schizophrenia (Adams et al.,
2013; Sterzer et al., 2018; Howes et al., 2020; Smith et al., 2021).

In spite of these rather robust results, the altered difference
ERPs calculated from stimulus train of simple tones or speech
sounds (i.e., MMN and P300) are hard to dissociate from altered
oscillatory activity due to the fact that oscillatory phase reset
contributes heavily to ERPs (Klimesch et al., 2007; Ding and
Simon, 2014; Obleser and Kayser, 2019; Haegens, 2020). It has
been argued that the MMN represents a mainly theta-band phase
reset that occurs in the extragranular layers of the auditory cortex;
moreover, the MMN is vulnerable to blockage of the N-Methyl-
D-Aspartate Receptor (Lakatos et al., 2019b). NMDA receptor
related deficits are hypothesized to underlie a range of symptoms
as well as auditory deficits in schizophrenia (Kort et al., 2017;
Corlett et al., 2018; Javitt et al., 2020). In addition, altered P300
responses in schizophrenia were observed in parallel with altered
theta-band oscillations (Ford et al., 2008). In sum, this initial
evidence leaves it open whether aberrant theta oscillations are
impaired independently of evoked responses as shown in the
ERPs, and thus they both might contribute to auditory and
language deficits in schizophrenia.

Here, we propose that neural tracking methodology that
employs naturalistics paradigms should allow researchers and
clinicians to better focus on theta-band oscillations without the
confounding ERP alterations elicited by controlled experiments.
In particular, this contrasts with oddball experiments and the
associated MMN and P300 alterations. Theta-band oscillations
are thought to phase-lock to the acoustic edges of syllables, aiding
their segmentation or even identification (Luo and Poeppel, 2007;
Howard and Poeppel, 2012; Gross et al., 2013; Peelle et al., 2013;
Doelling et al., 2014). Furthermore, processing of phonemes
in context (e.g., labeling of phonetic features, predicting the
likelihood of upcoming phonemes) can be investigated together
with envelope tracking with state-of-the-art multivariate analysis
techniques, by close examination of low-frequency oscillations
including the theta band (e.g., Di Liberto et al., 2015, 2019;
Daube et al., 2019) and the delta band (see below). To date,
however, only few recent studies have reported altered theta-
band power and phase aberrence in schizophrenia, which used
simple tones delivered as part of traditional oddball and gating
paradigms (Lakatos et al., 2013; Kantrowitz et al., 2016; Lee
et al., 2017). Thus, investigating potential impairments of theta-
band oscillations during neural tracking of naturalistic speech
could contribute to extant research, and could provide an unique
window into understanding the neuropathology of language
deficits in schizophrenia. Further potential of the combined use
of computational modeling and neural tracking methodology
to dissociate acoustic, phonological, and linguistic processing
is provided below.

Prosody and Syntax: Abnormal
Delta-Band Oscillations?
Auditory processing deficits in schizophrenia are considered
as reflecting “up-stream” functions, such as prosody (Javitt,
2009). Flattened prosody in production is a negative symptom
of schizophrenia, characterized by reduced modulation of
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fundamental frequency and amplitude, utterances that are
shortened and less variable in duration, and pauses that are
longer and more variable (Alpert et al., 1989, 2000; Covington
et al., 2005). Such language production related indices can classify
schizophrenia incidence with high accuracy (Püschel et al., 1998;
Rapcan et al., 2010; Martínez-Sánchez et al., 2015) and may
help to detect risk (Cibelli et al., 2017). In comprehension,
patients struggle to infer emotions and communicative intentions
from prosody (e.g., Pawełczyk et al., 2018a). While this is
sometimes discussed as epiphenomenal to impaired emotion
reception (Murphy and Cutting, 1990; Mitchell and Crow,
2005; Hoekert et al., 2007; Lin et al., 2018), flattened prosody
occurs also when emotional vocabulary is intact (Alpert et al.,
2000). Moreover, auditory deficits in prosody perception predict
most variance associated with impaired comprehension of
emotional prosody (Leitman et al., 2005; Dondé et al., 2017),
and the inference of emotion is improved by prosody training
(Lado-Codesido et al., 2019).

