
Dissertation

zur Erlangung des akademischen Grades
”doctor rerum naturalium”

(Dr. rer. nat.)
in der Wissenschaftsdisziplin ”Mathematik”

Spin Hall effects in General
Relativity

Marius-Adrian Oancea

Diese Dissertation wird eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät

der Universität Potsdam, sie wurde angefertigt am Max Planck
Institut für Gravitationsphysik (Albert Einstein Institut)

Ort und Tag der Disputation: Universität Potsdam, Raum 02.09.2.22, 30 März 2021

https://www.uni-potsdam.de/en/
http://www.aei.mpg.de/
https://www.researchgate.net/profile/Marius_Oancea
https://www.uni-potsdam.de/de/mnfakul/
https://www.uni-potsdam.de/de/
http://www.aei.mpg.de/
http://www.aei.mpg.de/


This work is licensed under a Creative Commons License: 
Attribution 4.0 International. 
This does not apply to quoted content from other authors. 
To view a copy of this license visit 
https://creativecommons.org/licenses/by/4.0/ 

Hauptbetreuer: apl. Prof. Dr. Lars Andersson 
Zweitbetreuer: Dr. habil. Jérémie Joudioux  
Mentor: Prof. Dr. Christian Bär 
Gutachtern: Prof. Dr. Valeri P. Frolov, Prof. Dr. Peter A. Horvathy 

Published online on the 
Publication Server of the University of Potsdam: 
https://doi.org/10.25932/publishup-50229 
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-502293 



Abstract

The propagation of test fields, such as electromagnetic, Dirac, or linearized grav-
ity, on a fixed spacetime manifold is often studied by using the geometrical optics
approximation. In the limit of infinitely high frequencies, the geometrical optics
approximation provides a conceptual transition between the test field and an ef-
fective point-particle description. The corresponding point-particles, or wave rays,
coincide with the geodesics of the underlying spacetime. For most astrophysical ap-
plications of interest, such as the observation of celestial bodies, gravitational lens-
ing, or the observation of cosmic rays, the geometrical optics approximation and
the effective point-particle description represent a satisfactory theoretical model.
However, the geometrical optics approximation gradually breaks down as test fields
of finite frequency are considered.

In this thesis, we consider the propagation of test fields on spacetime, beyond
the leading-order geometrical optics approximation. By performing a covariant
Wentzel-Kramers-Brillouin analysis for test fields, we show how higher-order cor-
rections to the geometrical optics approximation can be obtained. The higher-
order corrections are related to the dynamics of the spin internal degree of free-
dom of the considered test field. We obtain an effective point-particle description,
which contains spin-dependent corrections to the geodesic motion obtained using
geometrical optics. This represents a covariant generalization of the well-known
spin Hall effect, usually encountered in condensed matter physics and in optics.
Our analysis is applied to electromagnetic and massive Dirac test fields, but it can
easily be extended to other fields, such as linearized gravity. In the electromag-
netic case, we present several examples where the gravitational spin Hall effect of
light plays an important role. These include the propagation of polarized light
rays in black hole spacetimes and cosmological spacetimes, as well as polarization-
dependent effects on the shape of black hole shadows. Furthermore, we show that
our effective point-particle equations for polarized light rays reproduce well-known
results, such as the spin Hall effect of light in an inhomogeneous medium, and the
relativistic Hall effect of polarized electromagnetic wave packets encountered in
Minkowski spacetime.
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Hall effects are well know in many areas of physics and represent the basis of
many applications of practical interest. The most basic example is the ordinary
Hall effect, discovered by Edwin Herbert Hall in 1879 [100]. This effect is observed
for charged particles travelling in a conductor in the x direction, when a magnetic
field is applied in the transverse y direction. Then, due to the Lorentz force, the
charged particles are deflected in the z direction. The magnitude of the deflection
is related to the magnitude of the applied magnetic field and the absolute value of
the charge, while the direction of the deflection is given by the orientation of the
applied magnetic field along the y direction and the sign of the charge.

The ordinary Hall effect, despite its simplicity, successfully captures the main
features of Hall effects in general. That is, a particle (or localized wave packet)
with some internal degree of freedom and travelling in the x, under the influence
of some external agent, acting in the y direction, gets deflected in the z direction,
and the orientation and magnitude of the deflection depend on the internal degree
of freedom. In the case of the ordinary Hall effect, the internal degree of freedom
is represented by the charge of the particle. Thus, Hall effects can be viewed as a
consequence of the coupling between the external and internal degrees of freedom
of particles or wave packets.
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1. Introduction

In this thesis, our attention is directed towards spin Hall effects, which represent
a subclass of Hall effects where the relevant internal degree of freedom is the
spin of a particle or wave packet. The main mechanism behind spin Hall effects,
representing the coupling of external and internal degrees of freedom, is called
the spin-orbit interaction [158, 71, 37]. The spin represents the internal degree
of freedom, and the orbital part represents external degrees of freedom, such as
position and velocity.

Examples of spin Hall effects are commonly encountered in many areas of physics,
such as condensed matter physics or optics. The spin Hall effect of electrons can be
observed for electrons travelling in certain materials exhibiting spin-orbit coupling.
In this case, electrons with opposite spin get deflected in opposite directions, trans-
verse to their direction of propagation [158, 71]. Similarly, in optics one observes
the spin Hall effect of light. This effect is present for polarized light propagating
in a medium with inhomogeneous refractive index. In this case, the polarization
represents the spin internal degree of freedom. Light rays of opposite circular po-
larization are deflected in opposite directions, perpendicular to their direction of
propagation and to the gradient of the refractive index [37]. These effects have
been intensively studied for the past 40 years, leading to solid theoretical foun-
dations, as well as many experimental observations. Beyond their primary role
in fundamental physics, spin Hall effects are playing an important role for many
applications in metrology [179], spintronics [174, 108], photonics [118, 178], optical
communications [111] and image processing [180].

In optics, the spin Hall effect of light is usually derived by considering the WKB
approximation of Maxwell’s equations in a medium with inhomogeneous refrac-
tive index [33, 31, 148]. At the lowest order in the WKB approximation, one
obtains the well-known geometrical optics ray equations, and there is no coupling
between the external (position and velocity of the ray) and internal (polariza-
tion) degrees of freedom. However, by taking into account terms of higher or-
der in the WKB approximation, one obtains effective ray equations containing
polarization-dependent correction terms, representing the spin Hall effect of light.
In this case, the evolution of the polarization involves the Berry connection, and
the polarization-dependent terms in the effective ray equations are represented by
the corresponding Berry curvature. This approach emphasizes the fact that the
mathematical description of physical phenomena in terms of fields is fundamental,
while any point-particle description should be viewed just as an approximation
of the underlying fields. The WKB approximation facilitates the transition from
the field equations to the effective point-particle description, and the spin Hall
effect of light is represented by polarization-dependent corrections arising in the
effective point-particle description. In this case, the effective point-particle dy-
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namics is expected to approximate the dynamics of a localized wave packet of the
electromagnetic field (e.g., a polarized laser beam). This is actually the case, as
confirmed by several experiments [103, 36].

Given the important role of spin Hall effects in condensed matter physics and
optics, it is natural to explore the possibility of similar effects arising in general
relativity. In particular, we are interested in studying the dynamics of particles or
wave packets with spin internal degree of freedom, on a fixed spacetime background
representing a solution of the Einstein field equations. In this context, any spin-
dependent propagation of a particle or wave packet, which arises solely due to the
presence of the gravitational field, is referred to as a gravitational spin Hall effect
[128].

In general relativity, the motion of free-falling test particles without any internal
structure is represented by the geodesics of the underlying spacetime. For a broad
range of astrophysical applications, such as the motion of planets or the propa-
gation of light rays, the geodesic motion provides a good approximation. How-
ever, test particles can also have internal structure (such as spin, electric charge,
Yang-Mills charge, etc.), which can mutually interact with the external degrees
of freedom. There are several approaches within general relativity that study the
dynamics of particles or wave packets with internal degrees of freedom [128]. For
example, the well-known Mathisson-Papapetrou-Dixon equations are meant to de-
scribe massive test particles with spin [59]. Various extensions of these equations
for the massless case have also been considered [160, 152]. Another approach is
the use of WKB-type approximations for field equations such as Maxwell’s equa-
tions [85, 84, 154] or the Dirac equation [9, 147]. This can lead to spin-dependent
extensions of the usual geometrical optics results.

However, the previously mentioned models do not provide a satisfactory de-
scription of gravitational spin Hall effects. Each model suffers from at least one
serious drawback, such as lack of covariance, limited applicability to a small class
of spacetimes, or lack of proper physical interpretation. Furthermore, there are
also contradictory claims between some models, as discussed in [128]. The main
goal of this thesis is to provide a covariant derivation of the gravitational spin Hall
effect, which does not suffer from the same drawbacks as the previous models, and
which should settle previously encountered inconsistencies.

The gravitational spin Hall effect of light is derived by using the WKB ap-
proximation for the vacuum Maxwell equations on a fixed spacetime background.
The derivation is covariant and the considered spacetime is arbitrary. We obtain
an effective point-particle description, consisting of a set of ray equations and a
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1. Introduction

transport equation for the polarization. The ray equations contain polarization-
dependent corrections to the null geodesics, representing the gravitational spin
Hall effect of light. We present these results in close analogy with the description
of the spin Hall effect of light in optics - the transport equation for the polarization
is expressed in terms of the Berry connection, and the correction terms in the ray
equations are expressed in terms of the Berry curvature.

Considering the WKB approximation for the Dirac equation on a fixed spacetime
background, we derive the gravitational spin Hall effect of electrons. Formally, the
derivation follows the same steps as in the electromagnetic case, and the resulting
point-particle dynamics is also governed by the corresponding Berry connection
and Berry curvature.

The present derivation of the gravitational spin Hall effect opens the way for
several applications. It is shown that in certain black hole spacetimes (such as
Schwarzschild or Kerr) the gravitational spin Hall effect of light results in a po-
larization dependent scattering of light rays. Even though the effect is small, the
presence of a finite scattering angle suggests that the effect could be measurable
sufficiently far away from the black hole. Furthermore, it is shown how the gravi-
tational spin Hall effect of light can affect the observation of black hole shadows.
While there is no effect of Schwarzschild black holes, the shadows of Kerr black
holes are modified in a polarization-dependent way.

There are several natural directions in which the results of this thesis can be
extended, some of which are currently being investigated by the author. First of
all, the procedure presented here for the derivation of the gravitational spin Hall
effect could easily be applied for studying the propagation of gravitational waves
on a fixed spacetime background, within the framework of linearized gravity. This
should lead to a derivation of the spin Hall effect of gravitational waves. Sec-
ond, instead of the WKB approximation, one could use the more general Gaussian
beam approximation [143] (see also Ref. [130]). This has the advantage of pro-
viding a much clearer transition between wave packet dynamics and point-particle
dynamics, and it is expected that the shape of the wave packet could also affect
its propagation, as suggested in Ref. [30]. Lastly, the effective ray equations de-
scribing the gravitational spin Hall effect should be studied in more detail. One
important aspect that should be addressed is the existence of conserved quantities
for the effective ray equations, as well as any possible relations with conservation
laws associated with the underlying field equations. This is partially answered in
section 2.4.3, where it is shown that in certain spacetimes, such as Kerr, one can
use the Lagrangian formulation of the effective ray equations to obtain conserved
quantities. However, this approach can only provide conserved quantities associ-
ated with Killing vector fields, and it is not clear if the effective ray equations also
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1.1. Overview of the thesis

admit conserved quantities associated to Killing tensor fields (such as a generalized
version of Carter’s constant for spinning particles).

1.1. Overview of the thesis

We continue this introductory chapter with a brief overview of spin Hall effects
in general, based on [128]. This is meant to introduce the basic concepts used
in the description of spin Hall effects, such as the Berry phase, and to provide
an overview of the currently available descriptions of spin Hall effects in general
relativity. In Chapter 2 we present the main results of this thesis, based on [129].
The gravitational spin Hall effect of light is derived by means of a covariant WKB
analysis of Maxwell’s equations on a fixed arbitrary spacetime background. The
treatment is in close analogy with well-known derivations of the spin Hall effect in
optics. The spin-orbit interaction is represented through the Berry phase, and the
correction terms in the modified ray equations are represented in terms of the Berry
curvature. The modified ray equations are examined in several particular cases,
and it is shown how several known results are recovered. A Mathematica code has
been developed for numerically integrating the modified ray equations on a given
spacetime background. The code can be found in Appendix A.7, and can easily
be used to explore further examples. In Chapter 3, we perform a semiclassical
analysis of the massive Dirac equation on a fixed arbitrary spacetime background,
along the same lines as in the previous chapter. We obtain the dynamics of the
internal spin degree of freedom in terms of the Berry connection, and we propose
a derivation of modified ray equations, describing the spin Hall effect of electrons
on a curved spacetime background.

1.2. Spin Hall effects in materials

In condensed matter physics, the spin Hall effect (SHE) of electrons was first pre-
dicted in 1971 [72, 73], and describes the appearance of a spin current, transverse
to the electric charge current propagating in a material. The effect was first ob-
served by Bakun et al. in 1984 [11] as the inverse spin Hall effect, and only later
on, in 2004, was the direct spin Hall effect observed in semiconductors [110]. The
source of this effect is the relativistic spin-orbit coupling between a particle’s spin
and its center of mass motion inside a potential. Detailed reviews about the spin
Hall effect of electrons can be found in [158, 71].
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1. Introduction

A similar effect, called the spin Hall effect of light, is present in the case of
electromagnetic waves propagating inside an inhomogeneous optical medium. In
this case, the spin-orbit coupling comes from the interaction of the polarization
degree of freedom with the gradient of the refractive index of the medium, resulting
in a transverse shift of the wave packet motion, in a direction perpendicular to
the gradient of the refractive index. The first known examples related to the spin
Hall effect of light are the Goos-Hänchen effect [91], originally reported in 1947,
and the Imbert-–Fedorov effect [79, 104], reported in 1955. These effects involve
polarization-dependent transverse shifts of light beams undergoing refraction or
total internal reflection. A recent review of these effects can be found in [32]. Later
on, polarization-dependent propagation of light inside an inhomogeneous optical
medium was reported under the name “optical Magnus effect” [63, 114], in analogy
with the Magnus effect experienced by spinning objects moving through a fluid.
This was followed by the work of Onoda et al. [131] (who introduced the term
“Hall effect of light”), Bliokh et al. [33, 34, 36] and Duval et al. [67, 68, 65]. The
first experimental observation of the spin Hall effect of light came in 2008 [103, 36].
Reviews about the current state of the research can be found in [37, 116].

Focusing on the spin Hall effect of light in inhomogeneous media, we briefly
review the main mechanism behind the effect, and we present the correspond-
ing equations of motion. We discuss the different types of angular momentum
that electromagnetic waves can carry, and how spin-orbit interactions of light re-
sult from the conservation of the total angular momentum. Next, the notion of
the Berry phase is introduced, and its relation to the spin Hall effect of light is
explained. Finally, the equations of motion of polarized light rays in an inhomo-
geneous medium are introduced.

1.2.1. Angular momentum of light

It is well known that electromagnetic waves can carry angular momentum [106].
Following classical Maxwell’s theory, the angular momentum density is given by
the cross product of position vector x with the Poynting vector E × B. The
total angular momentum of the electromagnetic field is the space integral of this
quantity [106]:

J = ε0

∫
x× (E×B) dx3, (1.1)
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1.2. Spin Hall effects in materials

where ε0 is the vacuum permittivity. Furthermore, the total angular momentum
can be split into two parts:

J = S + L = ε0

∫
(E×A) dx3 + ε0

3∑
i=1

∫
Ei (x×∇)Aidx

3. (1.2)

In general, the above split is gauge dependent, due to the presence of the vector
potential A. However, this issue can be resolved by imposing the Coulomb gauge

Aα = (0,A), ∇ ·A = 0. (1.3)

In this case, the above split of the total angular momentum coincides with the
gauge invariant definition for spin and orbital angular momentum [39]. The first
term, S, represents the spin angular momentum, and can be associated with the
polarization of the electromagnetic wave. The second term, L, represents the
orbital angular momentum and was mostly ignored until the early 1990s, when it
was shown that Laguerre-Gaussian light beams carry well defined spin and orbital
angular momentum [3]. Detailed reviews about how the angular momentum of
light shaped the last 25 years of developments in the science of light, covering
both theoretical and experimental ground, can be found in [8, 17, 35].

When considering the propagation of light in inhomogeneous optical media, it
is convenient to adopt the paraxial beam approximation. This means that the
considered electromagnetic wave packet does not spread significantly during its
propagation, so it can effectively be described by a ray trajectory. Within this
approximation, considering a beam with mean wave vector P (and P = |P|),
the total angular momentum of light can be split into three distinct components
[37, 35]:

• Spin angular momentum (SAM): this corresponds to the first term in Eq. (1.2),
and it is related to the polarization of electromagnetic waves. The SAM per
photon can take values σ = ±~, and in flat spacetime it is aligned with the
direction of propagation of the beam:

S = σ
P

P
. (1.4)

• Intrinsic orbital angular momentum (IOAM): this is characteristic for elec-
tromagnetic beams with helical wavefronts, such as Laguerre-Gaussian [3],
Bessel [171] or exponential beams [26]. Beams with IOAM are generally
described by a topological charge l, which represents the twisting degree
of the wavefronts. The IOAM per photon can take any integer value l =
0,±~,±2~, ..., and in flat spacetime it is aligned with the direction of prop-
agation of the beam:

7



1. Introduction

Lint = l
P

P
. (1.5)

• Extrinsic orbital angular momentum (EOAM): this is in direct analogy with
the mechanical angular momentum for massive particles, and it is present for
beams propagating at a distance from the origin of the coordinate system
(the origin might correspond to some special point of an applied external
potential). The EOAM is given by the cross product of the centroid of the
propagating beam, R, and its momentum, P:

Lext = R×P. (1.6)

The second term in Eq. (1.2) is the sum of the IOAM and EOAM. Thus, the total
angular momentum of paraxial light beams can be written as:

J = S + L = S + Lint + Lext. (1.7)

The conservation of the total angular momentum will induce the spin-orbit interac-
tions of light, resulting in the spin Hall effect of light and other related effects [37].
For example, if we consider a system where only SAM and EOAM are present,
the conservation of the total angular momentum will induce the spin Hall effect
of light. Another possible example is a system with IOAM and EOAM, where the
conservation of the total angular momentum will result in a similar effect, called
the orbital Hall effect [30, 37]. In particular, IOAM plays a special role since the
topological charge l can take any integer value, thus one can in principle prepare
beams that carry significant amounts of angular momentum. Optical beams with
IOAM up to 104~ per photon have been reported [81].

Furthermore, the discussion presented here is not limited to electromagnetic
waves. The same splitting of the total angular momentum can be considered
for any other spin-field, and the conservation of the total angular momentum
will give raise to the corresponding spin-orbit interactions. In particular, it is
worth emphasizing that electrons carrying IOAM are attracting a lot of attention
[168, 123, 113, 16, 28], and gravitational waves carrying IOAM have also been
theoretically studied in [27, 112, 29, 12].

1.2.2. Berry phase

The Berry phase plays a central role in the description of SHEs, both in Optics
[131, 37, 31], and in Condensed Matter Physics [19, 127, 157, 175]. For example,
by considering relativistic wave equations, such as the Dirac equation or Maxwell’s
equations, the evolution of the spin degree of freedom will be influenced by the

8



1.2. Spin Hall effects in materials

Berry phase, while the spin-orbit coupling will imprint the effect of the Berry phase
on the corresponding point-particle equations of motion, resulting in a SHE.

As originally described by Michael Berry [20], the adiabatic evolution of a quan-
tum system changes the wavefunction by an additional phase factor, referred to as
Berry phase or geometrical phase. The quantum system is considered to remain
in some nth eigenstate of the Hamiltonian Ĥ(R):

Ĥ(R) |Ψn(R)〉 = En(R) |Ψn(R)〉 , (1.8)

where R = R(t) represents the set of parameters varying adiabatically. The adi-
abatic evolution of the parameters is considered in the sense of Kato [109], and it
will define a parallel transport of the wavefunction along the path in parameter
space [51]. A well-known example of such a system is a spin-1

2
particle in a slowly

changing magnetic field B(t) [51]. In this case, the set of parameters R(t) is iden-
tified with the magnetic field B(t), and for magnetic fields of constant magnitude
the parameter space will have S2 topology.

When the parameters R vary along a closed loop C in parameter space, such
that R(0) = R(T ), the wavefunction acquires an additional Berry phase γn(C):

|Ψn(R(T ))〉 = eiγn(C)e−
i
~
∫ T
0 En(R(t))dt |Ψn(R(0))〉 , (1.9)

γn(C) = i

∮
C

〈Ψn(R)| ∇R |Ψn(R)〉 · dR =

∮
C

AR · dR. (1.10)

The Berry phase can be expressed in terms of the Berry vector potential, AR, also
called the Berry connection. Furthermore, if we consider an arbitrary hypersurface
in parameter space, such that ∂Σ = C, and by using Stokes’ theorem, we can
rewrite the Berry phase as:

γn(C) =

∫
Σ

∇× AR · dS =

∫
Σ

FR · dS. (1.11)

In the above expression FR is called the Berry curvature, since it describes the
geometrical properties of the parameter space. In analogy with classical electro-
dynamics, we can think of AR as a “magnetic” vector potential, and of FR as the
corresponding “magnetic” field in the parameter space. Then, one can regard the
Berry phase γn(C) as the flux of FR through the surface Σ [51].

Shortly after Berry’s original paper, an elegant mathematical formulation was
introduced by Barry Simon, who represented the geometrical phase factor by the
holonomy of a connection on a Hermitian line bundle [155]. Later on, general-
izations of the Berry phase were introduced by Wilczek and Zee for systems with
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1. Introduction

degenerate spectra [173], and by Aharonov and Anandan for systems undergoing
general cyclic evolution, that is not necessarily adiabatic [2, 4]. Extensions for
noncyclic evolution exist as well [151, 126, 137].

From the definition of the Berry phase presented above, one might conclude that
this is a purely Quantum Mechanical effect, and it should not be present at the
level of classical theories. However, as it can be seen from [89, 5], the Berry phase
naturally occurs in classical field theories as well.

Generally, the study of SHEs involves the propagation of localized wave packets
inside some inhomogeneous medium. Nevertheless, it is instructive to look at the
following basic example. If we consider electromagnetic waves described by clas-
sical Maxwell’s equations, we can easily see how the Berry phase arises naturally,
without considering any Quantum Mechanical effects [25, 45, 88]. The intrinsic
topological structure of Maxwell’s equations in vacuum is revealed as soon as one
performs a plane wave expansion for electromagnetic waves. Using this descrip-
tion, electromagnetic waves are characterized by a wave vector k and a complex
polarization vector e(k), together with the transversality condition k · e(k) = 0.
Furthermore, the space of possible wave vectors is constrained by the dispersion re-
lation (also called on-shell condition) |k|2 = ω2(k), which implies that the k-space
will have S2 topology [45]. The polarization vectors e(k) form a 2-dimensional
complex vector space, and due to the transversality condition they will lie in a
tangent plane to the spherical space of k vectors.

By identifying the parameter space from the standard treatment of the Berry
phase with the k-space of electromagnetic waves, one can see how the Berry phase
arises at the classical level [98, 99]. Considering an electromagnetic wave that
follows a closed loop in k-space, the polarization vector e(k) will be parallel trans-
ported around this loop, and, due to the curvature of the k-space, it will get rotated
by a geometrical phase factor proportional to the solid angle enclosed by the loop
[51] (a visual example of this process is also presented in [88]). This rotation of
the polarization vector was already known in 1938, when it was investigated by
Rytov [150], followed by the work of Vladimirskii [170] (for this reason, the effect
is generally referred to as Rytov or Rytov-Vladimirskii rotation). The effect was
experimentally observed for the first time in 1984 by Ross [145], followed by the
work of Chiao, Tomita and Wu [48, 165].

Even though it will not be considered in the present review, a similar effect,
called the Pancharatnam phase, will also arise if the polarization state space is
identified as the parameter space and the adiabatic evolution of the polarization
vector is considered [135, 21]. This effect was also observed experimentally [22].
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1.2. Spin Hall effects in materials

However, regarding curved spacetime, there are few theoretical studies discussing
the Berry phase, and no experimental results. A first study of the Berry phase for
waves propagating in a weak gravitational field was presented in [44], and further
developed by several authors [10, 52, 6, 43, 42, 80, 134].

1.2.3. Spin Hall effect equations of motion

The spin Hall effect of light in inhomogeneous optical media can be viewed as a
consequence of the spin-orbit coupling between SAM and EOAM, resulting in the
helicity dependence of the ray trajectories. In terms of the Berry phase, the spin
Hall effect of light can be described by considering k-space as parameter space.
Then the Berry curvature of k-space will act as a “Lorentz force” on “charged”
particles, where the “charge” will be represented by the helicity of photons. Thus,
the spin Hall effect of light can be viewed as a consequence of Berry curvature in
momentum space [131].

The point-particle equations of motion describing the spin Hall effect of light
have been obtained by different authors, using different methods. These include
postulating an effective ray Lagrangian or Hamiltonian [131], using geometrical
optics with a modified eikonal ansatz for Maxwell’s equations [33, 34], or consid-
ering a mechanical model for photons, as inspired by the description of spinning
particles in General Relativity [67].

Considering an inhomogeneous medium with a refractive index n(X), the equa-
tions of motion of polarized light rays, describing the spin Hall effect of light are
[148]

Ṗ =
cP

n2
∇n, Ẋ =

cP

nP
+ s

Ṗ × P

P 3
, (1.12)

where s = ±1, depending on the state of circular polarization of the light ray.