In addition to prosody, syntactic impairments have been
observed. Syntactic rules serve to decode the propositional
relationships amongst words in speech (cf. Martin, 2020).
Patients with schizophrenia do not reliably detect syntactic errors
(Moro et al., 2015), and their working memory benefits less
from syntactic structure (i.e., no sentence superiority effect;
Bonhage et al., 2017; Li et al., 2018). Alternatively, syntactic
rules might be intact, but their top-down influence on perception
is temporally distorted (Rochester et al., 1973). In healthy
populations, syntactic boundaries (e.g., clause endings) influence
perception, such that acoustic events that are experimentally
displaced from a boundary are perceptually “dragged toward it”
(Fodor and Bever, 1965). This effect appears to be altered in
patients (Rochester et al., 1973). A temporal deficit would be
also consistent with reports of turn-taking deficits (Sichlinger
et al., 2019). Healthy speakers tend to indicate turn-giving with
prosodic markings (Levinson, 2016), but patients often fail to
do so (Bellani et al., 2009; Colle et al., 2013; Pawełczyk et al.,
2018b). In particular, the timing of turn-giving is affected, such
that variance in utterance duration decreases and variance in
pause duration increases (Alpert et al., 2000).

We propose that the respective neural counterparts of
prosodic and syntactic symptoms could be assessed by focusing
on delta-band oscillations (i.e., 0.5–4 Hz; Buzsaki, 2006; Güntekin
and Başar, 2016; Figure 1), as the time scale of these neural
oscillations can be clearly linked to speech structure (Giraud and
Poeppel, 2012; Ding et al., 2016). While delta-band oscillations
are certainly altered in schizophrenia (for review, see Başar and
Güntekin, 2008; Ford et al., 2008; Doege et al., 2010; Lakatos et al.,
2013), there is no unitary link with the above symptoms yet. We
propose that establishing such a link would support differential
diagnosis of the underlying disorder, and it could also contribute
to the ongoing struggle for a dissociation of the functional roles
of delta-band oscillations in prosody, syntax, and timing (Lakatos
et al., 2008; Ghitza, 2017; Meyer et al., 2017, 2019).

On the one hand, in healthy subjects, delta-band oscillations
synchronize with prosody (Bourguignon et al., 2013; Gross et al.,
2013; Mai et al., 2016; Molinaro et al., 2016), the perception of
which is impaired in schizophrenia (e.g., Dondé et al., 2017).

On the other hand, delta-band frequencies match the rate of
occurrence of syntactic phrases and sentences (Ding et al.,
2016) and delta-band phases are aligned to syntactic structure
(Brennan and Martin, 2020) and information content (Meyer
and Gumbert, 2018), independently to prosody (Meyer et al.,
2017). Healthy subjects show increased delta-band power during
working memory encoding of syntactically structured relative to
unstructured word sequences (Bonhage et al., 2017). In contrast,
working memory encoding in schizophrenia patients does not
benefit much from syntactic structure (Li et al., 2018).

Instead of prosodic and syntactic deficits as such, abnormal
delta-band oscillations could also indicate an underlying timing
deficit. Lakatos et al. (2013) observed reduced delta-band phase
alignment (measured by inter-trial phase coherence) in patients
across the isochronous trials of an auditory oddball experiment.
The authors interpret this as indicating deficient temporal
prediction, mediated by the alignment of oscillatory brain activity
to external stimulus timing (i.e., oscillatory entrainment). They
also demonstrate that the lack of phase alignment is associated
with reduced behavioral performance and correlates with clinical
symptoms. This interpretation of their results stems from prior
work related to the role of delta-band oscillations in temporal
prediction (Lakatos et al., 2008; Stefanics et al., 2010; Arnal et al.,
2014; Breska and Deouell, 2017; Jones et al., 2017; Rimmele
et al., 2018; Donhauser and Baillet, 2020). Specifically, Stefanics
et al. (2010) observed enhanced auditory target detection during
specific phase intervals that were elicited through prior rhythmic
stimulation (cf. Henry and Obleser, 2012; Hickok et al., 2015).
Delta-band phase is an imprint of the neuronal excitability
of auditory regions (e.g., Lakatos et al., 2008). Delta-band
oscillations could thus likely serve prediction by preallocating
excitability and functional connectivity within relevant brain
circuits to the expected onsets of upcoming stimuli (e.g., Lakatos
et al., 2008, 2009). Our recent results speak in favor of a link
between the involvement of the delta band in syntactic processing
and its involvement in temporal prediction. We found that the
delta phase is not just generally correlated with syntax, but it
is more specifically correlated with the strength of syntactic
predictions (Hale, 2001; Levy, 2008; Meyer and Gumbert, 2018).

Semantics: Impaired Predictive Coding
in the Beta- and Gamma-Bands?
Semantic impairments in schizophrenia are less controversial
than prosodic and syntactic impairments. Patients commonly
display hyperactivation of lexical-semantic associations. While
healthy individuals associate lion with tiger but not with
stripes, patients with schizophrenia may do so. Accordingly,
patients produce words that are less directly related to their
intended message (Bleuler, 1950). For example, they might
complain about their chest pain by saying I wonder if my box
is broken (Chaika, 1990). Correspondingly in comprehension,
patients show enhanced semantic priming effects (Spitzer et al.,
1994; Weisbrod et al., 1998; Kreher et al., 2009). However,
depending on the task under study, patients may also exhibit a
more restricted semantic network than healthy subjects during
comprehension (Kreher et al., 2009). The comprehension deficits
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FIGURE 1 | Overview of hypotheses for prosodic and syntactic deficits. (A) top: synthetic delta-band oscillation; bottom: frequency– and amplitude modulations
corresponding to the pitch track as well as computational-linguistic measures of the application of syntactic rules for the example sentence at the bottom. It is
hypothesized that delta-band phase-locking is impaired in patients with schizophrenia and that depending on the underlying disorder, this abnormality could be
restricted to either prosody or syntax. For demonstration, a strongly phase-locked delta-band oscillation was generated via a randomization procedure.
(B) Hypotheses as bar charts: depending on the underlying deficit, either phase-locking to prosody or syntax should be impaired in patients.

manifest beyond the word level, that is, real-world objects
and events are commonly associated with special and negative
meaning, a defining feature of delusions.

Most electrophysiological literature on semantic
comprehension deficits in schizophrenia has exploited the
N400 component of the evoked response (ERP), typically
manipulating the semantic/discourse fit between a target word
and its preceding word/sentence context (Kutas and Hillyard,
1980; Hagoort et al., 2004; Nieuwland and Van Berkum, 2006;
Lau et al., 2008; Kutas and Federmeier, 2011). These studies
have offered valuable insights into how word– and sentence-
level semantics are disrupted vs. preserved in schizophrenia
(Mohammad and DeLisi, 2013; Kiang and Gerritsen, 2019).

Word-level semantic processing in schizophrenia is most
commonly investigated via priming paradigms. Yet, the literature
is inconsistent in terms of whether the priming-N400 effects are
enhanced or reduced in patients (Mathalon et al., 2002, 2010;
Salisbury, 2008; Kuperberg et al., 2019; Sharpe et al., 2020).
This discrepancy may result from impairments at different levels
of the linguistic hierarchy. Patients may be impaired in lexical
access (Kuperberg et al., 2019), may suffer from reduced or
enhanced semantic activation (Titone et al., 2000; Mathalon
et al., 2010), or may fail to derive predictions from the word
context (Sharpe et al., 2020). Of note, the prediction failure
account accords with results from sentence-level N400 studies:
Whereas the N400 reflecting semantic retrieval and integration
seems to be unaffected in schizophrenia (Kuperberg et al., 2006),
converging evidence has shown that patients are unable to utilize
contextual information to suppress irrelevant meanings of a
target word, for example, when comprehending a homophone
(Sitnikova et al., 2002). Hence, it has been proposed that semantic
deficits in schizophrenia may originate from a general inability
to integrate and update predictions of higher linguistic levels
(e.g., context) with lower-level semantic inputs (Brown and
Kuperberg, 2015). However, as it remains unclear whether the
N400 indexes prediction, prediction error, or a combination

of both (Kutas and Federmeier, 2011; Bornkessel-Schlesewsky
and Schlesewsky, 2019; He et al., 2020; Kuperberg et al., 2020;
Nieuwland et al., 2020), it also remains unresolved whether
linguistic prediction or prediction error underlies semantic
impairments in schizophrenia.