The last term in the Ẋ equation is the correction term that determines the spin
Hall effect of light and can be interpreted as a Lorentz force produced by the Berry
curvature in momentum space, with the photon helicity acting as a charge [37]. As
will be discussed in 2, a similar Berry curvature term appears in the description
of the gravitational spin Hall effect of light, along with other terms related to the
curvature of spacetime.

In the limit of very short wavelengths, the spin Hall effect of light is suppressed,
and we recover the classical equations of motion for photons in a medium with
arbitrary refractive index n. The spin Hall effect of light becomes more visible as
one increases the wavelength, but one should keep in mind that these equations
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1. Introduction

were derived under the assumption that the wavelength is much smaller than the
length scale over which the medium properties vary significantly.

The theoretical predictions of Eq. (1.12) were first verified in 2008 by Hosten and
Kwait [103]. Their experiment used the technique of quantum weak measurements
to amplify the small transverse shift coming from the spin Hall effect of light. This
was followed a few months later by the experiment of Bliokh, Niv, Kleiner and
Hasman [36]. In this case, the authors managed to amplify the spin Hall effect
of light by multiple reflections inside a glass cylinder. Afterwards, the effect was
detected by several other groups, using different experimental methods [97, 115,
119, 159]. A more detailed account of the experimental results can be found in
[37, 158].

1.3. Spin Hall effects in general relativity

Considering the dynamics of a localized wave packets or a spinning particle, by
the gravitational spin Hall effect, we mean any spin-dependent correction of this
dynamics, in comparison to the dynamics of a scalar field or geodesic motion. This
should extend to general relativity the spin Hall effects known from condensed
matter physics and optics. The role of the inhomogeneous medium is now played
by spacetime itself, and the spin-orbit coupling is a consequence of the interaction
between the spin degree of freedom and the curvature of spacetime. This effect
is expected to be present for all spin-fields (some examples are the Dirac field,
electromagnetic waves and linear gravitational waves) propagating in a nontrivial
fixed spacetime.

One motivation for studying the gravitational spin Hall effect comes from the
fact that electromagnetic waves propagating in a curved spacetime are formally
described by the same set of equations as electromagnetic waves propagating inside
some optical medium, in flat spacetime. The properties of the optical medium can
be related to the components of the metric tensor describing the curved spacetime
[142, 23, 24]. This type of analogy was first recognized by Eddington, who sug-
gested that the gravitational light bending around the Sun could also be obtained
if we consider an appropriate distribution of a refractive material [74]. This was
later developed by Gordon [92], and Plebanski [142]. For a more recent discussion
see [23, 24].

Following Plebanski [142], a spacetime described by the metric tensor gµν can
be viewed as an effective medium with perfect impedance matching, described by
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1.3. Spin Hall effects in general relativity

a tensorial permittivity εij, a tensorial permeability µij, and a magnetoelectric
coupling vector αi (here, Latin indices run from 1 to 3):

εij = µij = −
√
− det g

gij

g00

, αi = − g0i

g00

. (1.13)

This correspondence is an example of what is called analogue gravity [14], where
certain properties of a curved spacetime are reproduced in laboratories using other
physical systems. However, this analogy has its limitations and should be used
with care. The main limitation is that it breaks covariance, and simply writing the
metric using different coordinates can result in analog materials with completely
different properties [78].

The experimental observation of the spin Hall effect of light in inhomogeneous
optical media, together with the correspondence to curved spacetime, suggests
that this effect should also play a role for waves propagating in curved spacetimes,
in which context it is usually neglected. It is conceivable that the gravitational
spin Hall effect might have experimentally observable consequences, for example,
in the form of corrections to gravitational lensing.

Various approaches have been proposed in the literature in order to describe the
gravitational spin Hall effect. A detailed review of these theoretical models can be
found in Ref. [128]. Below we briefly mention these models, together with their
main features and limitations.

1.3.1. Spinning particles in general relativity

The equation for the worldline of a massive spinning test body in the context
of the pole-dipole approximation was first derived by Mathisson [122] and Papa-
petrou [136] by integrating the conservation law of the energy momentum tensor
∇νT

µν for a multipole expansion of the energy momentum tensor T µν . A covari-
ant derivation was given by Tulczyjew [167] and Dixon [57]. The latter contains
multipole expansions to any order; see also Ref. [156]. There are many alternative
derivations in the literature [156, 144, 169, 160, 13]. A Hamiltonian formulation
for the Mathisson-Papapetrou-Dixon equations can be found in Ref. [13], and the
systematic presentation of the Hamiltonian for different orders in spin can be found
in Ref. [169]. A particularly transparent derivation can be found in Ref. [161], and
a slightly more general derivation in Ref. [59]. A more mathematical derivation,
including a full discussion of the symplectic structure of the phase space of the
dynamic variables, can be found in Ref. [160], albeit only available in French. For
the definition of multipole moments see Ref. [58].
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1. Introduction

The Mathisson-Papapetrou-Dixon equations are given by:

ṗµ = −1

2
Rµ

νκλu
νSκλ, (1.14)

Ṡαβ = p[αuβ], (1.15)

where uµ denotes the four-velocity of the particle (the timelike unit tangent vector
of the worldline uµuµ = −1), pµ is the total momentum of the particle, and Sµν is
the totally antisymmetric spin tensor. The system (1.14)-(1.15) has 10 equations
for 13 unknowns (3 for uµ, 4 for pµ and 6 for Sµν) and is therefore underdetermined.
In particular, we are missing an equation that determines uµ. This is usually fixed
with so called spin supplementary conditions. The most commonly used spin
supplementary conditions are the following ones:

• Tulczyjew-Dixon: Sµνpν = 0

• Pirani: Sµνuν = 0 [141]

• Corinaldesi-Papapetrou: (∂t)µS
µα = 0, for stationary spacetimes.

Note that the worldlines obtained from different spin supplementary conditions do
not coincide. They are usually interpreted as different gauge choices for the “center
of mass” of the extended bodies [53]. According to Dixon [59], the Tulczyjew-
Dixon spin supplementary condition, Sµνpν = 0, is the only spin supplementary
condition that fixes a unique world line for an extended body, without requiring
the introduction of any other additional structure. For a review on the effect of
the different spin supplementary conditions and their physical interpretation, see
[54, 55]. For the Tulczyjew-Dixon spin supplementary condition, m = pµuµ can be
interpreted as the mass, which is constant along the worldline. For the Pirani spin
supplementary condition, the mass is given by pµpµ = m̃, which is again conserved
along the worldline. For both spin supplementary conditions, the magnitude of
the spin, s2 = 1

2
SµνS

µν , is constant along the worldlines. It was shown in [53]
that various choices are in fact physically equivalent, provided that higher-order
quadrupole terms are ignored. Therefore, choosing a spin supplementary condition
comes down to practicality and personal preferences.

The fact that the Mathisson-Papapetrou-Dixon equations can be adapted for
massless particles was first mentioned by Souriau [160], and then worked out in
detail by Saturnini [152] (both references only available in French). They start
with the Mathisson-Papapetrou-Dixon equations (1.14) and (1.15), assume the
Tulczyjew-Dixon spin supplementary condition, Sµνpν = 0, Sµν 6= 0, and the
momentum to be null, pµpµ = 0. They obtain the following set of equations, to
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1.3. Spin Hall effects in general relativity

which we will refer to as the Souriau-Saturnini equations:

uµ = pµ +
2

RαβλνSαβSλν
SαµRαβλνS

λνpβ, (1.16)

ṗµ = s

√
−gεαβρσRαβλνS

λνRρσγδS
γδ

8RαβλνSαβSλν
pµ, (1.17)

Ṡµν = p[µuν], (1.18)

where g is the metric determinant.

In Ref. [152], Saturnini showed that for a certain choice of initial condition for
the spin, a radially ingoing null geodesic would satisfy Eqs. (1.16)-(1.18) and the
observation of redshift would not change for massless particles with spin. Us-
ing numerical simulations, he also observed that, for certain initial conditions in
Schwarzschild spacetimes, the Eqs. (1.16)-(1.18) with different helicities produce
trajectories that are symmetric with respect to the plane of a reference null geodesic
with zero spin. However, he deemed the effect to be too small to be observable.

In Ref. [68, 65], Duval et al. present a derivation of the spin Hall effect of light
by using a symplectic framework, similar to the one introduced by Souriau and
Saturnini in the context of spinning particles in curved spacetime.

In Ref. [66], Duval and Schücker studied the Souriau-Saturnini equations in a
Robertson Walker spacetime. By numerically integrating Eqs. (1.16)-(1.18) with a
non-zero orthogonal component in the spin vector, they obtained spacelike spiral
trajectories that wind around a reference null geodesic, or equivalently, a reference
trajectory for a spinning massless particle with zero orthogonal spin component
in the spin vector. They argue that, for “reasonable cosmologies, redshifts, and
atomic periods”, the physical distance between the spiral and the null geodesic
is of the order of the wavelength, even though according to their analysis it is in
principle unbounded.

In Ref. [70], Duval, Marsot, and Schücker extended the analysis to Schwarzschild
spacetimes. For the numerical simulations, they assumed initial conditions at
the perihelion, the point of closest approach to the star on the trajectory. From
their perturbative analysis, they recover two deflection angles, one between the
trajectory and the geodesic plane, given by:

β ∼ −
(

1− 2GM

r0

)
χλ0

2πr0

, (1.19)

and one between the geodesic plane and the momentum carried by the spinning
photon:

γ ∼ s
GMλ0

2πr2
0

. (1.20)
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Here, s = ±1 is the photon helicity. This second deflection angle is proportional
to the one derived in [95]. It is reassuring that the deflection angle comes out
similarly with two completely different methods.

The Mathisson-Papapetrou-Dixon equations and the Souriau-Saturnini equa-
tions represent a covariant description of spinning particles on arbitrary spacetime
backgrounds. However, at least in the massless case, it is not clear to what extent
are these equations approximating the behavior of localized electromagnetic wave
packets in curved spacetime.

1.3.2. Relativistic quantum mechanical approach

The first connection between the motion of spinning particles in curved space-
time and the spin Hall effect was introduced by Bérard and Mohrbach in 2006
[19]. The authors studied the adiabatic evolution of a Dirac particle by using
the Foldy-Wouthuysen transformation [82] and presented a generalization of this
method for arbitrary spin-fields by using the Bargmann-Wigner equations [15],
and a generalized version of the Foldy-Wouthuysen transformation [46, 107]. In
this way, the position operator of spinning particles acquires an anomalous con-
tribution, related to a non-Abelian Berry connection [19]. Based on this method,
Gosselin, Bérard, and Mohrbach studied the gravitational spin Hall effect of elec-
trons [94] and photons [95] in a static gravitational field.

Restricting attention to the case of photons discussed in Ref. [95], the authors
describe electromagnetic waves using the Bargmann-Wigner equations of a mass-
less spin-1 field. In general, the Bargmann-Wigner equations describe massive or
massless free spin-j fields, and consist of 2j coupled partial differential equations,
each equation having a similar structure as a Dirac equation [15, 96]. Considering
the case of a spin-1 field in the curved spacetime described by the metric gµν , the
Bargmann-Wigner equations take the following form:

(−i~γµ∇µ +m)α1α
′
1
Ψα
′
1α2

= 0, (1.21)

(−i~γµ∇µ +m)α2α
′
2
Ψα1α

′
2

= 0, (1.22)

where the field Ψα1α2 is a completely symmetric 4-spinor of rank 2, the primed
indices are contracted, the gamma matrices satisfy {γµ, γν} = 2gµν , and ∇µ is the
covariant derivative for spinor fields. When setting m = 0, it can be shown that
these equations are equivalent to the homogeneous Maxwell’s equations [96].

In order to obtain the equations of motion describing the gravitational spin
Hall effect of photons in a static gravitational field, Gosselin et al. [95] used a
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1.3. Spin Hall effects in general relativity

generalized Foldy-Wouthuysen transformation, together with their semiclassical
diagonalization procedure described in [19, 93]. Even though their results describe
a general static spacetime with torsion [95], here we will restrict our attention to
the particular case of a Schwarzschild background, with the metric expressed in
isotropic coordinates as is Eq. (2.211). In this case, the following equations of
motion, describing the gravitational spin Hall effect of photons, were obtained by
Gosselin et al. [95]:

Ṗ = −cP∇F, Ẋ = c
P

P
F + s

Ṗ×P

P 3
, (1.23)

where F =
√
− gtt
gxx

contains the metric components, s = ±~ is the photon helicity,

P = h/λ is the magnitude of the photon momentum, and the vector notation
is P = (Px, Py, Pz), X = (X, Y, Z). The gravitational spin Hall effect is given
by the second term in the equation for Ẋ. Clearly, this is a helicity dependent
correction, which vanishes when we neglect the helicity of the photon. In this case,
the equations of motion reduce to the usual null geodesics, and describe ordinary
light bending around a Schwarzschild black hole. Also, the gravitational spin Hall
effect correction term is proportional to the wavelength λ of the photon, since
Ṗ ∝ P ∝ λ−1, P ∝ λ−1, and P 3 ∝ λ−3. Thus, the gravitational spin Hall effect
vanishes in the limit of very short wavelengths or infinitely high frequencies.

An alternative derivation of Eqs. (1.23) can be obtained by treating the Schwarz-
schild spacetime as an effective inhomogeneous medium. By using the equivalence
between Maxwell’s equations in curved spacetime and inside a material in flat
spacetime, as discussed in Eq. (1.13), an effective refractive index can be attributed
to the Schwarzschild spacetime, n = 1/F , and the same methods as for the spin
Hall effect of light in inhomogeneous optical media can be applied. For example,
Eqs. (1.23) can be easily obtained by inserting n = 1/F into Eqs. (1.12).

One of the main disadvantages of the method used in [95] is that the use of
the Bargmann-Wigner equations blurs the connection with Maxwell’s equations,
while the Foldy-Wouthuysen transformation, and the semiclassical diagonalization
procedures unnecessarily introduce Planck’s constant, giving the general impres-
sion that the gravitational spin Hall effect is of quantum mechanical origin (this
is clearly not the case, since Planck’s constant cancels in the second term in the
equation for Ẋ). Another drawback of the approach of Gosselin et al. is that
their treatment is limited to static spacetimes, and it is not clear how the method
should be extended to more general spacetimes.
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1.3.3. Geometrical optics approach

The geometrical optics approximation is widely used in general relativity for vari-
ous wave equations. The starting point for this approach is a WKB ansatz

Ψ(x) = A[x,∇S(x), ε]eiS(x)/ε,

A[x,∇S(x), ε] =
∑
n=0

εnAn[x,∇S(x)]. (1.24)

where S(x) is a rapidly oscillating real phase function, A is a slowly varying am-
plitude (this is a scalar, vector, tensor or spinor, depending on the nature of the
considered field), and a small expansion parameter ε. Note that, in contrast to most
of the physics literature on the subject, we are explicitly allowing the amplitude
A to depend on the phase gradient ∇S. This is justified by the mathematical for-
mulation of the WKB approximation [18, 76], where ∇S determines a Lagrangian
submanifold of T ∗M , and the amplitude A is defined on this Lagrangian subman-
ifold, by a transport equation. The WKB ansatz is inserted into the considered
field equation, and the result is analyzed at each order in ε.

The standard treatment for the propagation of electromagnetic waves in general
relativity is achieved by investigating Maxwell’s equations in curved spacetime.
Null geodesics can be obtained from Maxwell’s equations by considering the low-
est order geometrical optics approximation [124, 139, 140]. However, at this level
of approximation, there is no influence of the polarization degree of freedom on
the ray trajectories. To obtain a theoretical description of the gravitational spin
Hall effect, higher-order terms should be considered in the geometrical optics ap-
proximation.

Starting with Maxwell’s equations in curved spacetime, and by considering cer-
tain corrections to the standard geometrical optics approximation, several authors
obtained polarization-dependent trajectories for light rays in a curved spacetime
[85, 86, 177, 61, 62, 154, 84] (see also [101] for a more general discussion). However,
some of the predictions presented in these papers are in contradiction with the re-
sults discussed in sections 1.3.1 and 1.3.2. For example, polarization-dependent
trajectories were predicted in [85, 177] on a Kerr spacetime. However, according
to the authors, this effect disappears in the limit of a Schwarzschild spacetimes,
in contrast to what we discussed in the previous sections. Another problem of the
approach presented in [85, 177] is that it only works for stationary spacetimes, and
it is not clear how to extend it beyond this regime.

A similar procedure was applied in [177] to study the propagation of gravitational
waves, with similar results as discussed above. The only difference comes from the
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1.3. Spin Hall effects in general relativity

fact that gravitational waves are described by a massless spin-2 field, so we have
helicity s = ±2. These claims are in contradiction with the results of Yamamoto
[176], which predicted a spin Hall effect for gravitational waves propagating in
Schwarzschild spacetimes.

The geometrical optics approach has also been used for studying the gravita-
tional spin Hall effect of massive Dirac fields [147, 9]. It has been shown by these
authors that the resulting ray equations coincide with the linearized Mathisson-
Papapetrou-Dixon equations.
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2. Gravitational spin Hall effect of light

This chapter contains the main results of the present thesis - a covariant deriva-
tion of the gravitational spin Hall effect of light, based on a WKB analysis of
the vacuum Maxwell’s equations. The presentation closely follows Ref. [129], with
some extra examples and details added.

We start by introducing the vacuum Maxwell’s equations on a fixed background.
Then, the WKB approximation is used to obtain an approximation of the Maxwell
field action. At the lowest order in the WKB expansion parameter ε, the cor-
responding Euler-Lagrange equations reproduce the well-known results of geo-
metrical optics, while the first-order correction terms describe polarization ef-
fects, crucial in the derivation of the gravitational spin Hall effect. Using these
Euler-Lagrange equations, we derive an effective dispersion relation, containing
polarization-dependent correction terms. The transition between the effective dis-
persion relation and the effective ray equations describing the gravitational spin
Hall effect of light is realized by considering the effective dispersion relation as a
Hamilton-Jacobi equation and applying the method of characteristics. Then, the
effective ray equations are analyzed, and several examples are presented.

2.1. Maxwell’s equations

We consider electromagnetic waves in vacuum as test fields on a Lorentzian man-
ifold (M, gµν). These can be described by the electromagnetic tensor Fαβ, which
is a skew-symmetric real 2-form, satisfying the vacuum Maxwell’s equations [124,
Sec. 22.4]

∇αFαβ = 0, ∇[αFβγ] = 0. (2.1)

Electromagnetic waves can also be described by using the electromagnetic four-
potential Aα, which is a real 1-form. Then, the electromagnetic tensor Fαβ is
obtained as

Fαβ = 2∇[αAβ], (2.2)

and Eq. (2.1) becomes [124, Sec. 22.4]

D̂ β
α Aβ = 0, D̂ β

α = ∇β∇α − δβα∇µ∇µ. (2.3)

This equation can be obtained as the Euler-Lagrange equation from the following
action:

J =
1

4

∫
M

d4x
√
gFαβF

αβ =
1

2

∫
M

d4x
√
gAαD̂ β

α Aβ, (2.4)
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2.2. WKB approximation

where the last equality is obtained using integration by parts.

Note that the physically relevant quantity is always the electromagnetic tensor
Fαβ, while the electromagnetic four-potential Aα can, in general, contain pure
gauge terms. In the following, we shall adopt the Lorenz gauge for the electro-
magnetic electromagnetic four-potential Aα:

∇αA
α = 0. (2.5)

2.2. WKB approximation

In general, finding exact solutions for the vacuum Maxwell’s equations (2.3) is
not possible, and certain approximations need to be considered. Since we are
interested in describing the propagation of electromagnetic waves in vacuum, a
natural choice is the WKB approximation, which we introduce below.

2.2.1. WKB ansatz

We assume that the electromagnetic four-potential Aα admits a WKB expansion
of the form

Aα(x) = Re
[
Aα(x, k(x), ε)eiS(x)/ε

]
,

Aα(x, k(x), ε) = A0α(x, k(x)) + εA1α(x, k(x)) +O(ε2),
(2.6)

where S is a real scalar function, Aα is a complex amplitude, and ε is a small
expansion parameter. The gradient of S is denoted as

kµ(x) = ∇µS(x). (2.7)

In general, higher-order terms can be kept in the expansion of the amplitude Aα
in Eq. (2.6). However, as we shall see in the following sections, for the purpose of
describing spin Hall effects we can ignore terms of O(ε2).

Note that we are allowing the complex amplitude Aα to depend on the phase
gradient kα(x), in order to emphasize that Aα is defined on the Lagrangian sub-
manifold x 7→ (x, k(x)) ∈ T ∗M . Such a dependency is often ignored in the physics
literature, but it is generally present in mathematically rigorous treatments of the
WKB approximations, such as Refs. [18, Sec. 3.3] or [76]. In particular, the de-
pendency of A in k appears naturally in the geometrical optics equation (2.39),
and we observe in Sec. 2.3.4 that the polarization vector and the polarization
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2. Gravitational spin Hall effect of light

basis naturally depend on k, which is why the k-dependence was introduced in
Eq. (2.6).

The small expansion parameter ε indicates that the phase of the vector potential
rapidly oscillates and its variations are much faster than those corresponding to the
complex amplitude Aα(x, k, ε). We consider a timelike observer traveling along the
worldline λ 7→ yα(λ) with proper time λ. Then, we can see the relation between ε
and the wave frequency ω measured by this observer:

ω = −t
αkα
ε
. (2.8)

Here, tα = dyα/dλ is the velocity vector field of the observer. The phase function
S and ε are dimensionless quantities. Working with geometrized units, such that
c = G = 1 [172, Appendix F], the velocity tα is dimensionless, and kα has the
dimension of inverse length. Hence, ω has the dimension of the inverse length, as
expected for frequency. Then, the observer sees the frequency going to infinity as
ε goes to 0.

We can illustrate the validity condition of the geometrical optics approximation
for a Schwarzschild black hole, with Schwarzschild radius rs. For a source of light
that is falling into the black hole, the gravitational redshift formula implies that
the frequency ω∞ measured by an observer at infinity in the rest frame of the
central object is smaller than the frequency measured by an observer at a finite
distance from the black hole. Then, a criterion for the high-frequency limit to hold
is

ε = (ω∞rs)
−1 � 1. (2.9)

Note that we could have taken any observer at a finite distance from the black
hole as a criterion. The choice of the observer at infinity provides the simplest
expression.

2.2.2. WKB analysis of the Lorenz gauge

Maxwell’s equations in the form (2.3) do not have a well-posed Cauchy problem. In
particular, they admit pure gauge solutions. This problem is usually eliminated by
introducing a gauge condition. Here we shall focus on the Lorenz gauge condition

∇αA
α = 0. (2.10)

We reproduce here, in the context of a WKB analysis, the classical argument
regarding the gauge fixing for Maxwell’s equations (see, for instance [49, Lemma

24



2.2. WKB approximation

10.2]). Using the identity

D̂ β
α Aβ −∇α∇βAβ = −∇β∇βAα +RαβA

β, (2.11)

one observes that, if Maxwell’s equations (2.3) and the Lorenz gauge (2.10) are
satisfied, then the wave equation

−∇β∇βAα +RαβA
β = 0 (2.12)

holds. Conversely, by solving Eq. (2.12), with Cauchy data satisfying the constraint
and gauge conditions, one obtains a solution to Maxwell’s equations in the Lorenz
gauge.

Note that we consider here approximate solutions to Maxwell’s equations

D̂ β
α Aβ = O(ε0). (2.13)

Hence, it is sufficient to consider that the Lorenz gauge is satisfied at the appro-
priate order:

∇αA
α = O(ε1). (2.14)

We reproduce the standard argument recovering Maxwell’s equation in the Lorenz
gauge from the wave Eq. (2.12), taking into account that we are considering only
approximate solutions. Assume that the wave equation holds:

−∇β∇βAα +RαβA
β = O(ε0). (2.15)

Upon inserting the WKB ansatz, this is equivalent to

kβkβA0α = 0,

ikβkβA1α + A0α∇βkβ + 2kβ∇βA0α = 0.
(2.16)

Furthermore, assume that the initial data for the wave equation (2.15) satisfy

kαA0
α = 0,

∇αA0
α + ikαA1

α = 0.
(2.17)

Equation (2.15) implies that

∇β∇β (∇αA
α) = O(ε−1). (2.18)

The initial data (2.17) for Eq. (2.15) imply that, initially,

∇αA
α = O(ε1). (2.19)
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2. Gravitational spin Hall effect of light

Observe that the condition

T β∇β (∇αA
α) = O(ε0) (2.20)

is automatically satisfied, where T β is a unit future-oriented normal vector to the
hypersurface on which initial data are prescribed. Hence, the equation satisfied by
the Lorenz gauge source function (2.18) admits initial data as in Eqs. (2.19) and
(2.20) vanishing at the appropriate order in ε [at O(ε1) and O(ε0), respectively].
This implies that Maxwell’s equations

D̂ β
α Aβ = O(ε0), (2.21)

which can be expanded as

kβA0[βkα] = 0,

2kβ∇βA0α −
(
∇βA0

β + ikβA1
β
)
kα − kβ∇αA0β

−A0
β∇βkα + A0α∇βk

β + ikβkβA1α = 0,

(2.22)

are satisfied in the Lorenz gauge

∇αA
α = O(ε1)⇔

{
kαA0

α = 0
∇αA0

α + ikαA1
α = 0

. (2.23)

2.2.3. Assumptions on the initial conditions

We end this section by summarizing the initial conditions that we shall use in the
WKB ansatz for Maxwell’s equations.