With the equivocal interpretation of N400 alterations in
mind, we propose to investigate semantic deficits by examining
neural oscillations in the beta– and gamma-bands (for a possible
relationship between the N400 and delta-band oscillations, see
Roehm et al., 2007). The maintenance of semantic top-down
predictions has been associated with beta-band power, whereas
gamma-band power reflects the integration with bottom-up
semantic input (Lewis and Bastiaansen, 2015; Lewis et al., 2015;
Meyer, 2017). In healthy populations, at the semantic level, the
sensitivity of beta–gamma-band power has been reported in a
series of studies (Hagoort et al., 2004; Wang et al., 2012a,b,
2018; Kielar et al., 2014, 2015). Notably, as the majority of these
studies have leveraged the classic semantic violation paradigm,
despite a theoretical dissociation, it remains controversial how
beta– and gamma-bands map to prediction or prediction error
during sentence-level processing (for review, see Prystauka and
Lewis, 2019). We thus suggest a naturalistic approach (Figure 2),
allowing for the dissociation of prediction and error at the
single-word level, as well as an independent comparison between
healthy and clinical groups. In healthy participants, beta-band
power decreases for more precise prediction; for decreased error,
gamma-band power increases accordingly. In addition, when
predicted and incoming information match, cross-frequency
coupling between the beta and gamma bands would increase
(Roopun et al., 2008; e.g., Engel and Fries, 2010; Chao et al.,
2018). The beta–gamma interplay offers a promising candidate
mechanism that bridges predictive and integrative semantic
processes. It also forms the basis for a plausible unifying theory
linking predictive deficits in schizophrenia across functional
domains outside of language. In the sensory domain, our
previous work has shown that gamma power is less modulated
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FIGURE 2 | Overview of hypotheses for semantic deficits. (A) top: word-by-word entropy time course for example sentence (bottom left); middle: synthetic beta–
and gamma-band time courses; bottom: word-by-word surprisal time course for example sentence (bottom left). We hypothesize that the relationship between
beta-band power and entropy as well as between gamma-band power and surprisal is abnormal in schizophrenia patients. Additionally, phase–amplitude coupling of
the beta and gamma band might be disturbed. These effects will likely differ amongst schizophrenia subgroups (e.g., hallucinators vs. non-hallucinators).
(B) Summary of hypotheses.

for schizophrenia in response to prediction error on the acoustic
level (Lakatos et al., 2013). In a similar vein, effects for predictive
beta modulation in schizophrenia has been reported when
patients are engaged in social interactive games (Billeke et al.,
2015). Oscillations across frequency ranges appear to be coupled
(Lakatos et al., 2005; Canolty et al., 2006; Canolty and Knight,
2010). Thus, it is worthwhile to investigate the cross-frequency
dynamics (e.g., phase–amplitude coupling) in schizophrenia
(Kirihara et al., 2012; Hirano et al., 2018) during language
processing and speech perception to examine, for example, if
impaired beta–gamma oscillations will impact delta oscillatory
tracking and vice versa.

A particular focus on dysfunctional beta– and gamma-
band oscillations has the additional potential of providing a
theoretical explanation of core symptoms of schizophrenia,
such as auditory hallucinations and delusions, and on how
these symptoms, in turn, impact upon sensory tracking and
linguistic prediction. Impairments of prediction in schizophrenia
can be nuanced (Sterzer et al., 2018): it has been proposed
that auditory hallucinations may derive from overly precise
(stronger) prediction (Corlett et al., 2018; Heinz et al., 2019),
whereas delusions are related to imprecise (weaker) prediction
(Stuke et al., 2018), even if both symptoms often co-occur.
We propose that physiologically, hallucinations and delusions
are perpetrated by stronger vs. weaker synchronization of brain
activity correspondingly in certain frequency bands.

More importantly, both stronger and weaker predictions may
occur at hierarchically different levels of sensory and higher
cognitive processes in schizophrenia, and may be subject to
interaction across levels (Horga et al., 2014; Teufel et al., 2015;
Alderson-Day et al., 2017; Powers et al., 2017), indicating