1. The Lorenz gauge (2.23) is satisfied initially. This condition is used to obtain
a well-defined solution to the equations of motion, as discussed in Sec. 2.2.2.

2. The initial phase gradient kα is a future-oriented null covector. As will be
seen, the condition that kα is null is a compatibility condition that follows
from the Euler-Lagrange equations and the Lorenz gauge condition (2.23) at
the lowest order in ε; cf. dispersion relation (2.31) below.

3. Initially, the beam has circular polarization; cf. Eq. (2.70). In Sec. 2.3.4 we
show that the initial state of circular polarization is conserved. In Sec. 2.4.2
this assumption ensures a consistent transition transition between the effec-
tive dispersion relation and the effective ray equations. Heuristically speak-
ing, due to the spin Hall effect, a localized wave packet that initially has
linear polarization can split into two localized wave packets of opposite cir-
cular polarization. While this does not represent a problem at the level of
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2.3. Higher-order geometrical optics

Maxwell’s equations (which are partial differential equations), the same be-
havior cannot be captured by the effective ray equations (which are ordinary
differential equations) obtained in Sec. 2.4.2.

2.3. Higher-order geometrical optics

2.3.1. WKB approximation of the field action

We compute the WKB approximation for our field theory by inserting the WKB
ansatz (2.6) in the field action (2.4):

J =

∫
M

d4x
√
gRe

(
AαeiS/ε

)
D̂ β
α Re

(
Aβe

iS/ε
)

=
1

4

∫
M

d4x
√
g
[
A∗αe−iS/εD̂ β

α

(
Aβe

iS/ε
)

+ c.c.
]

+
1

4

∫
M

d4x
√
g
[
AαeiS/εD̂ β

α

(
Aβe

iS/ε
)

+ c.c.
]
.

(2.24)

If S has a nonvanishing gradient, then eiS/ε is rapidly oscillating. In this case, for
f sufficiently regular, the method of stationary phase [64, Sec. 2.3] implies∫

M

d4x
√
g e±i2S(x)/εf(x) = O(ε2). (2.25)

Upon expanding the derivative terms in Eq. (2.24), and keeping only terms of the
lowest two orders in ε, we obtain the following WKB approximation of the field
action [for convenience, we are shifting the powers of ε, such that the lowest-order
term is of O(ε0)]:

−ε2J =

∫
M

d4x
√
g
[
D β
α A∗αAβ −

iε

2

v

∇µD β
α (A∗α∇µAβ − Aβ∇µA

∗α)
]

+O(ε2),

(2.26)

where

D β
α =

1

2
kµk

µδβα −
1

2
kαk

β,

v

∇µD β
α = kµδβα −

1

2
δµαk

β − 1

2
gµβkα.

(2.27)

Here, D β
α represents the symbol [87] of the operator D̂ β

α , evaluated at the phase

space point (x, p) = (x, k), and we are using the notation
v

∇µD β
α for the vertical
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2. Gravitational spin Hall effect of light

derivative (Appendix A.1) of D β
α , evaluated at the phase space point (x, p) =

(x, k).

The action depends on the following fields: S(x),∇µS(x), Aα(x,∇S),∇µ [Aα(x,∇S)],
A∗α(x,∇S), ∇µ [A∗α(x,∇S)]. Following the calculations in Appendix A.2, the
Euler-Lagrange equations are

D β
α Aβ − iε

(
v

∇µD β
α

)
∇µAβ −

iε

2

(
∇µ

v

∇µD β
α

)
Aβ = O(ε2), (2.28)

D β
α A∗α + iε

(
v

∇µD β
α

)
∇µA

∗α +
iε

2

(
∇µ

v

∇µD β
α

)
A∗α = O(ε2), (2.29)

∇µ

[(
v

∇µD β
α

)
A∗αAβ −

iε

2

(
v

∇µ
v

∇νD β
α

)
(A∗α∇νAβ − Aβ∇νA

∗α)

]
= O(ε2).

(2.30)

In the above equations, the symbolD β
α and its vertical derivatives are all evaluated

at the phase space point (x, k). Note that the same set of equations can be obtained
in a more traditional way, by inserting the WKB ansatz (2.6) directly into the field
equation (2.3), or by following the approach presented in Ref. [60]. More generally,
a detailed discussion about the variational formulation of the WKB approximation
can be found in Ref. [166].

2.3.2. Zeroth-order geometrical optics

Starting with Eqs. (2.28)-(2.30), and keeping only terms of O(ε0), we obtain

D β
α A0β = 0, (2.31)

D β
α A0

∗α = 0, (2.32)

∇µ

[(
v

∇µD β
α

)
A0
∗αA0β

]
= 0. (2.33)

Equation (2.31) can also be written as

D β
α A0β =

1

2

(
kµk

µδβα − kαkβ
)
A0β = 0. (2.34)

The matrix D β
α admits two eigenvalues when kα is not a null covector. The first

eigenvalue is 1
2
kµk

µ with eigenspace consisting of covectors perpendicular to kα.
The second eigenvalue is 0 with eigenvector kα. When kα is null, the matrix D β

α
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2.3. Higher-order geometrical optics

is nilpotent. It admits a unique eigenvalue 0 whose eigenspace is the orthogonal
to kα, which contains the covector kα.

The Lorenz gauge condition (2.23) implies that A0α is orthogonal to kα. Hence,
a necessary condition for Eq. (2.31) to admit a nontrivial solution is that kα is a
null covector. It is also possible to deduce that kα is a null covector without using
the gauge condition. For completeness, we present this argument below.

Equation (2.34) admits nontrivial solutions if and only if A0β is an eigenvector
of D β

α with zero eigenvalue. Two cases should be discussed: kα is a null covector,
or kα is not a null covector.

Assume first that kα is not a null covector, kµkµ 6= 0. Then, Eq. (2.34) leads
to

A0α =
kβA0β

kµkµ
kα. (2.35)

This entails that

A0[αkβ] = 0 or Fαβ = ∇[αAβ] = O(ε0). (2.36)

In other words, when kα is not a null covector, the corresponding solution is, at the
lowest order in ε, a pure gauge solution. Since the corresponding electromagnetic
field vanishes, we do not consider this case further.

If kα is null, kµkµ = 0, Eq. (2.34) implies

kβA0β = 0. (2.37)

This is consistent with the Lorenz gauge condition (2.23) at the lowest order in
ε. A similar argument can be applied for the complex-conjugate Eq. (2.32), from
which we obtain kαA0

∗α = 0.

Using Eqs. (2.31)-(2.33), we obtain the well-known system of equations governing
the geometrical optics approximation at the lowest order in ε:

kµk
µ = 0, (2.38)

kαA0α = kαA0
∗α = 0, (2.39)

∇µ (kµI0) = 0, (2.40)

where I0 = A0
∗αA0α is the lowest-order intensity (more precisely, I0 is propor-

tional to the wave action density [166]). Equation (2.40) is obtained from Eq. (2.33)
by using the orthogonality condition (2.39). Using Eq. (2.7), we have

∇µkα = ∇αkµ, (2.41)

and we can use Eq. (2.38) to derive the geodesic equation for kµ:

kν∇νkµ = 0. (2.42)
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2. Gravitational spin Hall effect of light

2.3.3. First-order geometrical optics

Here, we examine Eqs. (2.28) and (2.29) at order ε1 only:

D β
α A1β − i

(
v

∇µD β
α

)
∇µA0β −

i

2

(
∇µ

v

∇µD β
α

)
A0β = 0, (2.43)

D β
α A1

∗α + i

(
v

∇µD β
α

)
∇µA0

∗α +
i

2

(
∇µ

v

∇µD β
α

)
A0
∗α = 0. (2.44)

Using Eq. (2.27), we can also rewrite Eq. (2.43) as follows:

kµ∇µA0α −
1

2
kα∇µA0

µ − 1

2
kβ∇αA0

β − i

2
kαk

βA1β

+
1

2
A0α∇µk

µ − 1

4
A0

β∇βkα −
1

4
A0

β∇αkβ = 0.
(2.45)

Using Eq. (2.41), we can rewrite the last two terms as

− 1

4
A0

β∇βkα −
1

4
A0

β∇αkβ = −1

2
A0

β∇αkβ. (2.46)

Using Eq. (2.39), we also have

0 = ∇α

(
kβA0

β
)

= kβ∇αA0
β + A0

β∇αkβ. (2.47)

Then, Eq. (2.45) becomes

kµ∇µA0α +
1

2
A0α∇µk

µ − 1

2
kα (∇µA0

µ + ikµA1
µ) = 0. (2.48)

The last term can be eliminated by using the Lorenz gauge (2.23). The same steps
can be applied to the complex-conjugate Eq. (2.44):

kµ∇µA0α +
1

2
A0α∇µk

µ = 0,

kµ∇µA0
∗β +

1

2
A0
∗β∇µk

µ = 0.
(2.49)

Furthermore, using the lowest-order intensity I0, we can write the amplitude in
the following way:

A0α =
√

I0a0α, A0
∗α =

√
I0a0

∗α, (2.50)

where a0α is a unit complex covector (i.e., a0
∗αa0α = 1) describing the polarization.

Then, from Eq. (2.49), together with Eq. (2.40), we obtain

kµ∇µa0α = kµ∇µa0
∗α = 0. (2.51)

The parallel propagation of the complex covector a0α along the integral curve of
kµ is another well-known result of the geometrical optics approximation.
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2.3. Higher-order geometrical optics

2.3.4. The polarization vector in a null tetrad

We observed that the polarization vector satisfies the orthogonality condition

kαa0α = 0. (2.52)

Consider a null tetrad [138, Sec. 3] {kα, nα,mα, m̄α} satisfying

mαm̄
α = 1, kαn

α = −1,

kαk
α = nαn

α = mαm
α = m̄αm̄

α = 0,

kαm
α = kαm̄

α = nαm
α = nαm̄

α = 0.

(2.53)

Note that we use the metric signature opposite to that used in Ref. [138, Sec. 3].
The covectors nα,mα, m̄α are not assumed to be parallel-propagated along the
geodesic generated by kα. It is only kα that is parallel-propagated along the
geodesic generated by kα, in accordance with Eq. (2.42). Since the null tetrad is
adapted to the covector kα, the orthogonality conditions (2.53) imply that mα and
m̄α are functions of kα. The polarization covector a0α is orthogonal to kα, so we
can decompose it as

a0α(x, k) = z1(x)mα(x, k) + z2(x)m̄α(x, k) + z3(x)kα(x), (2.54)

where z1, z2, and z3 are complex scalar functions. Since a0α is a unit complex
covector, the scalar functions z1 and z2 are constrained by

z∗1z1 + z∗2z2 = 1. (2.55)

It is important to note that the decomposition (2.54), and more specifically, the
choice of mα, requires choosing a null covector nα. Fixing nα is equivalent to
choosing a unit timelike covector field tα that can represent a family of timelike
observers. We can always take nα as

tα =
1

2εω
kα + εωnα. (2.56)

Once nα (or tα) is fixed, the remaining SO(2) gauge freedom in the choice of mα

is described by the spin rotation

kα 7→ kα, nα 7→ nα, mα 7→ eiφ(x)mα, (2.57)

for φ(x) ∈ R. Polarization measurements will always depend on the choice of mα

and m̄α. However, as shown in Sec. 2.4.2, the modified ray equations describing
the gravitational spin Hall effect of light do not depend on the particular choice
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2. Gravitational spin Hall effect of light

of mα and m̄α. Thus, we can work with any smooth choice of mα and m̄α that
satisfy Eq. (2.53).

Using Eqs. (2.54) and (2.42), the parallel-transport equation for the polarization
vector becomes

0 = kµ∇µa0α

= z1k
µ∇µmα + z2k

µ∇µm̄α +mαk
µ∇µz1 + m̄αk

µ∇µz2 + kαk
µ∇µz3.

(2.58)

Contracting the above equation with m̄α, mα, and nα, we obtain

kµ∇µz1 = −z1m̄
αkµ∇µmα,

kµ∇µz2 = −z2m
αkµ∇µm̄α,

kµ∇µz3 = −(z1m
α + z2m̄

α)kµ∇µnα.

(2.59)

Recall that in the above equations, the covectors mα and m̄α are functions of x
and k(x). The covariant derivatives are applied as follows:

kµ∇µmα = kµ∇µ [mα(x, k)]

= kµ
(

h

∇µmα

)
(x, k) + kµ (∇µkν)

(
v

∇νmα

)
(x, k)

= kµ
h

∇µmα,

(2.60)

where
h

∇µ is the horizontal derivative (Appendix A.1). It is convenient to introduce
the two-dimensional unit complex vector

z =

(
z1

z2

)
, (2.61)

which is analogous to the Jones vector in optics [83, 31, 148, 149]. We also use the
Hermitian transpose z†, defined as follows:

z† =
(
z∗1 z∗2

)
. (2.62)

Then, the equations for z1 and z2 can be written in a more compact form:

kµ∇µz = ikµBµσ3z, (2.63)

where σ3 is the third Pauli matrix,

σ3 =

(
1 0
0 −1

)
, (2.64)
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and Bµ is the real 1-form extending to general relativity the Berry connection used
in optics [31, 148]:

Bµ(x, k) =
i

2

(
m̄α

h

∇µmα −mα

h

∇µm̄
α

)
= im̄α

h

∇µmα. (2.65)

Furthermore, if we restrict z to an affinely parametrized null geodesic τ 7→ xµ(τ),
with ẋµ = kµ, we can write

ż = ikµBµσ3z, (2.66)

where ż = ẋµ∇µz. Integrating along the worldline, we obtain

z(τ) =

(
eiγ(τ) 0

0 e−iγ(τ)

)
z(0), (2.67)

where γ represents the Berry phase [31, 148],

γ(τ1) =

∫ τ1

τ0

dτkµBµ. (2.68)

Using either Eq. (2.59) or Eq. (2.66), we see that the evolution of z1 and z2 is decou-
pled in the circular polarization basis, and the following quantities are conserved
along kµ:

1 = z∗1z1 + z∗2z2 = z†z,

s = z∗1z1 − z∗2z2 = z†σ3z.
(2.69)

Based on our assumptions on the initial conditions (Sec. 2.2.3), we only consider
beams which are circularly polarized, i.e. one of the conditions

z(0) =

(
1
0

)
or z(0) =

(
0
1

)
(2.70)

holds. Thus, we have s = ±1, depending on the choice of the initial polarization
state.

The results described in this section are similar to the description of the polar-
ization of electromagnetic waves traveling in a medium with an inhomogeneous
index of refraction [31].

2.3.5. Extended geometrical optics

Now, we take Eqs. (2.28)-(2.30), but without splitting them order by order in ε.
Our aim is to derive an effective Hamilton-Jacobi system that would give us O(ε)
corrections to the ray equations.
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Effective dispersion relation

By contracting Eq. (2.28) with A∗α and Eq. (2.29) with Aβ, and adding them
together, we obtain the following equation:

D β
α A∗αAβ −

iε

2

(
v

∇µD β
α

)
(A∗α∇µAβ − Aβ∇µA

∗α) = O(ε2). (2.71)

Using Eqs. (2.27) and (2.39), we can rewrite the above equation as follows:

1

2
kµk

µ(A0
∗αA0α + εA0

∗αA1α + εA1
∗αA0α)

− iε

2
kµ (A0

∗α∇µA0α − A0α∇µA0
∗α)

+
iε

4
kα (A0

∗µ∇µA0
α − A0

µ∇µA0
∗α) = O(ε2).

(2.72)

Using Eq. (2.39), we obtain

0 = A0
∗µ∇µ (kαA0

α) = kαA0
∗µ∇µA0

α + A0
∗µA0

α∇µkα, (2.73)

so we can write

iε

4
kα (A0

∗µ∇µA0
α − A0

µ∇µA0
∗α) = −iε

2
∇µkαA0

∗[µA0
α] = 0, (2.74)

where the last equality is due to Eq. (2.41). Then, Eq. (2.71) becomes

1

2
kµk

µ(A0
∗αA0α + εA0

∗αA1α + εA1
∗αA0α)

− iε

2
kµ (A0

∗α∇µA0α − A0α∇µA0
∗α) = O(ε2).

(2.75)

Let us introduce the O(ε1) intensity

I = A∗αAα = A0
∗αA0α + εA0

∗αA1α + εA1
∗αA0α +O(ε2). (2.76)

Then, we can rewrite the amplitude as

Aα =
√
Iaα =

√
I (a0α + εa1α) +O(ε2), (2.77)

where aα is a unit complex covector. Then, from Eq. (2.75) we obtain

1

2
kµk

µ − iε

2
kµ (a0

∗α∇µa0α − a0α∇µa0
∗α) = O(ε2). (2.78)
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This can be viewed as an effective dispersion relation, containing O(ε) corrections
to the geometrical optics equation (2.38). Finally, let us introduce

Kµ = kµ −
iε

2
(a0
∗α∇µa0α − a0α∇µa0

∗α) (2.79)

and rewrite the effective dispersion relation as

1

2
KµK

µ = O(ε2). (2.80)

It is worth noting that this equation can also be obtained directly from the effective
field action (2.26), specifically by varying the latter with respect to I.

Effective transport equation

Using Eqs. (2.27), (2.38), and (2.39), the effective transport equation (2.30) be-
comes

∇µ

[
kµ (A0

∗αA0α + εA0
∗αA1α + εA1

∗αA0α)− iε

2
gµν (A0

∗α∇νA0α − A0α∇νA0
∗α)

+
iε

4
(A0

∗α∇αA0
µ − A0

µ∇αA0
∗α) +

iε

4
(A0

∗µ∇αA0
α − A0

α∇αA0
∗µ)

− ε

2
kα (A0

∗µA1
α + A1

∗αA0
µ)

]
= O(ε2).

(2.81)

We can perform the following replacements in the above equation:

A0
∗α∇αA0

µ = ∇α (A0
∗αA0

µ)−∇αA0
∗αA0

µ,

∇αA0
∗µA0

α = ∇α (A0
∗µA0

α)− A0
∗µ∇αA0

α.
(2.82)

After rearranging terms, the effective transport equation becomes

∇µ

[
kµ (A0

∗αA0α + εA0
∗αA1α + εA1

∗αA0α)− iε

2
gµν (A0

∗α∇νA0α − A0α∇νA0
∗α)

− iε

2
A0

µ (∇αA0
∗α − ikαA1

∗α) +
iε

2
A0
∗µ (∇αA0

α + ikαA1
α)

+
iε

4
∇α

(
A0
∗[αA0

µ]
)]

= O(ε2).

(2.83)
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The last term above vanishes due to the symmetry of the Ricci tensor:

∇µ∇α

(
A0
∗[αA0

µ]
)

= ∇[µ∇α] (A0
∗αA0

µ)

=
(
R ν
ανµ −R ν

µνα

)
A0
∗αA0

µ

= (Rαµ −Rµα)A0
∗αA0

µ

= 0.

(2.84)

Furthermore, after using the Lorenz gauge condition (2.23), we are left with the
following form of the effective transport equation:

∇µ

[
kµ(A0

∗αA0α + εA0
∗αA1α + εA1

∗αA0α)

− iε

2
gµν (A0

∗α∇νA0α − A0α∇νA0
∗α)

]
= O(ε2).

(2.85)

Introducing the intensity I and the vector Kµ, we obtain

∇µ

{
I

[
kµ − iε

2
gµν (a0

∗α∇νa0α − a0α∇νa0
∗α)

]}
= ∇µ (IKµ) = O(ε2). (2.86)

This is an effective transport equation for the intensity I, which includes O(ε)
corrections to the geometrical optics Eq. (2.40). As discussed in Ref. [166], the
direction of Kµ coincides with the direction of the wave action flux.

2.4. Effective ray equations

2.4.1. Hamilton-Jacobi system at the leading order

The lowest-order geometrical optics equations (2.38) and (2.40) can be viewed as
a system of coupled partial differential equations:

1

2
gµνkµkν = 0, (2.87)

∇µ (I0k
µ) = 0, (2.88)

where kµ = ∇µS. Equation (2.87) is a Hamilton-Jacobi equation for the phase
function S, and Eq. (2.88) is a transport equation for the intensity I0 [125]. The
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Hamilton-Jacobi equation can be solved using the method of characteristics. This
is done by defining a Hamiltonian function on T ∗M , such that

H (x,∇S) =
1

2
gµνkµkν = 0. (2.89)

It is obvious that in this case, the Hamiltonian is

H(x, p) =
1

2
gµνpµpν . (2.90)

Note that in contrast to the dispersion relation (2.89), the Hamiltonian (2.90) is
a function on the whole phase space T ∗M , with pµ being an arbitrary covector.
Hamilton’s equations take the following form:

ẋµ =
∂H

∂pµ
= gµνpν , (2.91)

ṗµ = − ∂H
∂xµ

= −1

2
∂µg

αβpαpβ. (2.92)

Given a solution {xµ(τ), pµ(τ)} for Hamilton’s equations, we obtain a solution of
the Hamilton-Jacobi Eq. (2.89) by taking [90, p. 433]:

S(xµ(τ1), pµ(τ1)) =

∫ τ1

τ0

dτ [ẋµpµ −H(x, p)] + const. (2.93)

Note that the above equation represents an action, with the corresponding La-
grangian related to the Hamiltonian (2.90) by a Legendre transformation [1, Ex. 3.6.10].
The Euler-Lagrange equation is equivalent to the geodesic equation [1, Th. 3.7.1]
and with Hamilton’s equations (2.91) and (2.92). Once the Hamilton-Jacobi equa-
tion is solved, the transport Eq. (2.88) can also be solved, at least in principle
[125]. However, our main interest is in the ray equations governed by the Hamil-
tonian (2.90). The corresponding Hamilton’s equations (2.91) and (2.92) describe
null geodesics. These equations can easily be rewritten as

ẍµ + Γµαβẋ
αẋβ = 0, (2.94)

or in the explicitly covariant form:

pν∇νp
µ = ẋν∇ν ẋ

µ = 0. (2.95)

2.4.2. Effective Hamilton-Jacobi system

The effective dispersion relation (2.80), together with the effective transport equa-
tion (2.86) introduce O(ε1) corrections over the system discussed above:

1

2
gµνkµkν −

iε

2
kµ (a0

∗α∇µa0α − a0α∇µa0
∗α) = O(ε2), (2.96)
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∇µ

{
I

[
kµ − iε

2
gµν (a0

∗α∇νa0α − a0α∇νa0
∗α)

]}
= O(ε2). (2.97)

Using Eq. (2.54), the effective dispersion relation becomes

1

2
gµνkµkν −

iε

2
kµ
(
z†∂µz − ∂µz†z

)
− εskµBµ = O(ε2), (2.98)

where Bµ = Bµ(x, k) is the Berry connection introduced in Eq. (2.65), and s =
±1, depending on the initial polarization. Using Eq. (2.67), together with the
assumption on the initial polarization, we can write:

− iε

2
kµ
(
z†∂µz − ∂µz†z

)
= εskµ∂µγ. (2.99)

Since the value of s is fixed by the initial conditions, the only unknowns are the
phase function S and the Berry phase γ. We can write an effective Hamilton-Jacobi
equation for the total phase S̃ = S + εsγ:

H
(
x,∇S̃

)
=

1

2
gµνkµkν + εskµ∂µγ − εskµBµ +O(ε2)

=
1

2
gµν∇µS̃∇νS̃ − εsgµνBµ∇νS̃ +O(ε2).

(2.100)

The phase S̃ represents the overall phase factor, up to order O(ε2), of a circularly
polarized WKB solution, Aα = Re(

√
Imαe

iγeiS/ε) or Aα = Re(
√
Im̄αe

−iγeiS/ε),
depending on the state of circular polarization. As discussed in Ref. [33], the Berry
phase γ, which comes as a correction to the overall phase of the WKB solution,
is responsible for the spin Hall effect of light. The corresponding Hamiltonian
function on T ∗M is

H(x, p) =
1

2
gµνpµpν − εsgµνpµBν(x, p), (2.101)

and we have the following Hamilton’s equations:

ẋµ =
∂H

∂pµ
= gµνpν − εs

(
Bµ + pα

v

∇µBα

)
, (2.102)

ṗµ = − ∂H
∂xµ

= −1

2
∂µg

αβpαpβ + εspα
(
∂µg

αβBβ + gαβ∂µBβ

)
. (2.103)

These equations contain polarization-dependent corrections to the null geodesic
Eqs. (2.91) and (2.92), representing the gravitational spin Hall effect of light. For
ε = 0, one recovers the standard geodesic equation in canonical coordinates.
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2.4. Effective ray equations

We can also write these ray equations in a more compact form(
ẋµ

ṗµ

)
=

(
0 δµν
−δνµ 0

)(
∂H
∂xν
∂H
∂pν

)
, (2.104)

where the constant matrix on the right-hand side is the inverse of the symplectic
2-form, or the Poisson tensor [121].

Noncanonical coordinates

The Hamiltonian (2.101) contains the Berry connection Bµ, which is gauge depen-
dent. The latter means that Bµ depends on the choice of mα and m̄α; for example,
the transformation mα 7→ mαe

iφ causes the following transformation of the Berry
connection:

Bµ 7→ Bµ −∇µφ. (2.105)

This kind of gauge dependence was considered by Littlejohn and Flynn in Ref. [117],
where they also proposed how to make the Hamiltonian and the equations of mo-
tion gauge invariant. The main idea is to introduce noncanonical coordinates such
that the Berry connection is removed from the Hamiltonian and the symplectic
form acquires the corresponding Berry curvature, which is gauge invariant. This
is similar to the description of a charged particle in an electromagnetic field in
terms of either the canonical or the kinetic momentum of the particle. The Berry
connection and Berry curvature play a similar role as the electromagnetic vector
potential and the electromagnetic tensor [51].

We start by rewriting the Hamiltonian (2.101) as

H(x, p) = H0(x, p)− εsgµνpµBν(x, p), (2.106)

where H0 = 1
2
gµνpµpν . Following Ref. [117], the Berry connection can be written

in the following way, by using the definition of the horizontal derivative:

pµBµ(x, p) = ipµm̄α
h

∇µmα

= ipµm̄α∇µmα + ipµpσΓσµρm̄
α
v

∇ρmα

= i
∂H0

∂pµ
m̄α∇µmα − i

∂H0

∂xµ
m̄α

v

∇ρmα.

(2.107)

The Berry connection can be eliminated formally from the Hamiltonian (2.101)
by considering the following substitution on T ∗M :

Xµ = xµ + iεsm̄α
v

∇µmα, (2.108)
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Pµ = pµ − iεsm̄α∇µmα. (2.109)

It is possible to obtain this substitution as the linearization of a change of coordi-
nates. For more details, see Appendix A.4.

Since the symplectic form transforms nontrivially under this substitution, (X,P )
are noncanonical coordinates. The Hamiltonian (2.101) is a scalar, so we obtain

H ′(X,P ) = H(x, p)

= H

(
Xµ − iεsm̄α

v

∇µmα, Pµ + iεsm̄α∇µmα

)
= H(X,P )− iεs∂H0

∂xµ
m̄α

v

∇µmα + iεs
∂H0

∂pµ
m̄α∇µmα

= H0(X,P ).

(2.110)

In the new coordinate system (X,P ), we obtain the following Hamiltonian:

H ′(X,P ) =
1

2
gµν(X)PµPν . (2.111)

The corresponding Hamilton’s equations can be written in a matrix form as(
Ẋµ

Ṗµ

)
= T ′

(
∂H′

∂Xν

∂H′

∂Pν

)
, (2.112)

where T ′ is the Poisson tensor in the new variables. Following Marsden and Ratiu
[121, p. 343], we obtain

T ′ =

(
εs (Fpp)

νµ δµν + εs (Fxp)
µ
ν

−δνµ − εs (Fxp)
ν
µ −εs (Fxx)νµ

)
, (2.113)

where we have the following Berry curvature terms:

(Fpp)
νµ = i

( v

∇µm̄α
v

∇νmα −
v

∇νm̄α
v

∇µmα + m̄α
v

∇[µ
v

∇ν]mα −mα

v

∇[µ
v

∇ν]m̄α
)
,

(Fxx)νµ = i
(
∇µm̄

α∇νmα −∇νm̄
α∇µmα + m̄α∇[µ∇ν]mα −mα∇[µ∇ν]m̄

α
)
,

(Fpx)
µ
ν = − (Fxp)

µ
ν = i

(
v

∇µm̄α∇νmα −∇νm̄
α
v

∇µmα

)
.

(2.114)

The Poisson tensor in noncanonical coordinates T ′ automatically satisfies the Ja-
cobi identity, since it is a covariant quantity obtained from the Poisson tensor in
canonical coordinates T through a change of variables on the cotangent bundle.
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Simplified expressions for the Berry curvature terms can be found in Appendix A.3.
Now we can write Hamilton’s equations in the new variables:

Ẋµ = P µ + εsP ν (Fpx)
µ
ν + εsΓαβνPαP

β (Fpp)
νµ , (2.115)

Ṗµ = ΓαβµPαP
β − εsP ν (Fxx)νµ − εsΓ

α
βνPαP

β (Fxp)
ν
µ . (2.116)

The last term on the right-hand side of Eq. (2.115) is the covariant analogue
of the spin Hall effect correction obtained in optics, (ṗ× p) /|p|3, due to the
Berry curvature in momentum space [37, 148]. This term is also the source of the
gravitational spin Hall effect in the work of Gosselin et al. [95]. In Eq. (2.116), the
second term on the right-hand side contains the Riemann tensor and resembles the
curvature term obtained in the Mathisson-Papapetrou-Dixon equations [59].

Given a null covector Pµ, the class of Lorentz transformations leaving Pµ invari-
ant define the little group, which is isomorphic to SE(2), the symmetry group of
the two-dimensional Euclidean plane [163]. In terms of a null tetrad {P, n,m, m̄},
the action of the little group can be split into the following types of transformations
[47, p. 53]:

Type 1: P 7→ P, n 7→ n,

m 7→ meiφ, m 7→ m̄e−iφ,

Type 2: P 7→ P, n 7→ n+ ām+ am̄+ aāP,

m 7→ m+ aP, m 7→ m̄+ āP,

(2.117)

where φ is a real scalar function and a is a complex scalar function. The trans-
formations of Type 1 are the spin rotations mentioned in Sec. 2.3.4, while the
transformations of Type 2 can be considered as a change of observer tµ, based on
Eq. (2.56). It can easily be checked that the Berry curvature terms in Eq. (2.114)
are invariant under Type 1 transformations. However, the Berry curvature terms
are not invariant under Type 2 transformations. As a consequence, the ray equa-
tions (2.115) and (2.116) depend on the choice of observer. It is shown in the
following section how this observer dependence is related to the problem of local-
izing massless spinning particles [38, 163].

2.4.3. Lagrangian formulation of the ray equations

The ray equations obtained in Eqs. (2.102) and (2.103) or in Eqs. (2.115) and
(2.116) can also be obtained from a Lagrangian formulation. The Lagrangian for-
mulation can be helpful for deriving conserved quantities when considering certain
spacetimes.
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In the case of the ray equations (2.102) and (2.103), the action and the La-
grangian can be written as

S(xµ, ẋµ, pµ, ṗµ) =

∫
dτ L(xµ, ẋµ, pµ, ṗµ), (2.118)

where the Lagrangian L is the Legendre transformation of the Hamiltonian given
in Eq. (2.101):

L(xµ, ẋµ, pµ, ṗµ) = ẋµpµ −
1

2
gµνpµpν + εsgµνpµBν(x, p). (2.119)

Note that in this case, the Lagrangian is defined as a function on TT ∗M , and the
corresponding Euler-Lagrange equations

∂L

∂xµ
− d

dτ

∂L

∂ẋµ
= 0, (2.120)

∂L

∂pµ
− d

dτ

∂L

∂ṗµ
= 0, (2.121)

give the ray equations in Eqs. (2.102) and (2.103). Furthermore, the Lagrangian
in Eq. (2.119) can be extended to describe the dynamics of the Jones vector z, as
in Eq. (2.66). We can write

L = ẋµpµ +
iε

2
(z†ż − ż†z)− 1

2
gµνpµpν + εsgµνpµBν(x, p) + λ(z†z − 1), (2.122)

where λ is a Lagrange multiplier, used for constraining the Jones vector to satisfy
z†z = 1. In this case, the Lagrangian is a scalar function defined on TT ∗M ×TC2,
and the corresponding Euler-Lagrange equations are

∂L

∂xµ
− d

dτ

∂L

∂ẋµ
= 0, (2.123)

∂L

∂pµ
− d

dτ

∂L

∂ṗµ
= 0, (2.124)

∂L

∂z†
− d

dτ

∂L

∂ż†
= 0, (2.125)

∂L

∂z
− d

dτ

∂L

∂ż
= 0, (2.126)

z†z = 1. (2.127)

Here, Eqs. (2.123) and (2.124) are the same as the ray equations (2.102) and
(2.103). Keeping in mind that s = z†σ3z, Eqs. (2.125) and (2.126) are the same
as Eq. (2.66) and its complex conjugate.
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A Lagrangian formulation of the ray equations (2.115) and (2.116) in noncanon-
ical coordinates can be obtained in the following way. We start with the same
Lagrangian as in Eq. (2.119), but now we use capital letters X and P for the
coordinates on TT ∗M (this is just for notation consistency; we are not doing a
coordinate transformation). At the lowest order in ε, the Lagrangian is

L = ẊµPµ −
1

2
gµνPµPν , (2.128)

and the corresponding Euler-Lagrange equations are

Ẋµ = P µ, (2.129)

Ṗµ = ΓαβµPαP
β. (2.130)

Keeping terms of order ε1, the Lagrangian is

L = ẊµPµ −
1

2
gµνPµPν + εsgµνPµBν(X,P ). (2.131)

Using the definition of the Berry connection Bµ and the definition of the horizontal
derivative, we expand the order ε1 term in the above Lagrangian:

gµνPµBν = iP µm̄α
h

∇µmα

= iP µm̄α
(
∂µmα − Γβµαmβ

)
+ iP µm̄αΓσµβPσ

v

∇ρmα

= iP µm̄α∇µmα + iP µΓσµβPσm̄
α
v

∇ρmα

(2.132)

Using the lowest-order ray equations (2.129) and (2.130), we can rewrite the above
equation as

gµνPµBν = iP µm̄α∇µmα + iP µΓσµβPσm̄
α
v

∇ρmα

= Ẋµim̄α∇µmα + Ṗµim̄
α
v

∇µmα

= Ẋµ(Bx)µ + Ṗµ(Bp)
µ,

(2.133)

where we introduced the notation (Bx)µ = im̄α∇µmα and (Bp)
µ = im̄α

v

∇µmα.
The Lagrangian can now be written as

L = Ẋµ (Pµ + εs(Bx)µ)− 1

2
gµνPµPν + εsṖµ(Bp)

µ, (2.134)

and the corresponding Euler-Lagrange equations

∂L

∂Xµ
− d

dτ

∂L

∂Ẋµ
= 0, (2.135)
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∂L

∂Pµ
− d

dτ

∂L

∂Ṗµ
= 0, (2.136)

are the same as the ray equations (2.115) and (2.116). This Lagrangian can also be
extended to include the dynamics of the Jones vector z, exactly as in the previous
case.

2.4.4. Comparison with Mathisson-Papapetrou-Dixon
equations

In this section, we show how the effective ray equations in noncanonical coordinates
can be written in a similar form as the Mathisson-Papapetrou-Dixon equations.
We start with the effective ray equations (2.115) and (2.116), together with the
evolution equations for z and z̄:

Ẋµ = P µ + εsP ν (Fpx)
µ
ν + εsΓαβνPαP

β (Fpp)
νµ , (2.137)

Ṗµ = ΓαβµPαP
β − εsP ν (Fxx)νµ − εsΓ

α
βνPαP

β (Fxp)
ν
µ , (2.138)

ż = iP µBµσ3z, (2.139)

˙̄z = − iP µBµz̄σ3. (2.140)

where s = z̄σ3z = ±1 (last equality is based on the choice of initial conditions).
Keeping in mind the fact that Pα is a coordinate on phase space, we have ∇µPα =
∂

∂XµPα − ΓραµPρ. Then, based on the results in Appendix A.3, the components of
the Berry curvature can be rewritten as

(Fpp)
νµ =

2i

(tαPα)2
m̄[µmν],

(Fxx)νµ = iRαβµνm̄
αmβ +

2i

(tσP σ)2
m̄[αmβ]

[
PρPσΓρµαΓσνβ

− tσP σ(P ρΓρµα∇νtβ + PσΓσνβ∇µtα)
]
,

(Fpx)
µ
ν = − (Fxp)

µ
ν =

2i

(tαPα)2
m̄[µmβ]

(
−PρΓρνβ + tαP

α∇νtβ
)
,

(2.141)

where tα represents the 4-velocity of a family of timelike observers. Inserting these
expressions into the ray equations, we obtain

Ẋµ = P µ +
2iεs

tαPα
m̄[µmβ]P ν∇νtβ (2.142)

Ṗµ = ΓαβµPαP
β − εsP νiRαβµνm̄

αmβ +
2iεs

tσP σ
m̄[αmβ]PρΓ

ρ
µαP

ν∇νtβ, (2.143)
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ż = iP µBµσ3z, (2.144)

˙̄z = − iP µBµz̄σ3. (2.145)

In order to compare these ray equations with the MPD equations, we define the
spin tensor as

Sαβ = iεz̄σ3z(m̄αmβ − m̄βmα) = 2iεsm̄[αmβ]. (2.146)

We take the derivative of Sαβ (note that this is not the covariant dot used in the
MPD equations):

Ṡαβ = 2iεṡm̄[αmβ] + 2iεs
d

dτ
m̄[αmβ]. (2.147)

Using Eqs (2.144) and (2.145), it is straightforward to show that ṡ = 0. Keeping
in mind that mα and m̄α are functions of Xµ and Pµ, we obtain

Ṡαβ = 2iεs
d

dτ
m̄[αmβ]

= 2iεs

[
Ẋµ ∂

∂xµ
(m̄[αmβ]) + Ṗµ

∂

∂pµ
(m̄[αmβ])

]
= 2iεs

[
Ẋµ∇µ(m̄[αmβ])− ẊµΓαµρm̄

[ρmβ] − ẊµΓβµρm̄
[αmρ] + Ṗµ

v

∇µ(m̄[αmβ])

]
.

(2.148)

We can now introduce the covariant dot used in the MPD equations as

D

Dτ
Sαβ = Ẋµ∇µS

αβ = Ṡαβ + ẊµΓαµρS
ρβ + ẊµΓβµρS

αρ, (2.149)

and we obtain

D

Dτ
Sαβ = 2iεsẊµ∇µ(m̄[αmβ]) + 2iεsṖµ

v

∇µ(m̄[αmβ]). (2.150)

Using the expansion of the vertical and covariant derivatives of mα and m̄α intro-
duced in Appendix A.3, we obtain:

D

Dτ
Sαβ =

2iεs

tσP σ
(P µ∇µtρ)

(
Pαm̄[βmρ] − P βm̄[αmρ]

)
. (2.151)

Furthermore, using Eq. (2.142), the equation above can be rewritten in the fol-
lowing form:

D

Dτ
Sαβ = PαẊβ − P βẊα (2.152)
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We can now rewrite the ray equations in a similar form as the MPD equations:

D

Dτ
Xµ = P µ +

1

tαPα
SµβP ν∇νtβ (2.153)

D

Dτ
Pµ = − 1

2
P νRαβµνS

αβ, (2.154)

D

Dτ
Sαβ = PαẊβ − P βẊα, (2.155)

where
D

Dτ
Xµ = Ẋµ,

D

Dτ
Pµ = Ṗµ − ΓαβµPαẊ

β. (2.156)

This form of the effective ray equations resembles what one obtains by starting
with the MPD equations

D

Dτ
Pµ = − 1

2
P νRαβµνS

αβ, (2.157)

D

Dτ
Sαβ = PαẊβ − P βẊα, (2.158)

and fixes the evolution equation for the worldline Xµ by imposing the spin sup-
plementary condition

Sαβtβ = 0. (2.159)

2.5. Examples and applications

In this section, we study the modified ray equations describing the gravitational
spin Hall effect of light on several background spacetimes. The examples including
the relativistic Hall effect and Wigner translations, the optical metric, and the
cosmological spacetimes are treated analytically. The examples exploring the ray
equations on a Schwarzschild and Kerr background, as well as the section on black
hole shadows are treated numerically, based on the Mathematica code presented
in Appendix A.7.

When working with the modified ray equations, in either the canonical form
given in Eqs. (2.102) and (2.103) or the noncanonical form given in Eqs. (2.115)
and (2.116), one needs to specify the background metric gµν , and the choice of
polarization vectors mα and m̄α. The polarization vectors are needed to compute
the Berry connection and the Berry curvature. A particular choice of polarization
vectors can easily be constructed by introducing an orthonormal tetrad (ea)

µ, with
(e0)µ = tµ representing our choice of a family of timelike observers. Adapting the
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polarization vectors used in optics [148], we can write pµ = P a(ea)
µ, vµ = V a(ea)

µ,
and wµ = W a(ea)

µ, where the components of these vectors are given by

P a =


P 0

P 1

P 2

P 3

 , V a =
1

Pp


0
−P 2

P 1

0

 , W a =
1

PpPs


0

P 1P 3

P 2P 3

−(Pp)
2

 , (2.160)

where

Pp =

√
(P 1)2 + (P 2)2,

Ps =

√
(P 1)2 + (P 2)2 + (P 3)2.

(2.161)

The vectors vµ and wµ are real unit spacelike vectors that represent a linear po-
larization basis satisfying Eq. (A.19). They are related to the circular polarization
vectors mα and m̄α by Eq. (A.18). Using this particular choice of polarization vec-
tors, the Berry connection and the Berry curvature terms can be computed, and
the modified ray equations can be integrated, either analytically or numerically.

2.5.1. Relativistic Hall effect and Wigner translations

The relativistic Hall effect [38] is a special relativistic effect that occurs when
Lorentz transformations are applied to objects carrying angular momentum. In
particular, consider a localized wave packet carrying intrinsic angular momentum
and propagating in the z direction in Minkowski spacetime. If a Lorentz boost
is applied in the x direction, then the location of the Lorentz-transformed energy
density centroid is shifted in the y direction, depending on the orientation of the
angular momentum. This shift corresponds to the Wigner translation [163, 69,
40].

The following example shows that an effect analogous to the Wigner translation
discussed in Ref. [163] appears in the effective ray equations (2.115) and (2.116).
We consider the Minkowski spacetime in Cartesian coordinates (t, x, y, z), with

ds2 = −dt2 + dx2 + dy2 + dz2, (2.162)

and we want to compare the effective rays obtained from Eqs. (2.115) and (2.116)
with two different choices of observer. In the first case, we consider the standard
orthonormal tetrad

e0 = ∂t, e1 = ∂x, e2 = ∂y, e3 = ∂z, (2.163)
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where (e0)µ is our first choice of observer. With this orthonormal tetrad, the
polarization vectors are defined as in Eq. (2.160), and the Berry curvature terms
can be computed. The ray equations reduce to the geodesic equations

Ẋµ = P µ, Ṗµ = 0. (2.164)

In order to describe light rays traveling in the z direction, we impose initial con-
ditions Xµ(0) = (0, 0, 0, 0) and Pµ(0) = (−1, 0, 0, 1), and we obtain

Xµ(τ) = (τ, 0, 0, τ) ,

Pµ(τ) = (−1, 0, 0, 1) .
(2.165)

As a second case, we apply a time-dependent boost in the x direction to the
standard orthonormal tetrad in Eq. (2.162). We obtain

e′0 = cosh t ∂t − sinh t ∂x, e′2 = ∂y

e′1 = − sinh t ∂t + cosh t ∂x, e′3 = ∂z,
(2.166)

where (e′0)µ is our second choice of observer. Note that (e′0)µ represents a family
of observers boosted in the x direction, with the rapidity of the boost represented
by the time coordinate t. The polarization vectors are chosen as in Eq. (2.160),
but this time with respect to the orthonormal tetrad in Eq. (2.166). The Berry
curvature terms in Eqs. (2.115) and (2.116) can be explicitly computed, and we
obtain

Ẋµ = P µ + εsP ν (Fpx)
µ
ν , (2.167)

Ṗµ = 0, (2.168)

where

P ν (Fpx)
µ
ν =

Pt

[(e′0)µPµ]2


0
0
Pz
−Py

 . (2.169)

We impose the same initial conditions as in the previous case: Xµ(0) = (0, 0, 0, 0)
and Pµ(0) = (−1, 0, 0, 1). Since the frequency is defined as ω = −(e′0)µPµ/ε, the
small parameter ε can be identified with the wavelength of the initial light ray, as
measured by the observer (e′0)µ at the spacetime point xµ = Xµ(0). Then, the ray
equations can be analytically integrated, and we obtain

Xµ(τ) = (τ, 0,−sε tanh τ, τ) ,

Pµ(τ) = (−1, 0, 0, 1) .
(2.170)
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Thus, given a circularly polarized light ray traveling in the z direction and two
families of observers (e0)µ and (e′0)µ, which are related by boosts in the x direction,
we obtained the polarization-dependent Wigner translation in the y direction,
∆y = sε tanh τ , in agreement with [163, Eq. 28]. Note that the Wigner translation
is always smaller than one wavelength.

Recovering the results of Ref. [163] suggests that a worldline Xµ(τ) representing
a solution of Eqs. (2.115) and (2.116) could be interpreted as the location of the en-
ergy density centroid of a localized wave packed with definite circular polarization,
as measured by the chosen family of observers.

2.5.2. The optical metric

Consider a fixed spacetime metric g̃µν and a dielectric medium with a varying
refractive index n sitting in the rest frame of a timelike observer uµ. It has been
shown in Ref. [92] (see also Ref. [164]) that the combined effect of the background
spacetime and the dielectric medium on light rays can be studied by using the
optical metric

gµν = g̃µν + (1− n−2)uµuν . (2.171)

Here, we show how the effective ray equations (2.115) and (2.116), together with
the optical metric, can be used to recover the well-known equations describing the
spin Hall effect of light in an inhomogeneous medium [63, 114, 131, 33, 34, 67, 68,
36, 148].

We write the optical metric as

gµν = ηµν + (1− n−2)uµuν , (2.172)

where ηµν is the Minkowski metric, n = n(t, x, y, z) is the refractive index of the
medium, and u = ∂t represents the rest frame of the medium. We also consider
the following orthonormal tetrad associated with the optical metric gµν :

e0 = n∂t, e1 = ∂x, e2 = ∂y, e3 = ∂z. (2.173)

The choice of orthonormal tetrad is mainly motivated by the choice of a timelike
observer tµ = (e0)µ performing the optical experiment. Note that, outside the opti-
cal medium where n = 1, this timelike observer reduces to the standard Minkowski
observer ∂t, which is generally assumed in the optics literature, when studying the
spin Hall effect of light. In this case, the effective ray equations (2.115) and (2.116)
in noncanonical coordinates reduce to

Ẋµ = P µ + εsΓαβνPαP
β (Fpp)

νµ , (2.174)
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Ṗµ = ΓαβµPαP
β, (2.175)

where we have the following coordinate components:

P µ = gµνPν =


−n2P0

P1

P2

P3

 =

(
−n2P0

P

)
, (2.176)

ΓαβνPαP
β (Fpp)

νµ =

(
0

Ṗ×P
[(P1)2+(P2)2+(P3)2]3/2

)
, (2.177)

ΓαβµPαP
β = n(P0)2∂µn = n(P0)2

(
∂tn
∇n

)
. (2.178)

We can restrict to the case where the refractive index is time-independent: n =
n(x, y, z). Furthermore, we can use the Hamiltonian to remove the equation for
Ṗ0:

H =
1

2
gµνPµPν = 0 ⇒ (P0)2n2 = (P1)2 + (P2)2 + (P3)2 = P 2, (2.179)

where we introduced the notation P =
√

(P1)2 + (P2)2 + (P3)2. The ray equations
reduce to

Ẋµ =

(
nP

P + εs Ṗ×P
P 3

)
, (2.180)

Ṗi =
P 2

n
∇in, (2.181)

To obtain the same form of the ray equations as in optics, we have to reparametrize
the rays in terms of X0 = T instead of τ . We have Ẋ0 = nP , and

dX i

dT
=

dX

dT
=

P

nP
+ εs

dP
dT
×P

P 3
, (2.182)

dPi
dT

=
dP

dT
=

P

n2
∇n, (2.183)

These are the effective ray equations describing the spin Hall effect of light in
an inhomogeneous medium, obtained in Ref. [148, Eqs. 90 and 91]. These ray
equations can also be rewritten in the form presented in Ref. [31] by rescaling the
momentum and time, as mentioned in Ref. [148].
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2.5.3. Cosmological spacetimes

Robertson-Walker spacetime

The propagation of polarized light in a Robertson-Walker spacetime has been
studied in [66] by using the Souriau-Saturnini equations. The authors obtained
polarization-dependent ray trajectories, but with the difference between the po-
larized rays and the null geodesic being smaller than one wavelength.