the importance of changes in functional connectivity. In the
language domain, word-level priming N400 deficits is proposed
to be related to delusion severity, thus may support impaired
semantic prediction (Kiang and Gerritsen, 2019). In relation
to neural oscillations, it has been reported that prestimulus
beta-band phase is inversely related to hallucination severity
when patients produce speech and listen to the speech sound
that they have produced (Ford et al., 2007b). Although the
authors did not report power modulation, this study might be
an indication of potential link between auditory hallucinations
and the beta-band phase in terms of aberrant prediction across
comprehension and production of speech (Wang et al., 2012a;
Piai et al., 2014; Lewis et al., 2015). Moreover, the most replicated
oscillatory correlate of auditory hallucinations is reported in the
literature investigating auditory steady-state responses: Gamma-
band (usually 40Hz) power and inter-trial phase coherence has
been shown to correlate well with hallucination severity (Spencer
et al., 2008; Mulert et al., 2011). Notably, steady-state responses
reflect a mixture of stimulus-specific evoked responses and the
resonant response of the sensory cortices. Therefore, they may
not be interpreted on a par with endogenous gamma oscillations
(Duecker et al., 2020). However, the strong correlation between
the gamma-band responses and auditory hallucinations, together
with the reported beta alterations, suggest that both frequency
bands are valuable candidates of evaluating dysfunctional
predictive coding from a phenomenological perspective. Apart
from semantic processing, recent studies employing naturalistic
approaches suggest that auditory processing in the form of speech
tracking or phonemic prediction—as reflected by low-frequency
oscillations in the theta and delta bands—may be subject to
top-down influence such as semantic or contextual prediction
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(Broderick et al., 2019; Heilbron et al., 2020). These emerging
studies are prime examples of how naturalistic approaches might
directly contribute to the underlying neuropathology of auditory
hallucinations in schizophrenia: Instead of observing generally
modulated semantic prediction (beta) and auditory tracking
(theta) for non-hallucinating patients, we propose to investigate
how these processes are enhanced or reduced in hallucinating
patients, and how are the functional coupling between beta-theta
bands altered in hallucinations.

Toward Naturalistic Experiments for
Schizophrenia Research
Most electrophysiological studies on language deficits in
schizophrenia employed controlled factorial designs that used
isolated sentences or word pairs. These studies have provided
valuable insights into the neuropathology of schizophrenia,
but face limitations. First, repetitive experimental procedures
limit ecological validity (Brennan, 2016; Willems et al., 2016;
Hamilton and Huth, 2018; Hasson et al., 2018; Kandylaki and
Bornkessel-Schlesewsky, 2019; Shamay-Tsoory and Mendelsohn,
2019). Second, the typical isochronous presentation of words
and sentences (e.g., oddball paradigms, rapid serial visual
presentation, RSVP) triggers sequences of evoked responses that
have the potential to mask oscillatory activity (Meyer et al.,
2020; Poeppel and Teng, 2020); note that this advantage only
pertains to those evoked components that are genuine to oddball
designs (e.g., P300, see above) and RSVP designs (e.g., repetitive
visual onset responses). Third, factorial subtraction approach
(e.g., standard – deviant, congruent – incongruent) does not
allow straightforward dissociations between acoustic–phonetic
and abstract linguistic processes (e.g., Nieuwland et al., 2020).
Finally, it is difficult to measure interactions across linguistic
levels with factorial approaches (Brown and Kuperberg, 2015;
Sterzer et al., 2018).

We thus propose to address language deficits in schizophrenia
with naturalistic experiments using ecologically-valid language
stimuli (Hamilton and Huth, 2018; Kandylaki and Bornkessel-
Schlesewsky, 2019). In such naturalistic experiments, participants
are presented with entire narratives (e.g., Stehwien et al., 2020).
This enhances feasibility under the temporal and monetary
constraints of clinical research while still increasing statistical
power and flexibility beyond factorial designs. Narratives also
allow the analysis of neural tracking of acoustic and phonetic
modulations at the sampling rate of the electrophysiological
recording or phonetic–phonological annotation (e.g., Gross et al.,
2013; Bastos and Schoffelen, 2015; Di Liberto et al., 2015; Daube
et al., 2019). This in turn allows researchers to directly address
the above hypothesis on dysfunctional theta-band tracking that
we presented in our first scenario above. In parallel, multiple
levels of word-by-word/phrase-by-phrase linguistic processing
can be analyzed through domain-specific metrics derived by
computational-linguistic modeling (e.g., Hale, 2001, 2016; Levy,
2008; Frank et al., 2015; Brennan, 2016). Emerging studies
have approached naturalistic story comprehension to investigate
language processing in healthy aging (Broderick et al., 2020;
Cuevas et al., 2020). In schizophrenia research, naturalistic

experiments were proposed for the study of social dysfunctions
(Leong and Schilbach, 2019; Brandi et al., 2020). In the language
domain, an eye-tracking study using a visual-world paradigm has
looked into the impact of higher-level discourse on ambiguity
resolution (Rabagliati et al., 2019). We have recently investigated
patient’s processing of multimodal stories (i.e., auditory story,
manual gestures) using functional magnetic resonance imaging,
showing that manual gestures can enhance patients’ reduced
semantic activation in a left fronto-temporal network (Cuevas
et al., 2019; Cuevas et al., in preparation).