Here, we perform a similar analysis using the ray equations (2.115) and (2.116).
We consider the Robertson-Walker line element

ds2 = −dt2 + A2(t, x, y, z)
(
dx2 + dy2 + dz2

)
, (2.184)

where

A(t, x, y, z) =
a(t)

1 + K
4

(x2 + y2 + z2)
. (2.185)

As in [66], we consider the flat Λ-CDM model, with K = 0 and

a(t) = a0

 cosh
(√

3Λt
)
− 1

cosh
(√

3Λt0

)
− 1

1/3

. (2.186)

Furthermore, the following orthonormal tetrad is considered:

e0 = ∂t, e1 = (A2)−1/2∂x, e2 = (A2)−1/2∂y, e3 = (A2)−1/2∂z, (2.187)

where e0 is our choice of observer. With this choice, the polarization vectors can
be defined as in (2.160), and the Berry curvature terms can be computed. The
modified ray equations reduce to the null geodesic equations

ẋµ = pµ, (2.188)

ṗµ = Γαβµpαp
β. (2.189)

Note that, while there are no polarization-dependent effects for the particular
choice of observer used here, picking some other accelerated observer could result
in a nonzero effect, as discussed in Sec. 2.5.1. Such effects would still be limited
to displacements smaller than one wavelength. This suggest that the polarization-
dependent effect obtained in [66] is of the same nature. However, the choice of the
observer is not particularly clear in [66], since it is encoded in the choice of spin
supplementary condition used for deriving the Souriau-Saturnini equations.
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Kasner spacetime

As another cosmological example, we consider the Kasner line element

ds2 = −dt2 + t2c1dx2 + t2c2dy2 + t2c3dz2, (2.190)

where c1, c2 and c3 are real constants, satisfying

c1 + c2 + c3 = (c1)2 + (c2)2 + (c3)2 = 1. (2.191)

Furthermore, we consider the orthonormal tetrad

e0 = ∂t, e1 = (t2c1)−1/2∂x, e2 = (t2c2)−1/2∂y, e3 = (t2c3)−1/2∂z, (2.192)

where (e0)µ represents our choice of a family of timelike observers. In this case,
the effective ray equations (2.115) and (2.116) become

Ẋµ = P µ + εsP ν (Fpx)
µ
ν , (2.193)

Ṗµ = ΓαβµPαP
β, (2.194)

where

P µ =


−P0

t−2c1P1

t−2c2P2

t−2c3P3

 , (2.195)

P ν (Fpx)
µ
ν =

−(p0)2t2

[(P1)2t2(c2+c3) + (P2)2t2(c3+c1) + (P3)2t2(c1+c2)]


0

(c2 − c3)P2P3

(c3 − c1)P3P1

(c1 − c2)P1P2

 ,

(2.196)

ΓαβµPαP
β =

c1(P1)2t−2c1 + c2(P2)2t−2c2 + c3(P3)2t−2c3

t


1
0
0
0

 . (2.197)

Using the Hamiltonian, we have

H =
1

2
gµνPµPν = 0 ⇒ (P0)2 = t−2c1(P1)2 + t−2c2(P2)2 + t−2c3(P3)2. (2.198)

Thus, we can eliminate the equation for Ṗ0, and we obtain:

Ẋµ =


√

(P1)2(X0)−2c1 + (P2)2(X0)−2c2 + (P3)2(X0)−2c3

P1(X0)−2c1 + εs(c3−c2)p3p2
(P1)2(X0)1−c1+c2+c3+(P2)2(X0)1+c1−c2+c3+(P3)2(X0)1+c1+c2−c3

P2(X0)−2c2 + εs(c1−c3)p1p3
(P1)2(X0)1−c1+c2+c3+(P2)2(X0)1+c1−c2+c3+(P3)2(X0)1+c1+c2−c3

P3(X0)−2c3 + εs(c2−c1)p2p1
(P1)2(X0)1−c1+c2+c3+(P2)2(X0)1+c1−c2+c3+(P3)2(X0)1+c1+c2−c3

 ,

(2.199)

52



2.5. Examples and applications

Ṗi = 0. (2.200)

If we set c1 = 1, c2 = c3 = 0, the equations reduce to

Ẋµ =


√

(P1)2(X0)−2 + (P2)2 + (P3)2

P1(X0)−2

P2 + εsP1P3

(P1)2+(P2)2(X0)2+(P3)2(X0)2

P3 − εsP2P1

(P1)2+(P2)2(X0)2+(P3)2(X0)2

 , (2.201)

Ṗi = 0, (2.202)

This system of ordinary differential equations can be integrated, and we obtain

X0(τ) =

√
−(P1)2 + [(P2)2 + (P3)2]2(τ + C1)2

(P2)2 + (P3)2
,

X1(τ) = − arctanh

[
(P2)2 + (P3)2

P1

(τ + C1)

]
+ C2,

X2(τ) = P2(τ + C1)− εs P1P3

[(P2)2 + (P3)2]2(τ + C1)
+ C3,

X3(τ) = P3(τ + C1) + εs
P1P2

[(P2)2 + (P3)2]2(τ + C1)
+ C4,

P1(τ) = P1(0) = P1,

P2(τ) = P2(0) = P2,

P3(τ) = P3(0) = P3,

(2.203)

where C1, C2, C3, C4 are integration constants. In order to analyze the O(ε1) terms,
it is convenient to reparametrize the rays in terms of X0. From the first equation,
we obtain:

τ + C1 = ±

√
(X0)2[(P2)2 + (P3)2] + (P1)2

[(P2)2 + (P3)2]2
, (2.204)

and the O(ε1) terms are proportional to 1/X0. Thus, the polarization-dependent
correction terms decay as 1/X0, so any polarization-dependent effects would quickly
become unobservable.

In the more general case, where c1 6= c2 6= c3 6= 0, it is not so straightforward to
integrate the ray equations (2.199) and (2.200) analytically. The main difficulty is
represented by the computation of the integral∫

1√
(P1)2t−2c1 + (P2)2t−2c2 + (P3)2t−2c3

dt, (2.205)

where P1, P2 and P3 are constants.
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2.5.4. Schwarzschild spacetime

To illustrate how the polarization-dependent correction terms modify the ray tra-
jectories on a Schwarzschild background, let us provide some numerical examples.
For convenience, we perform the numerical computations in canonical coordinates
(x, p) and treat x0 as a parameter along the rays (the same results can also be
obtained using the ray equations in noncanonical coordinates (X,P ), using the
code presented in Appendix A.7). Hence, Eqs. (2.102) and (2.103) become

ẋ0 = 1, (2.206)

ẋi =

giνpν − εs
(
Bi + pα

v

∇iBα

)
g0νpν − εs

(
B0 + pα

v

∇0Bα

) , (2.207)

ṗi =
−1

2
∂ig

αβpαpβ + εspα
(
∂ig

αβBβ + gαβ∂iBβ

)
g0νpν − εs

(
B0 + pα

v

∇0Bα

) , (2.208)

and p0 is calculated from

1

2
gµνpµpν − εsgµνpµBν(x, p) = 0. (2.209)

This equation can be solved explicitly, using the fact that the velocity ẋα is future
oriented:

p0 =
1

g00

[
−
(
g0ipi − εsg0µBµ

)
+

√
(g0ipi − εsg0µBµ)2 − g00 (gijpipj − 2εspigiµBµ)

]
.

(2.210)

Note that in general Bµ depends on p0. However, since this is an O(ε1) term, we
can replace the O(ε0) expression for p0 in Bµ.

To compare with the results of Gosselin et al. [95], we consider a Schwarzschild
spacetime in Cartesian isotropic coordinates (t, x, y, z):

ds2 = −
(

1− rs
4R

1 + rs
4R

)2

dt2 +
(

1 +
rs
4R

)4

(dx2 + dy2 + dz2), (2.211)
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(a) (b)

Figure 2.1.: Results of numerical simulations illustrating the gravitational spin Hall
effect of light around a Schwarzschild black hole. The effect is exag-
gerated for visualization purposes. The two figures present the same
rays from different viewing angles. The central sphere represents the
Schwarzschild black hole, and the small orange sphere represents a
source of light. The blue and the red trajectories correspond to rays
of opposite circular polarization, s = ±1, while the green trajectory
represents a null geodesic. We take rs = 1, and we start with the
initial position xi(0) = (−50rs, 15rs, 0), and initial normalized mo-
mentum pi = (1, 0, 0). The wavelength λ is set to a sufficiently large
value to make the effect visible on this plot.

where rs = 2GM/c2 is the Schwarzschild radius and R =
√
x2 + y2 + z2. We also

define the following orthonormal tetrad:

e0 =
1 + rs

4R

1− rs
4R

∂t, e1 =
(

1 +
rs
4R

)−2

∂x,

e2 =
(

1 +
rs
4R

)−2

∂y, e3 =
(

1 +
rs
4R

)−2

∂z,

(2.212)

where tµ = (e0)µ is our choice of observer.

The Berry connection Bµ can be explicitly computed by introducing a partic-
ular choice of polarization vectors, using Eq. (2.160) and the orthonormal tetrad
(2.212). We now have all the elements required for the numerical integration of
Eqs. (2.206)-(2.208). For this purpose, we used the NDSolve function of Mathe-
matica [105]. For these examples, we used the default settings for the integration
method, precision and accuracy.
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Figure 2.2.: Results of numerical simulations illustrating the gravitational spin Hall
effect of light around the Sun. The effect is exaggerated for visualiza-
tion purposes. The separation distance d is observed from the Earth.
The blue and the red trajectories correspond to rays of opposite cir-
cular polarization, s = ±1, while the green trajectory represents a
null geodesic. We take rs = 3 km, and we start with the initial posi-
tion xi(0) = (−107rs, 3× 105rs, 0), and initial normalized momentum
pi = (1, 0, 0).

After obtaining a numerical solution (x(t), p(t)) to Eqs. (2.206)-(2.208), in or-
der to ensure the gauge invariance of our results, we have to evaluate the gauge-
invariant noncanonical quantities (X(t), P (t)), as given in Eqs. (2.108) and (2.109).
These are the quantities used to represent the trajectories in Figs. 2.1 and 2.2. A
comparative discussion between the use of canonical and noncanonical ray equa-
tions in optics, together with numerical examples, can be found in Ref. [148].

As the first step, we numerically compare our ray Eqs. (2.206)-(2.208) with
those predicted by Gosselin et al. [95]. This is done by numerically integrating
Eqs. (2.206)-(2.208), as well as Eq. (23) from Ref. [95]. Up to numerical errors, we
obtain the same ray trajectories with both sets of equations. However, while the
equations obtained by Gosselin et al. only apply to static spacetimes, Eqs. (2.206)-
(2.208) do not have this limitation.

The results of our numerical simulations are shown in Fig. 2.1, which illus-
trates the general behavior of the gravitational spin Hall effect of light around
a Schwarzschild black hole. [The actual effect is small, so the figure is obtained
by numerical integration of Eqs. (2.206)-(2.208) for unrealistic parameters.] Here,
we consider rays of opposite circular polarization (s = ±1) passing close to a
Schwarzschild black hole, together with a reference null geodesic (s = 0). Except
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for the value of s, we are considering the same initial conditions, (xi(0), pi(0)), for
these rays. Unlike the null geodesic, for which the motion is planar, the circularly
polarized rays are not confined to a plane.

As another example, we used initial conditions (xi(0), pi(0)) such that the rays
are initialized as radially ingoing or outgoing. In this case (not illustrated, since it
is trivial), the gravitational spin Hall effect vanishes, and the circularly polarized
rays coincide with the radial null geodesic.

Using these numerical methods, we can also estimate the magnitude of the grav-
itational spin Hall effect. As a particular example, we consider a similar situation
to the one presented in Fig. 2.1, where the black hole is replaced with the Sun.
More precisely, we model this situation by considering a Schwarzschild black hole
with rs ≈ 3 km. We consider the deflection of circularly polarized rays coming
from a light source far away, passing close to the surface of the Sun, and then
observed on the Earth. This situation is illustrated in Fig. 2.2. The numerical
results are based on the initial data presented in the caption of Fig. 2.2. When
reaching the Earth, the separation distance between the rays of opposite circu-
lar polarization depends on the wavelength. For example, taking wavelengths of
the order λ ≈ 10−9 m results in a separation distance of the order d ≈ 10−15 m,
while for wavelengths of the order of λ ≈ 1 m we obtain a separation distance of
the order d ≈ 10−6 m. Although the ray separation is small (about six orders of
magnitude smaller than the wavelength), what really matters is that the rays are
scattered by a finite angle. Therefore, the ray separation grows linearly with dis-
tance after the reintersection point. This means that the effect should be robustly
observable if one measures it sufficiently far from the Sun. Furthermore, massive
compact astronomical objects, such as black holes or neutron stars, are expected
to produce a larger gravitational spin Hall effect.

As a consistency check, we also performed the numerical computations using
different coordinates, such as the standard Schwarzschild spherical coordinates
and Gullstrand–Painlevé coordinates. The results are independent of the choice
of coordinates. However, the polarized rays are not invariant under a change of
observer. This is due to an effect analogous to the Wigner translations discussed
in Sec. 2.5.1. For example, instead of the static observer introduced in Eq. (2.212),
one could consider a free-falling observer. In this case, the ray trajectories pre-
sented in Figs. 2.1 and 2.2 are slightly modified, due to the Wigner translations,
and preliminary investigations indicate that these modifications are smaller than
one wavelength, as in the case discussed in Sec. 2.5.1. It is not clear how to separate
the purely gravitational effect from the observer-dependent Wigner translations.
However, this is not a problem. The Wigner translation represents the observer-
dependent ambiguity in defining the location of the ray on a single-wavelength
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scale and remains bounded. In contrast, the purely gravitational effect can affect
the angle of light scattering off a gravitating object and thus the ray displacement
associated with this effect accumulates linearly with the distance. This means that
the latter effect dominates at large distances.

2.5.5. Kerr spacetime

Here, we present some numerical examples of polarized light rays experiencing
the gravitational spin Hall effect in Kerr spacetimes. In this case, due to the
complexity of the ray equations, it is more convenient to use the ray equations
in noncanonical coordinates. The Kerr metric is considered in Boyer-Lindquist
coordinates (t, r, θ, φ), with the components of the metric tensor gµν given as

gµν =


−1 + 2mr

Σ
0 0 −2mar sin2 θ

Σ

0 Σ
∆

0 0
0 0 Σ 0

−2mar sin2 θ
Σ

0 0
[(r2+a2)2−a2∆ sin2 θ] sin2 θ

Σ

 , (2.213)

Σ = r2 + a2 cos2 θ, ∆ = r2 − 2mr + a2, (2.214)

where m is the mass and a is the spin parameter. Furthermore, we consider the
following orthonormal tetrad (ea)

µ:

e0 =
r2 + a2

√
Σ∆

∂t +
a√
Σ∆

∂φ,

e1 =

√
∆

Σ
∂r,

e2 =
1√
Σ
∂θ,

e3 =
a sin θ√

Σ
∂t +

1

sin θ
√

Σ
∂φ.

(2.215)

This orthonormal tetrad is used to define the polarization vectors as in Eq. (2.160),
and the Berry curvature terms can be explicitly computed. This example is im-
plemented in the Mathematica code provided in Appendix A.7.

As initial conditions for the equations of motion (2.115) and (2.116) we need to
prescribe Xµ(τ = 0), Pµ(τ = 0) and s = ±1. Note that ṡ = 0, so the initial state
of circular polarization is preserved. In order to ensure that Pµ(0) is null, we write
it as

Pµ(0) = k0(e0)µ + k1(e1)µ + k2(e2)µ + k3(e3)µ

= −(e0)µ + k1(e1)µ + k2(e2)µ + k3(e3)µ,
(2.216)
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Figure 2.3.: Results of numerical simulations illustrating the gravitational spin Hall
effect of light around a Kerr black hole. The effect is exaggerated for
visualization purposes. The initial conditions are prescribed such that
the reference null geodesic remains in the equatorial plane. The Kerr
black hole spin parameter a = 0.99, and the angular momentum of the
black hole is directed along the positive z axis. The equatorial plane
is also plotted.

with (k1)2+(k2)2+(k3)2 = 1. Here, (k1, k2, k3) represent coordinates on the celestial
sphere of the observer (e0)µ, located at the spacetime point xµ(0). Alternatively,
one can also use spherical coordinates (ρ, ψ) on the celestial sphere, such that
(k1, k2, k3) = (sin ρ cosψ, sin ρ sinψ, cos ρ).

Note that (e0)µPµ(0) = 1, so the frequency measured by the observer (e0)µ at
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(a) (b)

Figure 2.4.: Results of numerical simulations illustrating the gravitational spin Hall
effect of light around a Kerr black hole. The effect is exaggerated for
visualization purposes. The Kerr black hole spin parameter a = 0.99,
and the angular momentum of the black hole is directed along the
positive z axis. The equatorial plane is also plotted.

the spacetime point Xµ(0) is

ω = −(e0)µPµ(0)

ε
=

1

ε
(2.217)

Thus, with the given choice of initial data, the small parameter ε can be identified
with the wavelength of the light ray.

The equations of motion (2.115) and (2.116) are also constrained by the Hamil-
tonian function H = 1

2
gµνPµPν = 0. We can use this constraint to eliminate one

of the equations of motion, and to ensure that Pµ remains null, despite possible
numerical errors. We choose to use the Hamiltonian to solve for P0:

P0 =
1

g00

{
− g0iPi +

[(
g0iPi

)2 − g00
(
gijPiPj

)]1/2 }
, (2.218)

and eliminate the Ṗ0 equation of motion.
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Based on these assumptions, and using the code presented in Appendix A.7, we
present here some polarized ray trajectory examples. In Fig. 2.3 we have an exam-
ple where the initial conditions are prescribed such that the reference null geodesic
remains in the equatorial plane. As in the Schwarzschild case, the polarized rays
are not planar, but there is still a symmetry between right-handed and left-handed
circular polarized rays when reflecting with respect to the equatorial plane.

In the more general case, where the reference null geodesic is not restricted to
the equatorial plane, the behavior of the polarized rays becomes more complicated,
and there is no obvious symmetry between right-handed and left-handed circular
polarized rays. An example is presented in Fig. 2.4. Further examples can be
easily explored using the Mathematica code provided in Appendix A.7.

2.5.6. Black hole shadows with polarized light

The shadow of a black hole can be defined on the celestial sphere of an observer as
the set of ray trajectories on which no light from a background source can reach
the observer [120, 132, 133, 56]. Given the recent observation of the black hole
shadow of the supermassive black hole M87 [77], there is great interest in the study
of black hole shadows, and it is natural to ask if the polarization of light can have
any effect on the shape of black hole shadows.

We can use the Mathematica code which computes the ray trajectories of po-
larized light to obtain the shape of black hole shadows, as seen by certain ob-
servers. We numerically determine the black hole shadow, as seen by an observer
tµ = (e0)µ at the spacetime point Xµ(τ = 0), by performing backwards ray tracing.
More specifically, this means that we compute multiple ray trajectories using the
Mathematica code presented in Appendix A.7, with initial conditions Xµ(τ = 0)
and Pµ(τ = 0) as in Eq. (2.216), where Pµ(τ = 0) is determined by different
points (k1, k2, k3) on the celestial sphere of the observer. Given a particular point
(k1, k2, k3), if the corresponding ray falls into the black hole (i.e. hits the event
horizon), then (k1, k2, k3) is part of the black hole shadow on the celestial sphere
of the observer.

As a first example, we investigate the black hole shadow of a Schwarzschild black
hole. In this case, we immediately find that the black hole shadow obtained with
the polarized rays is identical to the black hole shadow determined by the null
geodesics, so polarization has no effect on the shape of Schwarzschild black hole
shadows. The shadow is spherical, as discussed in [133].

In the case of Kerr black holes, the polarization of light will have a nontrivial
effect on the shape of the black hole shadow. Consider a Kerr black hole with
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2. Gravitational spin Hall effect of light

Figure 2.5.: Black hole shadows with polarized light for a Kerr black hole

a = 0.99, and we set ε = 0.9 (ε is suppose to be much smaller than one, but we
take this value for the sake of visualization). In Fig. 2.5 we present the obtained
black hole shadows, as seen by observers tµ located at r = 10, and at different
radial positions θ = π

2
, π

3
, π

4
, π

360
. The black hole shadows are plotted in the k2− k3

plane. The green lines represent the edge of the black hole shadow computed with
the geodesic equations (s = 0), while the red and the blue lines represent the edge
of the black hole shadows computed with Eqs. (2.115) and (2.116), with s = ±1.
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In this chapter, we perform a similar WKB analysis of the Dirac equation. In
contrast to Ch. 2, where the WKB ansatz was used to obtain a high-frequency
approximation of Maxwell’s equations, here we are using the WKB ansatz to per-
form a semiclassical analysis of the Dirac equation. In this case, the expansion
parameter in the WKB ansatz is Planck’s constant ~.

We start by introducing the Dirac equation on a fixed spacetime background,
together with a fixed electromagnetic field Fµν = 2∇[µAν]. Using ~ as an expan-
sion parameter, we define a WKB ansatz for the Dirac field, and a semiclassical
approximation of the Dirac action is obtained. At the lowest order in ~, we obtain
ray equations that are timelike geodesics, while at the next order in ~ we obtain a
transport equation for the internal spin degree of freedom along the correspond-
ing timelike geodesics. This transport equation is described in terms of the Berry
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3. Gravitational spin Hall effect of Dirac fields

connection. Following similar steps as in Ch. 2, an effective dispersion relation
is derived and the corresponding effective ray equations describe the gravitational
spin Hall effect of Dirac fields. The correction terms in the effective ray equa-
tions are expressed in terms of the Berry curvature. The effective ray equations in
noncanonical coordinates have a similar form to the Mathisson-Papapetrou-Dixon
equations at linear order in spin. Thus, our WKB analysis is in agreement with
the results presented in Refs. [9, 147].

3.1. The Dirac equation

Consider a Lorentzian manifold (M, gµν), which is a solution of the Einstein field
equations, admitting a spin structure [50, p. 416]. A Dirac field Ψ is a section
of a vector bundle with fiber C4, associated with the spin frame principal bundle
Spin3,1(M) via the representation ρ(Λ) = Λ, where Λ ∈ Spin(3, 1) = SL(2,C) [50,
p. 418]. The Dirac field Ψ, of charge e and mass m, satisfies the Dirac equation

(i~γµ∇µ − eγµAµ −m) Ψ = 0, (3.1)

where Aµ is the electromagnetic vector potential, and γµ are the spacetime gamma
matrices, which are related to the flat spacetime gamma matrices, γa, by the tetrad
fields (ea)

µ: γµ = (ea)
µγa. The spinor covariant derivative ∇µ is defined by a spin

connection on the spin frame bundle Spin3,1(M). Given a spin structure on M ,
the Levi-Civita connection on the Lorentz frame bundle L(M) determines a spin
connection on the spin frame bundle Spin3,1(M) [50, p. 419]. The spinor covariant
derivative ∇µ acts on the spinor fields as

∇µΨ =

(
∂µ −

i

4
ω ab
µ σab

)
Ψ, (3.2)

where σab = i
2
[γa, γb], and ω ab

µ is defined as

ω ab
µ = (ea)ν∇µ(eb)ν . (3.3)

We are using the same symbol, ∇µ, for both spinor covariant derivatives and the
covariant derivatives of tensor fields, associated with the Levi-Civita connection.
This should not cause any confusion, since the type of covariant derivative is
determined by the object on which it acts. The vector potential Aµ is not included
in the definition of the spinor covariant derivative, because these are of different
order in ~.
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3.2. WKB approximation

The Dirac equation is the Euler-Lagrange equation for the following action:

J =

∫
M

d4x
√
g Ψ̄D̂Ψ, (3.4)

where Ψ̄ = Ψ†γ0, and the Dirac operator is

D̂ = i~γµ∇µ − eAµγ
µ −m. (3.5)

Since the action is invariant under U(1)-transformations Ψ 7→ eiθΨ, the following
Dirac current jµ is conserved:

∇µj
µ = 0, jµ = Ψ̄γµΨ. (3.6)

3.2. WKB approximation

We assume that the Dirac field admits a WKB expansion of the form

Ψ(x) = ψ[x, kµ(x), ~]eiS(x)/~,

ψ[x, kµ(x), ~] = ψ0[x, kµ(x)] + ~ψ1[x, kµ(x)] +O(~2),
(3.7)

where S is a real scalar function, ψ is a complex amplitude spinor, and Planck’s
constant ~ represents a small expansion parameter. The gradient of S is denoted as
kµ(x) = ∇µS(x). Note that we are allowing the amplitude ψ to depend on kµ(x).
This is justified by the mathematical formulation of the WKB approximation [18,
76], where kµ(x) determines a Lagrangian submanifold x 7→ (x, k(x)) ∈ T ∗M , and
the amplitude ψ is defined on the Lagrangian submanifold.

3.3. Semiclassical expansion

The semiclassical analysis of the Dirac equation is usually performed by inserting
the WKB ansatz (3.7) into the Dirac equation (3.1), and analyzing the results
order-by-order in ~ [146, 9, 147, 162]. However, we find it more convenient to
perform the semiclassical analysis at the level of the action (3.4). The advantages
of this variational approach are extensively discussed in Ref. [166].
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3. Gravitational spin Hall effect of Dirac fields

3.3.1. WKB approximation of the Dirac action

A variational formulation of the WKB approximation for the Dirac field is obtained
by inserting the WKB ansatz (3.7) into the action (3.4):

J =

∫
M

d4x
√
g
(
ψ̄e−iS/~

)
D̂
(
ψeiS/~

)
=

∫
M

d4x
√
g ψ̄ (D + i~γµ∇µ)ψ +O(~2).

(3.8)

where

D = −γµvµ −m,
vµ = kµ + eAµ.

(3.9)

The action depends on the phase function S(x), the amplitudes ψ(x,∇S) and
ψ̄(x,∇S). Performing a variation of the action with respect to these fields (since
the amplitude ψ depends on ∇S, the variation of the action must be performed
as in [129, Appendix B]), we obtain the following Euler-Lagrange equations:

Dψ + i~γµ∇µψ = O(~2), (3.10)

ψ̄D − i~(∇µψ̄)γµ = O(~2), (3.11)

∇µ

(
ψ̄γµψ

)
= O(~2). (3.12)

Equations (3.10) and (3.11) can also be obtained by directly inserting the WKB
ansatz into the Dirac equation, and Eq. (3.12) represents the WKB approximation
of the conservation law given in Eq. (3.6).

3.3.2. WKB equations at order ~0

At the lowest order in ~, the Euler-Lagrange equations (3.10)-(3.12) reduce to

Dψ0 = 0, (3.13)

ψ̄0D = 0, (3.14)

∇µj0
µ = 0, (3.15)

where we introduced the notation j0
µ = ψ̄0γ

µψ0 for the conserved Dirac current at
the lowest order in ~. Using Eqs. (3.13) and (3.14), we can obtain an alternative
expression for j0

µ. We start by writing the following identities

ψ̄0γ
µ (mψ0) = −ψ̄0γ

µvνγ
νψ0,(

ψ̄0m
)
γµψ0 = −vνψ̄0γ

νγµψ0.
(3.16)
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3.3. Semiclassical expansion

Adding these two equations and using the anticommutation property of gamma
matrices, γµγν + γνγµ = −2gµν , we obtain

j0
µ = ψ̄0γ

µψ0 =
1

m
I0v

µ, (3.17)

where we defined the lowest-order intensity as I0 = ψ̄0ψ0. The transport equation
(3.15) can be rewritten as

∇µ (I0v
µ) = 0. (3.18)

Using Eqs. (3.13) and (3.14), we can write

0 = −ψ̄0Dψ0 = I0

(
1

m
vµv

µ +m

)
. (3.19)

Thus, we obtained the dispersion relation

vµv
µ = −m2. (3.20)

Observing that
2∇[νvµ] = −eFµν , (3.21)

and we can differentiate the dispersion relation (3.20) to obtain the Lorentz force
law:

vµ∇µvν = evµFµν . (3.22)

Equations (3.13) and (3.14) are homogeneous systems of linear algebraic equa-
tions for the unknown amplitude ψ0 [146, 9, 147]. In order for these systems to
admit nontrivial solutions, the determinant of the matrix D must be zero. This
condition is equivalent to the dispersion relation (3.20):

det(D) = 0 ⇔ vµv
µ = −m2. (3.23)

Under the restriction vµv
µ = −m2, the matrix D has rank 2. We can introduce

a 4-spinor basis {Σ1,Σ2,Π1,Π2}, where Σ1 and Σ2 are eigenspinors of D, with
eigenvalue zero, and Π1 and Π2 are eigenspinors of D, with eigenvalue −2m [146,
9, 147]:

DΣA = 0, Σ̄AD = 0, (3.24)

DΠA = −2mΠA, Π̄AD = −2mΠ̄A, (3.25)

where A,B = 1, 2. Furthermore, the 4-spinors satisfy the orthogonality relations

Σ̄AΣB = −Π̄AΠB = δAB, (3.26)
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3. Gravitational spin Hall effect of Dirac fields

and the resolution of identity

ΣAΣ̄A − ΠAΠ̄A = I4. (3.27)

Here, and in the following, we are assuming an additional summation convention
over repeated capital indices, such as

ΣAΣ̄A =
2∑

A=1

(ΣAΣ̄A) = Σ1Σ̄1 + Σ2Σ̄2. (3.28)

Then, Eqs. (3.13) and (3.14) are satisfied if the amplitude ψ0 is an eigenspinor of
D, with eigenvalue zero. The most general form for ψ0 is

ψ0(x, v) =
√

I0(x) [z1(x)Σ1(x, v) + z2(x)Σ2(x, v)] =
√

I0(x)zAΣA, (3.29)

where z1 and z2 are scalar coefficients, satisfying the constraint

z̄1z1 + z̄2z2 = z̄AzA = 1. (3.30)

Note that, since the matrix D explicitly depends on vµ, its eigenspinors will in
general also depend on vµ. As mentioned in Sec. 3.2, this can be viewed as a
consequence of the amplitude ψ being defined on the Lagrangian submanifold
determined by vµ.

3.3.3. Ray equations

Equations (3.18) and (3.20) is a system of partial differential equations

1

2
gαβ (kα + eAα) (kβ + eAβ) = −m

2

2
, (3.31)

∇α [I0 (kα + eAα)] = 0, (3.32)

where kα = ∇αS, and the unknowns are S and I0. The first equation is a
Hamilton-Jacobi equation for the phase function S, and the second equation is
a transport equation for the intensity I0 [125]. The Hamilton-Jacobi equation
can be solved using the method of characteristics. This is done by defining a
Hamiltonian function H on T ∗M , such that

H (x,∇S) =
1

2
gαβ (kα + eAα) (kβ + eAβ) = −m

2

2
. (3.33)

In this case, the Hamiltonian is

H(x, p) =
1

2
gαβ (pα + eAα) (pβ + eAβ) , (3.34)
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3.3. Semiclassical expansion

and Hamilton’s equations take the following form:

ẋµ =
∂H

∂pµ
= pµ + eAµ, (3.35)

ṗµ = − ∂H
∂xµ

= −1

2
gαβ,µ (pα + eAα) (pβ + eAβ)− e (pα + eAα)Aα,µ. (3.36)

Introducing the kinetic momentum vα = pα + eAα, Hamilton’s equations can be
written in the more compact form

ẋµ = vµ, (3.37)

v̇µ = −1

2
gαβ,µvαvβ + evαFαµ. (3.38)

Given a solution {xµ(τ), pµ(τ)} for Hamilton’s equations, we obtain a solution of
the Hamilton-Jacobi equation (3.33) by taking [90]:

S(xµ(τ1), pµ(τ1)) =

∫ τ1

τ0

dτL(x, ẋ, p, ṗ) + const., (3.39)

where
L(x, ẋ, p, ṗ) = ẋµpµ −H(x, p) (3.40)

is the corresponding Lagrangian. The ray equations (3.35) and (3.36) can also be
obtained as the Euler-Lagrange equations corresponding to the Lagrangian L.

Once the Hamilton-Jacobi equation is solved, the transport equation (3.32) can
also be analyzed (See Ref. [125]). However, our main interest is in the ray equations
governed by the Hamiltonian (3.34) or by the Lagrangian (3.40). The ray equations
(3.35) and (3.36) describe timelike trajectories of massive charged particles. These
equations can easily be rewritten as

ẍµ + Γµαβẋ
αẋβ − eẋαF µ

α = 0, (3.41)

or in the explicitly covariant form:

vα∇αv
µ = ẋα∇αẋ

µ = eẋαF µ
α . (3.42)

3.3.4. WKB equations at order ~1

Considering the Euler-Lagrange equations (3.10) and (3.11) at order ~1 only, we
obtain

Dψ1 = −iγµ∇µψ0, (3.43)
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3. Gravitational spin Hall effect of Dirac fields

ψ̄1D = i∇µψ̄0γ
µ. (3.44)

Given ψ0, these are two inhomogeneous systems of linear algebraic equations,
where the unknowns are ψ1 and ψ̄1. For any inhomogeneous system, the general
solution can be written as the sum of the solution for the homogeneous system
and a particular solution for the inhomogeneous system. We can write ψ1 as

ψ1(x, v) = b1(x)Σ1(x, v) + b2(x)Σ2(x, v) + ψp(x, v), (3.45)

where b1,2 are scalar coefficients, and ψp is a particular solution of the inhomoge-
neous system. The system will admit nontrivial solutions if and only if the right
hand side of the inhomogeneous equation is orthogonal to all solutions of the trans-
posed homogeneous equation. Such solutions are always a linear combination of
Σ1 and Σ2. Therefore, we have the following solvability conditions [146, 9, 147],
which impose constraints on ψ0:

Σ̄1γ
µ∇µψ0 = Σ̄2γ

µ∇µψ0 = 0, (3.46)

∇µψ̄0γ
µΣ1 = ∇µψ̄0γ

µΣ2 = 0. (3.47)

We can rewrite these equations by using the expansion of ψ0 given in Eq. (3.29)
and the transport equation (3.18) as

vµ∇µzA =
1

2
δABzB∇µv

µ −mΣ̄Aγ
µ∇µΣBzB,

vµ∇µz̄B =
1

2
z̄AδAB∇µv

µ −mz̄AΣ̄Aγ
µ∇µΣB.

(3.48)

Using the identities

Σ̄Aγ
µΣB =

1

m
δABv

µ ⇒ δAB∇µv
µ = m

(
∇µΣ̄Aγ

µΣB + Σ̄Aγ
µ∇µΣB

)
, (3.49)

we obtain

vµ∇µzA = iMABzB,

vµ∇µz̄B = −iz̄AMAB,
(3.50)

where the 2× 2 hermitian matrix M has components

MAB =
im

2

(
Σ̄Aγ

µ∇µΣB −∇µΣ̄Aγ
µΣB

)
. (3.51)

Using the properties of the eigenspinors, given in Eqs. (3.24)-(3.27), the matrix
components MAB can be rewritten in the following way:

MAB =
i

2
vµ
(
Σ̄A∇µΣB −∇µΣ̄AΣB

)
− e

4
FµνΣ̄Aσ

µνΣB. (3.52)
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3.3. Semiclassical expansion

Here, the first term represents the Berry connection, and the second term repre-
sents the so-called “no-name” term. The “no-name” term was first introduced in
a general context by Littlejohn and Flynn in Ref. [117], and its role in the WKB
approximation to the Dirac equation was discussed in Ref. [162].

We can write Eq. (3.50) in a more compact form by introducing the following
2-dimensional unit complex vectors:

z =

(
z1

z2

)
, z̄ =

(
z̄1 z̄2

)
. (3.53)

We also introduce the following notation for the Berry connection and the spin
tensor:

BµAB(x, v) =
i

2

(
Σ̄A∇µΣB −∇µΣ̄AΣB

)
,

SµνAB (x, v) =
1

2
Σ̄Aσ

µνΣB,
(3.54)

where σµν = i
2
(γµγν − γνγµ). The Berry connection Bµ is a 2 × 2 matrix-valued

one-form, while Sµν is a 2 × 2 matrix-valued tensor. Depending on the context,
we will sometimes omit the matrix indices A,B. Then, Eq. (3.50) can be written
as

vµ∇µz = i
(
vµBµ −

e

2
FµνS

µν
)
z,

vµ∇µz̄ = −iz̄
(
vµBµ −

e

2
FµνS

µν
)
.

(3.55)

If we restrict z to a worldline xµ(τ), which is a solution of the ray equations (3.37)
and (3.38), we can write

ż = i
(
vµBµ −

e

2
FµνS

µν
)
z,

˙̄z = −iz̄
(
vµBµ −

e

2
FµνS

µν
)
.

(3.56)

These equations describe the evolution of the spin degree of freedom along the
worldline xµ(τ).

It is important to emphasize how the covariant derivatives act on the eigenspinors
ΣA, which are defined on the Lagrangian submanifold. Using the horizontal and
vertical derivatives defined in Appendix A.1, we obtain

vµ∇µΣA = vµ∇µ [ΣA(x, v)]

= vµ
(

h

∇µΣA

)
(x, v) + vµ (∇µvν)

(
v

∇νΣA

)
(x, v)

= vµ
h

∇µΣA + evµFµν

v

∇νΣA.

(3.57)
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The expression for the Berry connection becomes

vµBµAB =
i

2
vµ
(

Σ̄A

h

∇µΣB −
h

∇µΣ̄AΣB

)
+
ie

2
vµFµν

(
Σ̄A

v

∇νΣB −
v

∇νΣ̄AΣB

)
.

(3.58)

3.3.5. Geometric definition of the Berry connection

A general discussion about the geometry of the transport equation arising from the
WKB approximation of multicomponent wave equations can be found in Ref. [76]
(see also Refs. [117, 75, 41]). Here, we specialize this discussion to the case of
the Dirac equation, focusing on the geometry of the Berry connection and the
corresponding Berry curvature.

The WKB approximation of multicomponent wave equations generally results in
a Hamilton-Jacobi equation for the phase S and a transport equation for the am-
plitude ψ0. In the present case, the Hamilton-Jacobi equation for S was discussed
in Sec. 3.3.3, and the transport equation for ψ0 is split into two parts. The first
one describes the evolution of the intensity I0 and is given in Eq. (3.18), while
the second one describes the evolution of the spin degree of freedom, as presented
in Eq. (3.56).

Since the amplitude ψ0 is defined on the Lagrangian submanifold, the Berry
connection has to be defined as a connection on an appropriate 4-spinor bundle
with the base space the Lagrangian submanifold. Furthermore, the amplitude ψ0

is an eigenspinor of D, with eigenvalue λ = 0, so the appropriate bundle is then the
λ-eigenbundle of the 4-spinor bundle with base space the Lagrangian submanifold.
Then, the Berry connection has to be a Lie algebra-valued one-form defined on
the Lagrangian submanifold. This is clearly not the case for Bµ, which is a Lie
algebra-valued one-form on spacetime.

A connection one-form defined on the Lagrangian submanifold has to be con-
tracted with a tangent vector to the Lagrangian submanifold. By construction, the
tangent vectors to the Lagrangian submanifold are the Hamiltonian vector fields.
Working in (x, v) coordinates, the Hamiltonian vector field corresponding to the
ray equations (3.37) and (3.38) is

XH = vµ
∂

∂xµ
+
(
Γρνµvρv

ν + evνFνµ

) ∂

∂vµ
. (3.59)
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We can obtain the appropriate definition of the Berry connection as follows. Using
the definition of the horizontal derivative, we can rewrite Eq. (3.58) as

vµBµAB =
i

2
vµ
(
Σ̄A∇µΣB −∇µΣ̄AΣB

)
+
i

2

(
Γρνµvρv

ν + evνFνµ

)(
Σ̄A

v

∇µΣB −
v

∇µΣ̄AΣB

)
= BAB(XH),

(3.60)

where

BAB =
i

2

(
Σ̄A∇µΣB −∇µΣ̄AΣB

)
dxµ +

i

2

(
Σ̄A

v

∇µΣB −
v

∇µΣ̄AΣB

)
dvµ (3.61)

are the components of the appropriately defined Berry connection, which is a
Lie algebra-valued one-form defined on the Lagrangian submanifold. The corre-
sponding Lie algebra is u(2), since the one-form B takes values in the space of
two-dimensional Hermitian matrices.

The curvature of the connection B can be calculated using the standard defini-
tion [51, Sec. 2.3.2]

F = dB− i[B,B]. (3.62)

This is the Berry curvature, and it plays an important role in the spin Hall ef-
fect correction to the ray equations, as we will discuss in the next sections. In
coordinates, the expression of the Berry curvature is

F = (Fxx)µνdx
µdxν + (Fpx)

ν
µ dx

µdvν + (Fxp)
µ
νdvµdx

ν + (Fpp)µνdv
µdvν , (3.63)

where

(Fxx)µν =
∂ (Bx)ν
∂xµ

−
∂ (Bx)µ
∂xν

− i [(Bx)µ, (Bx)ν ] , (3.64)

(Fpp)
µν =

∂ (Bp)
ν

∂vµ
− ∂ (Bp)

µ

∂vν
− i [(Bp)

µ, (Bp)
ν ] , (3.65)

(Fpx)
ν
µ = − (Fxp)

ν
µ =

∂ (Bp)
ν

∂xµ
−
∂ (Bx)µ
∂vν

− i [(Bx)µ, (Bp)
ν ] , (3.66)

and

(Bx)µAB =
i

2

(
Σ̄A∇µΣB −∇µΣ̄AΣB

)
, (3.67)

(Bp)
µ
AB =

i

2

(
Σ̄A

v

∇µΣB −
v

∇µΣ̄AΣB

)
. (3.68)
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Using the properties of the eigenspinors, given in Eqs. (3.24)-(3.27), the compo-
nents of the Berry curvature can be explicitly computed, as shown in Appendix
A.5:

(Fxx)µν = −1

2
RµναβS

αβ +
1

m2
vρvσΓραµΓσβνS

αβ, (3.69)

(Fpp)
µν =

1

m2
Sµν , (3.70)

(Fpx)
ν
µ = − (Fxp)

ν
µ = − 1

m2
vρΓ

ρ
µαS

αν . (3.71)

3.4. Effective dispersion relation and spin-orbit
coupling

In the standard WKB treatment, the equations for each individual order in ~ are
set to zero. The resulting ray equations (3.37) and (3.38) are used for determining
the transport of the spin degree of freedom, through Eq. (3.56). However, with
this approach there is no backreaction from the dynamics of z(τ) on the rays
xµ(τ) and v(τ). In order to properly take into account the spin-orbit coupling
between the spin dynamics and the ray dynamics, we derive here an effective
dispersion relation, containing O(~1) corrections to the dispersion relation given
in Eq. (3.20). This represents a weaker condition when compared to the standard
WKB treatment, where terms of different order in ~ are set to zero individually.
Instead, here we only require that the combined sum of the terms of order ~0

and ~1 vanishes. The effective dispersion relation is obtained by taking the Euler-
Lagrange equations (3.10)-(3.12), but without treating terms of different orders
in ~ separately. The effective dispersion relation is then treated as an effective
Hamilton-Jacobi equation, and the resulting ray equations contain spin-dependent
correction terms, describing the gravitational spin Hall effect of Dirac particles.

3.4.1. Effective dispersion relation

Starting with Eqs. (3.10)-(3.12), we can write

ψ̄ (γµvµ +m)ψ − i~ψ̄γµ∇µψ = O(~2), (3.72)

ψ̄ (γµvµ +m)ψ + i~∇µψ̄γ
µψ = O(~2). (3.73)

By adding these two equations, we obtain

vµψ̄γ
µψ +mψ̄ψ − i~

2

(
ψ̄γµ∇µψ −∇µψ̄γ

µψ
)

= O(~2) (3.74)
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The Dirac current j1
µ = ψ̄γµψ+O(~2) can be rewritten in a different form. Using

Eqs. (3.10) and (3.11), we can write

ψ̄γµ (mψ) = ψ̄γµ (−γνvνψ + i~γν∇νψ) +O(~2)(
ψ̄m
)
γµψ =

(
−ψ̄γνvν − i~∇νψ̄γ

ν
)
γµψ +O(~2)

(3.75)

Adding these two equations, we obtain

j1
µ = − 1

2m
vνψ̄ (γµγν + γνγµ)ψ +

i~
2m

(
ψ̄γµγν∇νψ −∇νψ̄γ

νγµψ
)

+O(~2)

=
1

m
vµψ̄ψ − i~

2m
gµν
(
ψ̄∇νψ −∇νψ̄ψ

)
+

~
2m
∇ν

(
ψ̄σµνψ

)
+O(~2).

(3.76)

Using the above form of j1
µ, Eq. (3.74) can be rewritten as

1

m
ψ̄ψvµv

µ − i~
2m

vµ
(
ψ̄0∇µψ0 −∇µψ̄0ψ0

)
+

~
2m

vµ∇ν

(
ψ̄0σ

µνψ0

)
− i~

2

(
ψ̄0γ

µ∇µψ0 −∇µψ̄0γ
µψ0

)
= −mψ̄ψ +O(~2).

(3.77)

We expand the O(~) terms using Eq. (3.29):

i~
2m

vµ
(
ψ̄0∇µψ0 −∇µψ̄0ψ0

)
=
i~I0

2m
vµ
(
z†∇µz −∇µz

†z
)

+
~I0

m
vµz†Bµz. (3.78)

Using Eqs. (3.13) and (3.14), we can write:

~
2m

vµ∇ν

(
ψ̄0σ

µνψ0

)
=

~
2m
∇ν

(
vµψ̄0σ

µνψ0

)
− ~

2m
ψ̄0σ

µνψ∇νvµ

=
i~
4m
∇ν

(
vµψ̄0γ

µγνψ0 − vµψ̄0γ
νγµψ0

)
+
e~
4m

Fµνψ̄0σ
µνψ

= − i~
4m
∇ν

(
mψ̄0γ

νψ0 −mψ̄0γ
νψ0

)
+
e~
4m

Fµνψ̄0σ
µνψ

=
e~I0

2m
Fµνz

†Sµνz.

(3.79)

We also have

i~
2

(
ψ̄0γ

µ∇µψ0 −∇µψ̄0γ
µψ0

)
=
i~I0

2m
vµ
(
z†∇µz −∇µz

†z
)

+
~I0

m
vµz†Bµz −

e~I0

2m
Fµνz

†Sµνz.

(3.80)

Combining the above equations, we obtain the effective dispersion relation

1

2
vµv

µ − i~
2
vµ (z̄∇µz −∇µz̄z)− ~vµz̄Bµz +

e~
2
Fµν z̄S

µνz = −m
2

2
. (3.81)
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3. Gravitational spin Hall effect of Dirac fields

3.5. Effective ray equations

In this section we derive effective ray equations containing spin-dependent cor-
rection terms. These equations are meant to describe the gravitational spin Hall
effect of electrons. We start with the effective dispersion relation (3.81) and treat
it as an effective Hamilton-Jacobi equation for the phase function S.

1

2
gαβ (kα + eAα) (kβ + eAβ)− i~

2
(z̄ż − ˙̄zz)

− ~ (kα + eAα) z̄Bαz +
e~
2
Fαβ z̄S

αβz = −m
2

2
+O(~2).

(3.82)

We define the corresponding Hamiltonian function

H(x, p, z, z̄, ż, ˙̄z) =
1

2
gαβ (pα + eAα) (pβ + eAβ)− i~

2
(z̄ż − ˙̄zz)

− ~ (pα + eAα) z̄Bαz +
e~
2
Fαβ z̄S

αβz,

(3.83)

and we solve for the phase function S as in Sec. 3.3.3:

S(xα(τ1), pα(τ1), z(τ1), z̄(τ1)) =

∫ τ1

τ0

dτL(x, ẋ, p, ṗ, z, ż, z̄, ˙̄z) + const., (3.84)

where the Lagrangian is

L = ẋαpα −
1

2
gαβ (pα + eAα) (pβ + eAβ) +

i~
2

(z̄ż − ˙̄zz)

+ ~ (pα + eAα) z̄Bαz −
e~
2
Fαβ z̄S

αβz.

(3.85)

Note that the Lagrangian is a scalar function defined on T (T ∗M × C2), and the
effective ray dynamics is given by the Euler-Lagrange equations

∂L

∂u
− d

dτ

∂L

∂u̇
= 0, (3.86)

where u ∈ {xµ, pµ, z, z̄}. The Euler-Lagrange equations are

ẋµ = vµ − ~z̄Bµz − ~vαz̄
∂Bα

∂pµ
z +

e~
2
Fαβ z̄

∂Sαβ

∂pµ
z, (3.87)

ṗµ = −1

2
gαβ,µvαvβ − evαAα,µ + ~vαz̄Bα,µz (3.88)

+ e~Aα
,µ z̄Bαz −

e~
2
z̄(FαβS

αβ),µz,
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ż = i
(
vµBµ −

e

2
FµνS

µν
)
z, (3.89)

˙̄z = −iz̄
(
vµBµ −

e

2
FµνS

µν
)
. (3.90)

These equations contain spin-dependent correction terms of O(h1) to the ray equa-
tions obtained in Eqs. (3.35) and (3.36). The O(h1) terms reflect the spin-orbit
coupling between the external and internal degrees of freedom, resulting in the
gravitational spin Hall effect of localized Dirac wave packets.

3.5.1. Noncanonical coordinates

The effective ray equations (3.87)-(3.90) can also be formulated as a Hamiltonian
system on the symplectic manifold T ∗M ×C2. Considering canonical coordinates
(x, p, z, z̄), the corresponding Hamiltonian function is

H(x, p, z, z̄) =
1

2
gαβ (pα + eAα) (pβ + eAβ)− ~ (pα + eAα) z̄Bαz +

e~
2
Fαβ z̄S

αβz,

(3.91)
and the symplectic 2-form is

Ω = dxα ∧ dpα + i~dz ∧ dz̄. (3.92)

In this symplectic setup, Hamilton’s equations are [1, Sec. 3.3]

Ω(XH , · ) = dH, (3.93)

where the Hamiltonian vector field XH can be expressed in coordinate form as

XH = ẋµ
∂

∂xµ
+ ṗµ

∂

∂pµ
+ ż

∂

∂z
+ ˙̄z

∂

∂z̄
. (3.94)

By solving for the components of the Hamiltonian vector field, we obtain the
effective ray equations (3.87)-(3.90) in the following form:

ẋµ =
∂H

∂pµ
, ṗµ = − ∂H

∂xµ
,

ż = − i
~
∂H

∂z̄
, ˙̄z =

i

~
∂H

∂z
.

(3.95)

As a first step towards noncanonical coordinates, we rewrite the Hamiltonian, sym-
plectic form and effective ray equations in the new coordinate system (x, v, z, z̄),
where vµ = pµ + eAµ. In these new coordinates, the Hamiltonian is

H(x, v, z, z̄) =
1

2
gαβvαvβ − ~vαz̄Bαz +

e~
2
Fαβ z̄S

αβz. (3.96)
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3. Gravitational spin Hall effect of Dirac fields

Applying the standard coordinate transformation rules for 2-forms, the symplectic
form can be expressed in the new coordinates (x, v, z, z̄) as

Ω = eFαβdx
αdxβ + dxα ∧ dvα + i~dz ∧ dz̄. (3.97)

Using Eq. (3.93), we can obtain the effective ray equations as the components of
the Hamiltonian vector field in the new coordinates:

ẋµ =
∂H

∂vµ
, v̇µ = − ∂H

∂xµ
+ eẋνFνµ,

ż = − i
~
∂H

∂z̄
, ˙̄z =

i

~
∂H

∂z
.

(3.98)

In order to eliminate the Berry connection from the Hamiltonian, we perform the
following coordinate transformation:

Xµ = xµ + ~z̄(Bp)
µz, (3.99)

Pµ = vµ − ~z̄(Bx)µz − e~Fµν z̄(Bp)
νz. (3.100)

The Hamiltonian function becomes

H(xµ, vµ, z, z̄) = H(Xµ − ~z̄(Bp)
µz, Pµ + ~z̄(Bx)µz + e~Fµν z̄(Bp)

νz, z, z̄)

= H(Xµ, Pµ, z, z̄)− ~
∂H

∂Xµ
z̄(Bp)

µz

+ ~
∂H

∂Pµ
[z̄(Bx)µz + eFµν z̄(Bp)

νz] +O(~2).