For the second scenario outlined above, the investigation of
impaired syntactic and prosodic processing in schizophrenia,
a naturalistic approach would allow for a dissociation of
the previously proposed prosodic and syntactic deficits. To
approximate prosody, the audio stimulus would be low-pass
filtered to yield those frequency modulations that correspond to
pitch changes (Meyer et al., 2017; Meyer and Gumbert, 2018).
Alternatively, the speech envelope could be low-pass filtered,
yielding pitch amplitude modulations (Bourguignon et al., 2013;
e.g., Gross et al., 2013; Mai et al., 2016). To concurrently
model the application of syntactic rules, computational-linguistic
modeling would be employed. In electrophysiological research
on healthy populations, parsers that operationalize probabilistic
context-free grammars are used frequently (e.g., Roark et al.,
2009; Frank et al., 2015; Meyer and Gumbert, 2018; Vassileiou
et al., 2018). Such algorithms are trained on large corpora
annotated with part-of-speech labels and syntactic structures,
enabling subsequent annotation of the narrative used for
stimulation. Information theory is then applied to quantify
syntactic processing difficulty (Shannon, 1948; Hale, 2001, 2016).
The prosodic and syntactic regressors would then be related
statistically to the electrophysiological data. For prosody, this
could be achieved using a variant of speech–brain coupling
methodology (for review, see Bastos and Schoffelen, 2015;
Poeppel and Teng, 2020). For syntax, time-resolved multiple
regression (Sassenhagen, 2019) or multivariate temporal response
functions (mTRF, Crosse et al., 2016) could be used, alternatively
also allowing to include both prosody and syntax within a single
statistical model.

At the semantic level, as sentences unfold in a word-by-
word manner, making semantic predictions of a word based on
its prior context is equal to having some degree of certainty
about the future (i.e., predictive coding). When instead an
improbable event occurs, the prediction turns out to be an error.
In computational approaches, the probability at which a listener
is able to predict the meaning of the next word of the narrative
from the preceding passage is measured by word-level entropy,
and the corresponding prediction error when encountered a
word is parameterized as word-level surprisal. Essentially, both
indices can be derived from the conditional probability of word
forms as calculated by standard toolboxes (Stolcke, 2002; Roark
et al., 2009; Frank et al., 2015; Willems et al., 2016). Word-level
entropy and surprisal can then be regressed against power of
band-pass filtered continuous EEG in the beta– and gamma-
bands via time-resolved multiple regression or the mTRF (Crosse
et al., 2016; Ehinger and Dimigen, 2019; Sassenhagen, 2019).
Individual beta coefficients would be then directly compared
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between patients and healthy controls, revealing if semantic
prediction or prediction error are impaired in schizophrenia.
In addition, the impact of major schizophrenia symptoms (e.g.,
auditory hallucinations) on semantic-level predictive coding
could be evaluated via a comparison between patients with or
without auditory hallucinations.

Importantly, group differences in the respective correlations
between entropy/surprisal and beta–gamma-band power would
readily define candidate frequencies and time windows to address
the hypothesis of abnormal phase–amplitude coupling between
the beta and gamma bands in schizophrenia (e.g., Bastos
and Schoffelen, 2015; Hyafil et al., 2015). While translational
application of the naturalistic approach has been initially
employed in autism research (Brennan et al., 2018), its value for
schizophrenia research awaits validation.

CONCLUSION

We have outlined the potential of studying neural tracking in the
functional characterization of linguistic deficits in schizophrenia.
In our view, two threads should be followed: First, deficient
theta-band tracking of syllables should be assessed as part of
the “routine ERP analyses” in schizophrenia. While the exact
mechanisms of theta-band tracking are still being debated, it is
clear that it reflects both bottom-up and top-down mechanisms
that might be altered in patients. Second, the previously proposed
relationship between delta-band oscillations, prosody, syntax,
and temporal prediction may help to study the corresponding
deficits in schizophrenia in a hypothesis-driven manner, with
the potential to dissociate underlying electrophysiological

dysfunction(s). Third, the general role of the beta–gamma
interplay in the generation and evaluation of predictions may
be fruitful in elucidating the electrophysiological dysfunction(s)
that correspond to contextual–semantic symptoms. While both
threads connect well with the literature, the direct link between
frequency bands and linguistic dysfunctions may be overly
simplistic. While often neural oscillations are assigned to specific
functions or oscillatory deficits are linked to specific deficits,
we believe that since these are coupled across both spatial and
temporal scales, they should be evaluated in unison in relation to
the naturalistic paradigms we propose.
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