(3.101)

Thus, the Hamiltonian in the noncanonical coordinates (X,P, z, z̄) is

H(X,P, z, z̄) =
1

2
gαβPαPβ +

e~
2
Fαβ z̄S

αβz +O(~2). (3.102)

Applying the same coordinate transformation to the symplectic form, we obtain:

Ω = eFαβdX
αdXβ + dXα ∧ dPα + i~dz ∧ dz̄

− ~z̄
[
∂ (Bx)β
∂Xα

− ∂ (Bx)α
∂Xβ

]
zdXαdXβ − ~z̄

[
∂ (Bp)

β

∂Xα
− ∂ (Bx)α

∂Pβ

]
zdXαdPβ

− ~z̄
[
∂ (Bx)β
∂Pα

− ∂ (Bp)
α

∂Xβ

]
zdPαdX

β − ~z̄

[
∂ (Bp)

β

∂Pα
− ∂ (Bp)

α

∂Pβ

]
zdPαdPβ

+ ~z̄(Bx)αdX
α ∧ dz + ~(Bx)αzdX

α ∧ dz̄
+ ~z̄(Bp)

αdPα ∧ dz + ~(Bp)
αzdPα ∧ dz̄ +O(~2).

(3.103)
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The effective ray equations in noncanonical coordinates (X,P, z, z̄) are

Ẋµ =
∂H

∂Pµ
+ ~Ẋν z̄

[
∂ (Bp)

µ

∂Xν
− ∂ (Bx)ν

∂Pµ

]
z

+ ~Ṗν z̄
[
∂ (Bp)

µ

∂Pν
− ∂ (Bp)

ν

∂Pµ

]
z + ~z̄(Bp)

µż + ~ ˙̄z(Bp)
µz (3.104)

Ṗµ = − ∂H

∂Xµ

+ eẊνFνµ − ~Ẋν z̄

[
∂ (Bx)µ
∂Xν

− ∂ (Bx)ν
∂Xµ

]
z

− ~Ṗν z̄
[
∂ (Bx)µ
∂Pν

− ∂ (Bp)
ν

∂Xµ

]
z − ~z̄(Bx)µż − ~ ˙̄z(Bx)µz (3.105)

ż = i
[
Ẋα(Bx)α + Ṗα(Bp)

α − e

2
FµνS

µν
]
z, (3.106)

˙̄z = −iz̄
[
Ẋα(Bx)α + Ṗα(Bp)

α − e

2
FµνS

µν
]
. (3.107)

Inserting the expressions of ż and ˙̄z into Eqs. (3.104) and (3.105), we obtain:

Ẋµ =
∂H

∂Pµ
+ ~Ẋν z̄(Fpx)

µ
ν z + ~Ṗν z̄(Fpp)

νµz − ie~
2
z̄[(Bp)

µ,FαβS
αβ]z (3.108)

Ṗµ = − ∂H

∂Xµ

+ eẊνFνµ − ~Ẋν z̄(Fxx)νµz − ~Ṗν z̄(Fxp)
ν
µz +

ie~
2
z̄[(Bx)µ,FαβS

αβ]z.

(3.109)

Since the ray equations are correct up to error terms of O(~2), we can replace
Ẋµ = P µ + O(~1) and Ṗµ = ΓαβµPαP

β + eP νFνµ + O(~1) on the right hand side
in the above equations. Furthermore, using the expressions for the components of
the Berry curvature given in Eqs. (3.69)-(3.71), we can simplify some terms:

~Ẋν z̄(Fpx)
µ
ν z + ~Ṗν z̄(Fpp)

νµz = ~P ν z̄(Fpx)
µ
ν z + ~ΓρσνPρP

σz̄(Fpp)
νµz

+ e~PαFαν z̄(Fpp)
νµz +O(~2)

= − ~
m2

ΓρνσPρP
ν z̄Sσµz +

~
m2

ΓρσνPρP
σz̄Sνµz

+
e~
m2

PαFαν z̄S
νµz +O(~2)

=
e~
m2

PαFαν z̄S
νµz +O(~2).

(3.110)

79



3. Gravitational spin Hall effect of Dirac fields

~Ẋν z̄(Fxx)νµz + ~Ṗν z̄(Fxp)
ν
µz = ~P ν z̄(Fxx)νµz + ~ΓρσνPρP

σz̄(Fxp)
ν
µz

+ e~PαFαν z̄(Fxp)
ν
µz +O(~2)

= −~
2
P νRνµαβ z̄S

αβz +
~
m2

P νPρPσΓρανΓ
σ
βµz̄S

αβz

+
~
m2

PρP
σPδΓ

ρ
σνΓ

δ
µαz̄S

ανz

+
e~
m2

PαPρΓ
ρ
µβFαν z̄S

βνz +O(~2)

= −~
2
P νRνµαβ z̄S

αβz +
e~
m2

PαPρΓ
ρ
µβFαν z̄S

βνz +O(~2).

(3.111)

Thus, the effective ray equations in noncanonical coordinates can be written in
the simplified form

Ẋµ = P µ +
e~
m2

PαFαν z̄S
νµz +

e~
2
Fαβ z̄

(
v

∇µSαβ − i[(Bp)
µ, Sαβ]

)
z (3.112)

Ṗµ = ΓαβµPαP
β + eẊνFνµ +

~
2
P νRνµαβ z̄S

αβz +
e~
m2

PαPρΓ
ρ
µβFαν z̄S

βνz

− e~
2
Fαβ,µz̄S

αβz − e~
2
Fαβ z̄

(
Sαβ,µ − i[(Bx)µ, S

αβ]
)
z, (3.113)

ż = i
(
PαBα −

e

2
FµνS

µν
)
z, (3.114)

˙̄z = −iz̄
(
PαBα −

e

2
FµνS

µν
)
. (3.115)

In Eqs. (3.112) and (3.113), the terms involving the derivatives of Sαβ and the
“no-name” term FαβS

αβ can be rewritten as in Appendix A.6. Furthermore, in
the absence of an external electromagnetic field Fαβ, Eqs. (3.112) and (3.113) take
the same form as the Mathisson-Papapetrou-Dixon equations at linear order in
spin. This is in agreement with the results of the WKB analysis presented in
Refs. [9, 147].
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A. Appendix

A.1. Horizontal and vertical derivatives on T ∗M

Let (xµ, pµ) be canonical coordinates on T ∗M . Considering fields defined on T ∗M ,
such as uα(x, p) and vα(x, p), the horizontal and vertical derivatives are defined as
follows [153, Sec. 3.5]:

v

∇µuα =
∂

∂pµ
uα, (A.1a)

h

∇µuα =
∂

∂xµ
uα − Γσαµuσ + Γσµρpσ

∂

∂pρ
uα, (A.1b)

v

∇µvα =
∂

∂pµ
vα, (A.2a)

h

∇µv
α =

∂

∂xa
vα + Γασµv

σ + Γσµρpσ
∂

∂pρ
vα. (A.2b)

The extension to general tensor fields on T ∗M is straightforward. Note that, in
contrast to Ref. [153, Sec. 3.5], we have the opposite sign for the last term in
the definition of the horizontal derivative. This is because our fields, uα(x, p) and
vα(x, p), are defined on T ∗M , and not on TM , as is the case in the reference
mentioned before. The horizontal and vertical derivatives can also be extended to
spinor fields Ψ(x, p) defined on T ∗M :

v

∇µΨ =
∂

∂pµ
Ψ, (A.3)

h

∇µΨ =
∂

∂xµ
Ψ− i

4
ω ab
µ σabΨ + Γσµρpσ

∂

∂pρ
Ψ, (A.4)

We can make use of the following properties:

[
h

∇µ,
v

∇ν ] = 0, [
v

∇µ,
v

∇ν ] = 0,

h

∇µpα =
h

∇µgαβ =
v

∇µgαβ = 0.

(A.5)
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A. Appendix

A.2. Variation of the action

Here, we derive the Euler-Lagrange equations that correspond to the action

J =

∫
M

d4x
√
gL, (A.6)

where the Lagrangian density is of the following form:

L = L
(
S(x),∇µS(x),Aα[x,∇S(x)],∇µ {Aα[x,∇S(x)]} ,

A∗α[x,∇S(x)],∇µ {A∗α[x,∇S(x)]}
)
.

(A.7)

Here, S(x) is an independent field, while Aα and A∗α cannot be considered inde-
pendent, since they depend on ∇µS. Following Hawking and Ellis [102, p. 65], we
define the variation of a field Ψi as a one-parameter family of fields Ψi(u, x), with
u ∈ (−ε, ε) and x ∈M . We use the following notation:

∂Ψi(u, x)

∂u

∣∣∣∣∣
u=0

= ∆Ψi. (A.8)

Note that the derivative with respect to the parameter u commutes with the co-
variant derivative, so we have:

d

du
∇µS(u, x) = ∇µ

(
∂S

∂u

)
, (A.9)

d

du
Aα (u, x,∇S(u, x)) =

∂Aα
∂u

+
∂Aα
∂∇νS

∇ν

(
∂S

∂u

)
, (A.10)

d

du
∇µ [Aα (u, x,∇S(u, x))] = ∇µ

[
d

du
Aα (u, x,∇S(u, x))

]
= ∇µ

[
∂Aα
∂u

+
∂Aα
∂∇νS

∇ν

(
∂S

∂u

)]
.

(A.11)

We consider the variation of the action, taking special care when applying the
chain rule:

0 =
dJ

du

∣∣∣∣∣
u=0

=

∫
M

d4x
√
g

{
∂L

∂S
∆S +

∂L

∂∇µS
∆ (∇µS)

+
∂L

∂Aα

[
∆Aα +

∂Aα
∂∇µS

∇µ (∆S)

]
+

∂L

∂∇µAα
∇µ

[
∆Aα +

∂Aα
∂∇νS

∇ν (∆S)

]
+

∂L

∂A∗α

[
∆A∗α +

∂A∗α

∂∇µS
∇µ (∆S)

]
+

∂L

∂∇µA∗α
∇µ

[
∆A∗α +

∂A∗α

∂∇νS
∇ν (∆S)

]}
.

(A.12)
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Integrating by parts, and assuming the boundary terms vanish, we obtain:

0 =
dJ

du

∣∣∣∣∣
u=0

=

∫
M

d4x
√
g

{(
∂L

∂Aα
−∇µ

∂L

∂∇µAα

)
∆Aα +

(
∂L

∂A∗α
−∇µ

∂L

∂∇µA∗α

)
∆A∗α

+
∂L

∂S
∆S −∇µ

[
∂L

∂∇µS
+

∂Aα
∂∇µS

(
∂L

∂Aα
−∇ν

∂L

∂∇νAα

)
+
∂A∗α

∂∇µS

(
∂L

∂A∗α
−∇ν

∂L

∂∇νA∗α

)]
∆S

}
.

(A.13)

Since the above equation must be satisfied for all variations ∆S, ∆Aα, and ∆A∗α,
we obtain the following Euler-Lagrange equations:

∂L

∂A∗α
−∇µ

∂L

∂∇µA∗α
= O(ε2), (A.14)

∂L

∂Aα
−∇µ

∂L

∂∇µAα
= O(ε2), (A.15)

∂L

∂S
−∇µ

[
∂L

∂∇µS
+

∂Aα
∂∇µS

(
∂L

∂Aα
−∇ν

∂L

∂∇νAα

)
+
∂A∗α

∂∇µS

(
∂L

∂A∗α
−∇ν

∂L

∂∇νA∗α

)]
= O(ε2).

(A.16)

Furthermore, Eq. (A.16) can be simplified by using Eqs. (A.14) and (A.15). Thus,
as a final result, we have the following set of Euler-Lagrange equations:

∂L

∂A∗α
−∇µ

∂L

∂∇µA∗α
= O(ε2),

∂L

∂Aα
−∇µ

∂L

∂∇µAα
= O(ε2),

∂L

∂S
−∇µ

∂L

∂∇µS
= O(ε2).

(A.17)

A.3. Berry curvature - electromagnetic case

In order to calculate the Berry curvature terms (2.114), it is enough to use a tetrad
{tα, pα, vα, wα}, where tα is a future-oriented timelike vector field representing a
family of observers and pα is a generic vector, not necessarily null, representing
the momentum of a point particle (ray). The vectors vα and wα are real spacelike
vectors related to mα and m̄α by the following relations:

mα =
1√
2

(vα + iwα) , m̄α =
1√
2

(vα − iwα) . (A.18)
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The elements of the tetrad {tα, pα, vα, wα} satisfy the following relations:

tαt
α = −1, pαp

α = κ, tαp
α = −εω, vαv

α = wαw
α = 1,

tαv
α = tαwα = pαv

α = pαw
α = vαw

α = 0.
(A.19)

Note that the vectors vα and wα depend of pµ through the orthogonality condition,
while tα is independent of pµ. We start by computing the vertical derivatives of
the vectors vα and wα. Using the tetrad, we can write:

v

∇µvα =
∂vα

∂pµ
= c1

µtα + c2
µpα + c3

µvα + c4
µwα, (A.20)

v

∇µwα =
∂wα

∂pµ
= d1

µtα + d2
µpα + d3

µvα + d4
µwα, (A.21)

where ci
µ and di

µ are unknown vector fields that need to be determined. Using
the properties from Eq. (A.19), we obtain

v

∇µvα =
εω

ε2ω2 + κ
vµtα − 1

ε2ω2 + κ
vµpα + c4

µwα,

v

∇µwα =
εω

ε2ω2 + κ
wµtα − 1

ε2ω2 + κ
wµpα + d3

µvα.
(A.22)

Applying the same arguments to the terms ∇µvα and ∇µwα, we also obtain

∇µvα =− 1

ε2ω2 + κ
(εωpσ∇µv

σ + κtσ∇µv
σ) tα

+
1

ε2ω2 + κ
(pσ∇µv

σ − εωtσ∇µv
σ) pα + f4µwα,

∇µwα =− 1

ε2ω2 + κ
(εωpσ∇µw

σ + κtσ∇µw
σ) tα

+
1

ε2ω2 + κ
(pσ∇µw

σ − εωtσ∇µw
σ) pα + g3µvα.

(A.23)

Note that the fields c4µ, d3µ, f4µ, and g3µ are undetermined within this approach,
but this is not a problem, because they do not affect the Berry curvature.
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A.3.1. Fpp

We compute (Fpp)
νµ by using Eq. (A.22) and setting κ = 0. Since the vertical

derivatives commute (see Eq. (A.5)), we can write

(Fpp)
νµ = i

(
v

∇µm̄α
v

∇νmα −
v

∇νm̄α
v

∇µmα

)
=

v

∇νvα
v

∇µwα −
v

∇µvα
v

∇νwα

=
2

ε2ω2
v[νwµ]

=
2i

ε2ω2
m[νm̄µ].

(A.24)

A.3.2. Fxx

We have

(Fxx)νµ = i
(
∇µm̄

α∇νmα −∇νm̄
α∇µmα + m̄α∇[µ∇ν]mα −mα∇[µ∇ν]m̄

α
)
.

(A.25)

The last two terms can be expressed in terms of the Riemann tensor:

i
(
m̄α∇[µ∇ν]mα −mα∇[µ∇ν]m̄

α
)

= −iRαβµνm
αm̄β. (A.26)

The first two terms can be computed using Eq. (A.23) and κ = 0:

(F̃xx)νµ = i
(
∇µm̄

α∇νmα −∇νm̄
α∇µmα

)
= ∇νv

α∇µwα −∇µv
α∇νwα

=
1

ε2ω2

(
pσ∇µv

σpρ∇νw
ρ − pσ∇νv

σpρ∇µw
ρ

− εωpσ∇µv
σtρ∇νw

ρ + εωpσ∇νv
σtρ∇µw

ρ

− εωtσ∇µv
σpρ∇νw

ρ + εωtσ∇νv
σpρ∇µw

ρ
)

=
i

ε2ω2

(
pσ∇µm

σpρ∇νm̄
ρ − pσ∇νm

σpρ∇µm̄
ρ

− εωpσ∇µm
σtρ∇νm̄

ρ + εωpσ∇νm
σtρ∇µm̄

ρ

− εωtσ∇µm
σpρ∇νm̄

ρ + εωtσ∇νm
σpρ∇µm̄

ρ
)
.

(A.27)
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A.3.3. Fpx and Fxp

Since (Fpx)
µ
ν = − (Fxp)

µ
ν , it is enough to compute only one term. Using Eqs. (A.22)

and (A.23), and setting κ = 0, we obtain

(Fpx)
µ
ν = i

(
v

∇µm̄α∇νmα −∇νm̄
α
v

∇µmα

)
= ∇νv

α
v

∇µwα −
v

∇µvα∇νwα

=
1

ε2ω2

[
(pσ∇νw

σ − εωtσ∇νw
σ) vµ − (pσ∇νv

σ − εωtσ∇νv
σ)wµ

]
=

i

ε2ω2

[
(pσ∇νm̄

σ − εωtσ∇νm̄
σ)mµ − (pσ∇νm

σ − εωtσ∇νm
σ) m̄µ

]
.

(A.28)

A.4. Coordinate transformation

The substitution from Eqs. (2.108) and (2.109) can be obtained, up to terms of
order ε2, as a linearization of the following composition of changes of coordinates on
the cotangent bundle T ∗M . Consider the family of diffeomorphisms (Φε) generated
by the vector field on M

Y = ism̄α
v

∇µmα∂xµ , (A.29)

that is to say
d

dε
Φε(x) = Y (Φε(x)) with Φ0(x) = x. (A.30)

By construction, the Taylor expansion in a coordinate chart of Φε at order ε1 leads
to Eq. (2.108). Φε naturally lifts to the cotangent bundle using the pullback Φ∗ε :

Φ∗ε : (x, p) 7→ (Φε(x), p ◦ dΦ−1
ε |Φε(x)). (A.31)

Note that the choice of the lift is not unique. The mapping Φ∗ε is, at order one in
ε, in coordinates,

(xµ, pµ) 7→ (xµ + isεm̄α
v

∇µmα, pµ − iεspβ∂xµ(m̄α
v

∇βmα)). (A.32)

Consider next the translation of the momentum variable defined by

Ψε : (x, p) 7→ (x, p− εσ), (A.33)

where σ = is(m̄α∇µmα+pβ∂xµ(m̄α
v

∇βmα))dxµ. The linearization in ε of the diffeo-
morphism Ψε ◦Φε

∗ provides by construction the change of variables in Eqs. (2.108)
and (2.109).
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A.5. Berry curvature - Dirac case

Using the definition of the covariant derivative for spinor fields, given in Eq. (3.2),
we can rewrite the components of the Berry curvature as

(Fxx)µν = ∇µ (Bx)ν −∇ν (Bx)µ − i [(Bx)µ, (Bx)ν ] , (A.34)

(Fpp)
µν =

v

∇µ (Bp)
ν −

v

∇ν (Bp)
µ − i [(Bp)

µ, (Bp)
ν ] , (A.35)

(Fpx)
ν
µ = − (Fxp)

ν
µ = ∇µ (Bp)

ν −
v

∇ν (Bx)µ − i [(Bx)µ, (Bp)
ν ] . (A.36)

We insert into the above equations the definition of the components of the Berry
connection

(Bx)µAB =
i

2

(
Σ̄A∇µΣB −∇µΣ̄AΣB

)
, (A.37)

(Bp)
µ
AB =

i

2

(
Σ̄A

v

∇µΣB −
v

∇µΣ̄AΣB

)
, (A.38)

and we use the orthogonality properties of the eigenspinors:

Σ̄AΣB = δAB ⇒

{
∇µΣ̄AΣB + Σ̄A∇µΣB = 0,
v

∇µΣ̄AΣB + Σ̄A

v

∇µΣB = 0.
(A.39)

We obtain

(Fxx)µνAB = iΣ̄A(∇[µ∇ν]ΣB)− i(∇[µ∇ν]Σ̄A)ΣB (A.40)

+ 2i(∇[µΣ̄A)(I4 − ΣCΣ̄C)(∇ν]ΣB), (A.41)

(Fpp)
µν
AB = 2i(

v

∇[µΣ̄A)(I4 − ΣCΣ̄C)(
v

∇ν]ΣB), (A.42)

(Fpx)
ν
µ AB = − (Fxp)

ν
µAB = 2i(∇[µΣ̄A)(I4 − ΣCΣ̄C)(

v

∇ν]ΣB). (A.43)

Furthermore, using the resolution of identity given in Eq. (3.27), we obtain

(Fxx)µνAB = iΣ̄A(∇[µ∇ν]ΣB)− i(∇[µ∇ν]Σ̄A)ΣB (A.44)

− 2i(∇[µΣ̄A)ΠCΠ̄C(∇ν]ΣB), (A.45)

(Fpp)
µν
AB = −2i(

v

∇[µΣ̄A)ΠCΠ̄C(
v

∇ν]ΣB), (A.46)

(Fpx)
ν
µ AB = − (Fxp)

ν
µAB = −2i(∇[µΣ̄A)ΠCΠ̄C(

v

∇ν]ΣB). (A.47)

The commutator of spinor covariant derivatives can be expressed in terms of the
Riemann tensor as

(∇µ∇ν −∇ν∇µ)Ψ = −1

4
Rµνρσγ

ργσΨ,

(∇µ∇ν −∇ν∇µ)Ψ̄ =
1

4
RµνρσΨ̄γργσ.

(A.48)
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Using these relations, we can write

i(Σ̄A∇[µ∇ν]ΣB −∇[µ∇ν]Σ̄AΣB) = −1

2
RµναβS

αβ
AB . (A.49)

The remaining terms that need to be computed are of the form Π̄C∇µΣB or

Π̄C

v

∇µΣB. For this purpose, we can use the fact that ΣA is an eigenspinor of
D, with eigenvalue zero, while ΠA is an eigenspinor of D, with eigenvalue −2m.
We start with

Π̄ADΣB = 0. (A.50)

Taking the vertical derivative of this expression, we obtain:

0 = (
v

∇µΠ̄A)DΣB + Π̄A(
v

∇µD)ΣB + Π̄AD(
v

∇µΣB)

= Π̄A(
v

∇µD)ΣB − 2mΠ̄A(
v

∇µΣB)

= −Π̄Aγ
µΣB − 2mΠ̄A(

v

∇µΣB),

(A.51)

and we can finally write

Π̄A

v

∇µΣB = − 1

2m
Π̄Aγ

µΣB (A.52)

Similarly, by taking a covariant derivative of Π̄ADΣB = 0, we obtain

0 = (∇µΠ̄A)DΣB + Π̄A(∇µD)ΣB + Π̄AD(∇µΣB)

= Π̄A(∇µD)ΣB − 2mΠ̄A(∇µΣB)

= −(∇µvα)Π̄Aγ
αΣB − 2mΠ̄A(∇µΣB),

(A.53)

However, since we are working on T ∗M , with coordinates (xµ, vµ), we have

∇µvα =
∂

∂xµ
vα − Γσµαvσ = −Γσµαvσ. (A.54)

Thus, we can write

Π̄A∇µΣB = − 1

2m
(∇µvα)Π̄Aγ

αΣB =
1

2m
vσΓσµαΠ̄Aγ

αΣB (A.55)

Using Eqs. (A.52) and (A.55), we arrive at the final form for the components of
the Berry curvature:

(Fxx)µν = −1

2
RµναβS

αβ +
1

m2
vρvσΓραµΓσβνS

αβ, (A.56)

(Fpp)
µν =

1

m2
Sµν , (A.57)
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(Fpx)
ν
µ = − (Fxp)

ν
µ = − 1

m2
vρΓ

ρ
µαS

αν . (A.58)

The components of the Berry curvature were also calculated in Ref. [162], although
only for the case of Minkowski spacetime. Restricting to Minkowski spacetime,
the only nonzero component of the Berry curvature is (Fpp)

µν , and in this case our
result agrees with the result presented in Ref. [162, Eq. 30].

A.6. “No-name” terms

Using the definition Sαβ and (Bp)
µ, we can rewrite the last term in Eq. (3.112)

as

v

∇µSαβ − i[(Bp)
µ, Sαβ] =

1

2

[
(
v

∇µΣ̄A)σαβΣB + Σ̄Aσ
αβ(

v

∇µΣB)

]
+

1

4

[
Σ̄A(

v

∇µΣC)− (
v

∇µΣ̄A)ΣC

]
Σ̄Cσ

αβΣB

− 1

4
Σ̄Aσ

αβΣC

[
Σ̄C(

v

∇µΣB)− (
v

∇µΣ̄C)ΣB

]
=

1

4

[
2(

v

∇µΣ̄A) + Σ̄A(
v

∇µΣC)Σ̄C − (
v

∇µΣ̄A)ΣCΣ̄C

]
σαβΣB

+
1

4
Σ̄Aσ

αβ

[
2(

v

∇µΣB)− ΣCΣ̄C(
v

∇µΣB) + ΣC(
v

∇µΣ̄C)ΣB

]
(A.59)

Using Eqs. (A.39) and (3.27), the above expression simplifies to

v

∇µSαβ − i[(Bp)
µ, Sαβ] =

1

2

[
(
v

∇µΣ̄A)− (
v

∇µΣ̄A)ΣCΣ̄C

]
σαβΣB

+
1

2
Σ̄Aσ

αβ

[
(
v

∇µΣB)− ΣCΣ̄C(
v

∇µΣB)

]
=

1

2
(
v

∇µΣ̄A)(I4 − ΣCΣ̄C)σαβΣB

+
1

2
Σ̄Aσ

αβ(I4 − ΣCΣ̄C)(
v

∇µΣB)

= −1

2
(
v

∇µΣ̄A)ΠCΠ̄Cσ
αβΣB −

1

2
Σ̄Aσ

αβΠCΠ̄C(
v

∇µΣB)

(A.60)
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Inserting Eq. (A.52) and its complex conjugate into the above expression, we
obtain
v

∇µSαβ − i[(Bp)
µ, Sαβ] =

1

4m
Σ̄Aγ

µΠCΠ̄Cσ
αβΣB +

1

4m
Σ̄Aσ

αβΠCΠ̄Cγ
µΣB

=
1

4m
Σ̄Aγ

µ(ΣCΣ̄C − I4)σαβΣB +
1

4m
Σ̄Aσ

αβ(ΣCΣ̄C − I4)γµΣB

=
1

4m
Σ̄Aγ

µ(ΣCΣ̄C − I4)σαβΣB +
1

4m
Σ̄Aσ

αβ(ΣCΣ̄C − I4)γµΣB

=
1

m2
P µSαβ − 1

4m
Σ̄A(γµσαβ + σαβγµ)ΣB

(A.61)

The anticommutator γµσαβ + σαβγµ can be rewritten in a different form by using
the properties of the gamma matrices. We consider the flat spacetime gamma ma-
trices γa, which are related to the spacetime gamma matrices by the orthonormal
tetrad as γµ = (ea)

µγa. For the flat spacetime gamma matrices, we can write the
following relation:

γaγbγc = −ηabγc − ηbcγa + ηacγb + iεdabcγdγ
5, (A.62)

where ηab is the Minkowski metric tensor, with signature − + ++, and γ5 =
iγ0γ1γ2γ3. Using this relation, we obtain

γcσab + σabγc = 2εdabcγdγ
5, (A.63)

and

γµσαβ + σαβγµ = 2(ea)
α(eb)

β(ec)
µεdabcγdγ

5

= 2(ea)
α(eb)

β(ec)
µ(ed)

νεdabcγνγ
5,

(A.64)

We can perform a similar calculation for the last term in Eq. (3.113). First, note
that by using the properties of the covariant derivative, we can write

Fαβ,µz̄S
αβz + Fαβ z̄S

αβ
,µz = (∇µFαβ)z̄Sαβz + Fαβ z̄∇µS

αβz. (A.65)

The last term in Eq. (3.113) becomes ∇µS
αβ − i[(Bx)µ, S

αβ], and we can apply
the same steps as before. We obtain

∇µS
αβ − i[(Bx)µ, S

αβ] = −1

2
(∇µΣ̄A)ΠCΠ̄Cσ

αβΣB −
1

2
Σ̄Aσ

αβΠCΠ̄C(∇µΣB).

(A.66)
Using Eq. (A.55) and its complex conjugate, we obtain

∇µS
αβ − i[(Bx)µ, S

αβ] = − 1

4m
PσΓσµρ

(
Σ̄Aγ

ρΠCΠ̄Cσ
αβΣB + Σ̄Aσ

αβΠCΠ̄Cγ
ρΣB

)
= − 1

m2
PσP

ρΓσµρS
αβ +

1

4m
PσΓσµρΣ̄A(γρσαβ + σαβγρ)ΣB.

(A.67)
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A.7. Mathematica code for computing ray
trajectories

We provide the Mathematica code used for the numerical integration of the non-
canonical ray equations (2.115) and (2.116). The present version of the code is
written for the case of a Kerr spacetime, together with the orthonormal tetrad
introduced in Sec. 2.5.5. However, it can easily be adapted for other cases by
modifying the metric and the orthonormal tetrad.
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In[1]:= (* BLOCK 1 - Definitions and initializations *)

Clear[a];

(* Assume all variables are real *)

$Assumptions = Element[x0[τ], Reals] &&

Element[x1[τ], Reals] && Element[x2[τ], Reals] && Element[x3[τ], Reals] &&

Element[p0[τ], Reals] && Element[p1[τ], Reals] && Element[p2[τ], Reals] &&

Element[p3[τ], Reals] && Element[s, Reals] && x1[τ] > 0 && Element[a, Reals];

(* Coordinates *)

(* Xμ *)

X = {x0[τ], x1[τ], x2[τ], x3[τ]};

(* Pμ *)

P = {p0[τ], p1[τ], p2[τ], p3[τ]};

(* Pi *)

p = {p1[τ], p2[τ], p3[τ]};

(* BL coordinates in Kerr t, r, θ, ϕ = x0, x1, x2, x3 *)

M = 1; (* mass *)

rs = 2 M; (* Schwarzschild radius *)

Σ = r2 + a2 Cos[θ]2 /. r → x1[τ] /. θ → x2[τ] /. ϕ → x3[τ];

Δ = r2 - rs r + a2 /. r → x1[τ] /. θ → x2[τ] /. ϕ → x3[τ];

A = r2 + a2
2
- a2 Δ Sin[θ]2 /. r → x1[τ] /. θ → x2[τ] /. ϕ → x3[τ];

(* Metric gμν *)

g =

-1 - rs r

Σ
 0 0 -

rs a r Sin[θ]2

Σ

0 Σ

Δ
0 0

0 0 Σ 0

-
rs a r Sin[θ]2

Σ
0 0 A Sin[θ]2

Σ

/. r → x1[τ] /. θ → x2[τ] /. ϕ → x3[τ];

(* Inverse metric gμν *)

ig = Inverse[g] // Simplify;

(* Orthonormal tetrad (ea)
μ and dual tetrad da

μ
, with (ea)

μ = tμ *)

e0 = 
r2 + a2

Σ Δ

, 0, 0,
a

Σ Δ

 /. r → x1[τ] /. θ → x2[τ] /. ϕ → x3[τ];



e1 = 0,
Δ

Σ
, 0, 0 /. r → x1[τ] /. θ → x2[τ] /. ϕ → x3[τ];

e2 = 0, 0, 1  Σ , 0 /. r → x1[τ] /. θ → x2[τ] /. ϕ → x3[τ];

e3 = 
a Sin[θ]2

Σ Sin[θ]
, 0, 0,

1

Σ Sin[θ]
 /. r → x1[τ] /. θ → x2[τ] /. ϕ → x3[τ];

d0 = e0.g // Simplify;

d1 = e1.g // Simplify;

d2 = e2.g // Simplify;

d3 = e3.g // Simplify;

(* Christoffel Γijk =
1

2
gim( ∂kgmj + ∂jgmk - ∂mgjk ) *)

Γ =

1

2
Table 

m=1

4

ig[[i]][[m]] D[g[[m]][[j]], X[[k]]] + D[g[[m]][[k]], X[[j]]] - D[g[[j]][[

k]], X[[m]]] // Simplify, {i, 1, 4}, {j, 1, 4}, {k, 1, 4};

(* Riemann Rijkl = ∂kΓ
i
lj - ∂lΓ

i
kj + ΓikmΓ

m
lj - ΓilmΓ

m
kj *)

Riem = Table D[Γ[[i]][[l]][[j]], X[[k]]] - D[Γ[[i]][[k]][[j]], X[[l]]] +



m=1

4

Γ[[i]][[k]][[m]] Γ[[m]][[l]][[j]] - Γ[[i]][[l]][[m]] Γ[[m]][[k]][[j]] //

Simplify, {i, 1, 4}, {j, 1, 4}, {k, 1, 4}, {l, 1, 4} // Parallelize;

(* Pμ = gμαPα *)

Pu = Table 

α=1

4

ig[[μ]][[α]] P[[α]] // Simplify, {μ, 1, 4} // Parallelize;

(* P

μ at lowest order in ϵ: P


μ = -

1

2
gαβ,μPαPβ = Γα

βμPαP
β *)

Pd =

Table 

α=1

4



β=1

4

(Γ[[α]][[β]][[μ]] P[[α]] Pu[[β]]) // Simplify, {μ, 1, 4} // Parallelize;

(* H =
1

2
gμνPμPν = 0 => P0 =

1

g00
-g0iPi + g0iPi

2
- g00gijPiPj *)

pt0 =

ig[[1]][[1]]-1
- 

i=2

4

ig[[1]][[i]] P[[i]] + 

i=2

4

ig[[1]][[i]] P[[i]]
2

- ig[[1]][[

1]] 

i=2

4



j=2

4

ig[[i]][[j]] P[[i]] P[[j]]

1/2

// Simplify;

2     GSHE_Kerr_noncanonical.nb



(* Polarization vectors *)

(* Pμ = ka(ea)
μ => ki = di

μ
Pμ *)

k1 = 

μ=1

4

d1[[μ]] Pu[[μ]] // Simplify;

k2 = 

μ=1

4

d2[[μ]] Pu[[μ]] // Simplify;

k3 = 

μ=1

4

d3[[μ]] Pu[[μ]] // Simplify;

(* Definition of the linear polarization covectors v, w and vectors vu, wu *)

v =
-k2

k12 + k22
d1 +

k1

k12 + k22
d2 // Simplify;

w =
k1 k3

k12 + k22 k12 + k22 + k32
d1 +

k2 k3

k12 + k22 k12 + k22 + k32
d2 -

k12 + k22

k12 + k22 + k32
d3 //

Simplify;

vu = Table 

i=1

4

ig[[j]][[i]] v[[i]] // Simplify, {j, 1, 4} // Parallelize;

wu = Table 

i=1

4

ig[[j]][[i]] w[[i]] // Simplify, {j, 1, 4} // Parallelize;

(* ∇μv
α = ∂μv

α + Γα
μρv

ρ *)

Dvu = Table D[vu[[α]], X[[μ]]] + 

ρ=1

4

(Γ[[α]][[μ]][[ρ]] vu[[ρ]]) // Simplify,

{μ, 1, 4}, {α, 1, 4} // Parallelize;

(*
∂

∂pμ
vα *)

Dkvu = Table[D[vu[[α]], P[[μ]]] // Simplify, {μ, 1, 4}, {α, 1, 4}] // Parallelize;

(* ∇μwα = ∂μwα - Γρ
μαwρ *)

Dw = Table D[w[[α]], X[[μ]]] - 

ρ=1

4

(Γ[[ρ]][[μ]][[α]] w[[ρ]]) // Simplify,

{μ, 1, 4}, {α, 1, 4} // Parallelize;

(*
∂

∂pμ
wα *)

Dkw = Table[D[w[[α]], P[[μ]]] // Simplify, {μ, 1, 4}, {α, 1, 4}] // Parallelize;

(* (Fpp)
νμ =

∂vα

∂pν

∂wα

∂pμ
-

∂vα

∂pμ

∂wα

∂pν
*)

Fpp =

Table 

α=1

4

Dkvu[[ν]][[α]] Dkw[[μ]][[α]] - Dkvu[[μ]][[α]] Dkw[[ν]][[α]] // Simplify,

{ν, 1, 4}, {μ, 1, 4} // Parallelize;

(* P

ν(Fpp)

νμ *)
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fpp = Table 

ν=1

4

Pd[[ν]] Fpp[[ν]][[μ]] // Simplify, {μ, 1, 4} // Parallelize;

(* (Fxx)νμ = Rαβμνwαv
β + ∇νv

α∇μwα - ∇μv
α∇νwα *)

Fxx1 = Table 

α=1

4



β=1

4

Riem[[α]][[β]][[μ]][[ν]] w[[α]] vu[[β]] ,

{ν, 1, 4}, {μ, 1, 4} // Parallelize;

Fxx2 = Table 

α=1

4

(Dvu[[ν]][[α]] Dw[[μ]][[α]] - Dvu[[μ]][[α]] Dw[[ν]][[α]]) ,

{ν, 1, 4}, {μ, 1, 4} // Parallelize;

fxx1 = Table 

ν=1

4

Pu[[ν]] Fxx1[[ν]][[μ]] // Simplify, {μ, 1, 4} // Parallelize;

fxx2 = Table 

ν=1

4

Pu[[ν]] Fxx2[[ν]][[μ]] , {μ, 1, 4} // Parallelize;

fxx = fxx1 + fxx2;

(* (Fpx)ν
μ = ∇νv

α ∂wα

∂pμ
-

∂vα

∂pμ
∇νwα *)

Fpx = Table 

α=1

4

Dvu[[ν]][[α]] Dkw[[μ]][[α]] - Dkvu[[μ]][[α]] Dw[[ν]][[α]]  // Simplify,

{ν, 1, 4}, {μ, 1, 4} // Parallelize;

fpx = Table 

ν=1

4

(Pu[[ν]] Fpx[[ν]][[μ]]) , {μ, 1, 4} // Parallelize;

fxp = Table- 

ν=1

4

Pd[[ν]] Fpx[[μ]][[ν]] , {μ, 1, 4} // Parallelize;

In[286]:=

(* Trajectories *)

Clear[a, s, ϵ];

pu = Table[Pu[[i]], {i, 2, 4}];

pd = Table[Pd[[i]], {i, 2, 4}];

fxxi = Table[fxx[[i]], {i, 2, 4}];

fxpi = Table[fxp[[i]], {i, 2, 4}];

(* EOM *)

EOM0 = {D[X, τ] == Pu, D[p, τ] == pd} /. p0[τ] → pt0;

EOM1 = {D[X, τ] == Pu + s ϵ fpx + s ϵ fpp, D[p, τ] == pd - s ϵ fxxi - s ϵ fxpi} /. p0[τ] → pt0;

EOM2 = {D[X, τ] == Pu - s ϵ fpx - s ϵ fpp, D[p, τ] == pd + s ϵ fxxi + s ϵ fxpi} /. p0[τ] → pt0;

(* Initial conditions *)

(* integration time τmax, small parameterwavelength ϵ, Kerr parameter a *)

τ0 = 0;

τmax = 5 × 101;
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ϵ = 7 × 10-1;

a = 90  100;

(* spinpolarization *)

s = 1;

(* initial position *)

x0i = 0;

x1i = 10 rs;

x2i = π  2;

x3i = π  2 + π / 4 + π;

(* initial normalized momentum Pid *)

ψ = π  24  10;

ρ = π  2;

Pid = -d0 + Sin[ψ] Sin[ρ] d1 + Sin[ψ] Cos[ρ] d2 + Cos[ψ] d3;

p1i = -Pid[[2]] /. τ → τ0;

p2i = Pid[[3]] /. τ → τ0;

p3i = Pid[[4]] /. τ → τ0;

(* initial data vector *)

id = X /. τ → τ0 ⩵ {x0i, x1i, x2i, x3i} && p /. τ → τ0 ⩵ {p1i, p2i, p3i};

(* stop if integration hits event horizon x1 = 2rs *)

τint0 = τmax;

horizon0 = WhenEventx1[τ] ≤ 1.01 M + M2 - a2 , {"StopIntegration", τint0 = τ};

τint1 = τmax;

horizon1 = WhenEventx1[τ] ≤ 1.01 M + M2 - a2 , {"StopIntegration", τint1 = τ};

τint2 = τmax;

horizon2 = WhenEventx1[τ] ≤ 1.01 M + M2 - a2 , {"StopIntegration", τint2 = τ};

(* Integration *)

sol0 = NDSolve[EOM0 && id && horizon0, {x0, x1, x2, x3, p1, p2, p3}, {τ, τ0, τmax}];

sol1 = NDSolve[EOM1 && id && horizon1, {x0, x1, x2, x3, p1, p2, p3}, {τ, τ0, τmax}];

sol2 = NDSolve[EOM2 && id && horizon2, {x0, x1, x2, x3, p1, p2, p3}, {τ, τ0, τmax}];

(* Plots *)

(* Plot range *)

range = 10 rs;

τplot0 = Min[τint0, τmax];

τplot1 = Min[τint1, τmax];

τplot2 = Min[τint2, τmax];
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(* 3D Plot *)

arrow1 = {Arrowheads[0.025], Arrow[

Tube[{{-0.9 range, -0.9 range, 0}, {-0.9 range + range / 4, -0.9 range, 0}}, 0.2], -0]};

arrow2 = {Arrowheads[0.025], Arrow[Tube[{{-0.9 range, -0.9 range, 0},

{-0.9 range, -0.9 range + range / 4, 0}}, 0.2], -0]};

arrow3 = {Arrowheads[0.025], Arrow[Tube[{{-0.9 range, -0.9 range, 0},

{-0.9 range, -0.9 range, range / 4}}, 0.2], -0]};

arrowtext1 = TextStyle["x", Large, Bold], -0.9 range + range  3.5, -0.9 range, 0;

arrowtext2 = TextStyle["y", Large, Bold], -0.9 range, -0.9 range + range  3.5, 0;

arrowtext3 = TextStyle["z", Large, Bold], -0.9 range, -0.9 range, range  3.5;

frame =

Graphics3D[{Yellow, arrow1, arrow2, arrow3, Black, arrowtext1, arrowtext2, arrowtext3}];

wall1 = Graphics3D[{Transparent, EdgeForm[Thick], Polygon[{{-range, -range, -range},

{-range, range, -range}, {range, range, -range}, {range, -range, -range}}]}];

wall2 = Graphics3D[{Transparent, EdgeForm[Thick], Polygon[{{-range, range, -range},

{-range, -range, -range}, {-range, -range, range}, {-range, range, range}}]}];

wall3 = Graphics3D[{Transparent, EdgeForm[Thick], Polygon[{{-range, -range, -range},

{-range, -range, range}, {range, -range, range}, {range, -range, -range}}]}];

source = Graphics3D[{Specularity[White, 5], Orange,

Sphere[{x1i Sin[x2i] Cos[x3i], x1i Sin[x2i] Sin[x3i], x1i Cos[x2i]}, 0.2 rs]}];

plane = ContourPlot3D[z ⩵ 0, {x, -range, range}, {y, -range, range},

{z, -range, range}, Mesh → None, ContourStyle → Opacity[0.5]];

BH = Graphics3DSpecularity[White, 3], Black, Sphere{0, 0, 0}, M + M2 - a2 ;

g0 = ParametricPlot3DEvaluatex1[τ] Sin[x2[τ]] Cos[x3[τ]] /. sol0[[1]],

Evaluatex1[τ] Sin[x2[τ]] Sin[x3[τ]] /. sol0[[1]],

Evaluatex1[τ] Cos[x2[τ]] /. sol0[[1]],

{τ, τ0, τplot0}, PlotStyle → {Thick, Green}, PlotPoints → 3000;

g1 = ParametricPlot3DEvaluatex1[τ] Sin[x2[τ]] Cos[x3[τ]] /. sol1[[1]],

Evaluatex1[τ] Sin[x2[τ]] Sin[x3[τ]] /. sol1[[1]],

Evaluatex1[τ] Cos[x2[τ]] /. sol1[[1]],

{τ, τ0, τplot1}, PlotStyle → {Thick, Red}, PlotPoints → 3000;

g2 = ParametricPlot3DEvaluatex1[τ] Sin[x2[τ]] Cos[x3[τ]] /. sol2[[1]],

Evaluatex1[τ] Sin[x2[τ]] Sin[x3[τ]] /. sol2[[1]],

Evaluatex1[τ] Cos[x2[τ]] /. sol2[[1]],

{τ, 0, τplot2}, PlotStyle → {Thick, Blue}, PlotPoints → 3000;

Style[Show[g0, g1, g2, BH, source, plane, wall1, wall2, wall3,

frame, PlotRange → {{-range, range}, {-range, range}, {-range, range}},

Boxed → False, Axes → False, ViewPoint → {1.5, 4, 1.5}], Antialiasing → True]

(* Individual Plots *)

ShowPlotEvaluatex1[τ] /. sol0[[1]], {τ, τ0, τplot0},

PlotStyle → Green, PlotLegends → Automatic, PlotLabel → "X1", PlotRange → All,

PlotEvaluatex1[τ] /. sol1[[1]], {τ, τ0, τplot1}, PlotStyle → {Red, Dashed},

PlotLegends → Automatic, PlotLabel → "X1", PlotRange → All,

PlotEvaluatex1[τ] /. sol2[[1]], {τ, τ0, τplot2}, PlotStyle → {Blue, Dotted},

PlotLegends → Automatic, PlotLabel → "X1", PlotRange → All
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ShowPlotEvaluatex2[τ] /. sol0[[1]], {τ, τ0, τplot0},

PlotStyle → Green, PlotLegends → Automatic, PlotLabel → "X2", PlotRange → All,

PlotEvaluatex2[τ] /. sol1[[1]], {τ, τ0, τplot1}, PlotStyle → {Red, Dashed},

PlotLegends → Automatic, PlotLabel → "X2", PlotRange → All,

PlotEvaluatex2[τ] /. sol2[[1]], {τ, τ0, τplot2}, PlotStyle → {Blue, Dotted},

PlotLegends → Automatic, PlotLabel → "X2", PlotRange → All

ShowPlotEvaluatex3[τ] /. sol0[[1]], {τ, τ0, τplot0},

PlotStyle → Green, PlotLegends → Automatic, PlotLabel → "X3", PlotRange → All,

PlotEvaluatex3[τ] /. sol1[[1]], {τ, τ0, τplot1}, PlotStyle → {Red, Dashed},

PlotLegends → Automatic, PlotLabel → "X3", PlotRange → All,

PlotEvaluatex3[τ] /. sol2[[1]], {τ, τ0, τplot2}, PlotStyle → {Blue, Dotted},

PlotLegends → Automatic, PlotLabel → "X3", PlotRange → All

ShowPlotEvaluatep1[τ] /. sol0[[1]], {τ, τ0, τplot0},

PlotStyle → Green, PlotLegends → Automatic, PlotLabel → "P1", PlotRange → All,

PlotEvaluatep1[τ] /. sol1[[1]], {τ, τ0, τplot1}, PlotStyle → {Red, Dashed},

PlotLegends → Automatic, PlotLabel → "P1", PlotRange → All,

PlotEvaluatep1[τ] /. sol2[[1]], {τ, τ0, τplot2}, PlotStyle → {Blue, Dotted},

PlotLegends → Automatic, PlotLabel → "P1", PlotRange → All

ShowPlotEvaluatep2[τ] /. sol0[[1]], {τ, τ0, τplot0},

PlotStyle → Green, PlotLegends → Automatic, PlotLabel → "P2", PlotRange → All,

PlotEvaluatep2[τ] /. sol1[[1]], {τ, τ0, τplot1}, PlotStyle → {Red, Dashed},

PlotLegends → Automatic, PlotLabel → "P2", PlotRange → All,

PlotEvaluatep2[τ] /. sol2[[1]], {τ, τ0, τplot2}, PlotStyle → {Blue, Dotted},

PlotLegends → Automatic, PlotLabel → "P2", PlotRange → All

ShowPlotEvaluatep3[τ] /. sol0[[1]], {τ, τ0, τplot0},

PlotStyle → Green, PlotLegends → Automatic, PlotLabel → "P3", PlotRange → All,

PlotEvaluatep3[τ] /. sol1[[1]], {τ, τ0, τplot1}, PlotStyle → {Red, Dashed},

PlotLegends → Automatic, PlotLabel → "P3", PlotRange → All,

PlotEvaluatep3[τ] /. sol2[[1]], {τ, τ0, τplot2}, PlotStyle → {Blue, Dotted},

PlotLegends → Automatic, PlotLabel → "P3", PlotRange → All
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http://www.numdam.org/item/AIHPA_1974__20_4_315_0/.

[161] J. Steinhoff. Spin and quadrupole contributions to the motion of astrophys-
ical binaries. In Equations of Motion in Relativistic Gravity, pages 615–649.
Springer, 2015.

[162] Michael Stone, Vatsal Dwivedi, and Tianci Zhou. Berry phase, lorentz
covariance, and anomalous velocity for dirac and weyl particles. Phys.
Rev. D, 91:025004, Jan 2015. doi: 10.1103/PhysRevD.91.025004. URL
https://link.aps.org/doi/10.1103/PhysRevD.91.025004.

[163] Michael Stone, Vatsal Dwivedi, and Tianci Zhou. Wigner Translations and
the Observer Dependence of the Position of Massless Spinning Particles.
Phys. Rev. Lett., 114:210402, May 2015. doi: 10.1103/PhysRevLett.114.
210402. URL https://link.aps.org/doi/10.1103/PhysRevLett.114.

210402.

[164] Robert T. Thompson. Covariant electrodynamics in linear media: Optical
metric. Phys. Rev. D, 97:065001, Mar 2018. doi: 10.1103/PhysRevD.97.
065001. URL https://link.aps.org/doi/10.1103/PhysRevD.97.065001.

[165] A. Tomita and R. Y. Chiao. Observation of Berry’s topological phase
by use of an optical fiber. Phys. Rev. Lett., 57:937–940, Aug 1986. doi:
10.1103/PhysRevLett.57.937. URL https://link.aps.org/doi/10.1103/

PhysRevLett.57.937.

[166] E. R. Tracy, A. J. Brizard, A. S. Richardson, and A. N. Kaufman. Ray Trac-
ing and Beyond: Phase Space Methods in Plasma Wave Theory. Cambridge
University Press, 2014. doi: 10.1017/CBO9780511667565.

[167] W. Tulczyjew. Motion of multipole particles in general relativity theory.
Acta Phys. Pol., 18:393, 1959.

[168] M. Uchida and A. Tonomura. Generation of electron beams carrying orbital
angular momentum. Nature, 464:737, Apr 2010. URL https://doi.org/

10.1038/nature08904.

121

https://onlinelibrary.wiley.com/doi/abs/10.1002/lpor.201600042
http://www.numdam.org/item/AIHPA_1974__20_4_315_0/
https://link.aps.org/doi/10.1103/PhysRevD.91.025004
https://link.aps.org/doi/10.1103/PhysRevLett.114.210402
https://link.aps.org/doi/10.1103/PhysRevLett.114.210402
https://link.aps.org/doi/10.1103/PhysRevD.97.065001
https://link.aps.org/doi/10.1103/PhysRevLett.57.937
https://link.aps.org/doi/10.1103/PhysRevLett.57.937
https://doi.org/10.1038/nature08904
https://doi.org/10.1038/nature08904


[169] J. Vines, D. Kunst, J. Steinhoff, and T. Hinderer. Canonical Hamiltonian
for an extended test body in curved spacetime: To quadratic order in spin.
Phys. Rev. D, 93(10):103008, 2016.

[170] V. V. Vladimirskii. The rotation of polarization plane for curved light ray.
In Doklady Akademii Nauk SSSR, volume 31, pages 222–226, 1941.

[171] K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and
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