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Abstract

Frequency modulation (FM) is a basic constituent of vocalisation in many animals as well as

in humans. In human speech, short rising and falling FM-sweeps of around 50 ms duration,

called formant transitions, characterise individual speech sounds. There are two representa-

tions of FM in the ascending auditory pathway: a spectral representation, holding the instan-

taneous frequency of the stimuli; and a sweep representation, consisting of neurons that

respond selectively to FM direction. To-date computational models use feedforward mecha-

nisms to explain FM encoding. However, from neuroanatomy we know that there are mas-

sive feedback projections in the auditory pathway. Here, we found that a classical FM-

sweep perceptual effect, the sweep pitch shift, cannot be explained by standard feedforward

processing models. We hypothesised that the sweep pitch shift is caused by a predictive

feedback mechanism. To test this hypothesis, we developed a novel model of FM encoding

incorporating a predictive interaction between the sweep and the spectral representation.

The model was designed to encode sweeps of the duration, modulation rate, and modula-

tion shape of formant transitions. It fully accounted for experimental data that we acquired in

a perceptual experiment with human participants as well as previously published experi-

mental results. We also designed a new class of stimuli for a second perceptual experiment

to further validate the model. Combined, our results indicate that predictive interaction

between the frequency encoding and direction encoding neural representations plays an

important role in the neural processing of FM. In the brain, this mechanism is likely to occur

at early stages of the processing hierarchy.

Author summary

Humans’ ability to understand and produce speech is one of the most fascinating develop-

ments of evolution. It is critical for smooth daily routines at the individual to the societal

level. The computational mechanisms that the human brain uses for excelling at speech

recognition are far from understood. One of the fundamental building blocks of speech

are so-called formant transitions that characterise different speech sounds. To date, for-

mant transitions are assumed to be processed according to a representational framework.
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In this view, the brain processes auditory signals in a hierarchical constructive way, where

the higher levels of the hierarchy, that represent the formant transition directions, are

informed by the neural representations of individual frequencies at the lower levels, but

not vice versa. Here, we show that the representational framework does not fully explain

human behaviour. Instead we develop a novel computational model in which the neural

representations of formant transitions influence lower-level representations. This mecha-

nism effectively increased the speed and efficiency of the recognition of formant transi-

tions. The model explained previously unaccounted phenomena in human perceptual

behaviour. These neural principles can be extended to other auditory processing networks

and sensory modalities, and can be incorporated to neurobiologically-inspired automatic

speech recognition algorithms.

Introduction

Frequency modulation (FM) is a basic acoustic feature of animal vocalisation, human speech,

and music. In human speech, consonants preceding and following a vowel can be acoustically

characterised by formant transitions: a series of simultaneous fast FM sinusoids of around 50

ms duration that start or finish in the frequencies characterising the vowel [1]. At all stages of

the ascending auditory pathway, FM is represented along the tonotopic axis in a spectral repre-
sentation that encodes the instantaneous frequency of the stimuli [2]. Individual neurons at

higher levels of the processing hierarchy (inferior colliculus [3–5], medial geniculate body [6,

7], and auditory cortex [8–11]) also encode FM direction and FM rate, by responding selec-

tively to certain rates and direction. We call this latter, more abstract representation, the sweep
representation.

Despite the massive feedback projections that characterise the auditory pathway [12, 13],

computational models to date use only feedforward mechanisms to explain FM encoding [14].

Given the importance of high-order predictive elements in the optimisation of speech (e.g.,

[15]) and FM [16] recognition, descending projections are likely to play an important role for

the encoding of fast FM-sweeps in the auditory system. However, to date there is no compre-

hensive model of such fast FM encoding that incorporates both, the sweep and the spectral

representations, and describes the potential sweep-to-spectral feedback mechanisms active

during the processing of FM sounds. The aim of the present study was to develop such a

model, with a focus on FM-sweeps of the duration and frequency span of formant transitions.

To do that we harnessed a classical behavioural effect from psychoacoustics first reported

around 60 years ago [17], which we will refer to as the sweep pitch shift. In the original experi-

ment, participants listened to fast rising and falling FM-sweeps. The authors discovered that

the participants judged up sweeps as eliciting a higher pitch than down sweeps with the same

average fundamental frequency. These findings were later replicated [18, 19], although a reli-

able quantitative assessment of the phenomenon using stimuli with a controlled spectrum is

lacking. To explain the effect d’Alessandro and colleagues proposed a phenomenological

model assuming that the pitch of a sweep is integrated using a fixed-size window from the

instantaneous frequency of the stimulus across time [20, 21]. Due to the leaking memory of

the integration, this process naturally favours the latest frequencies of the sweep, explaining

the sweep pitch shift. However, the authors found that different integration weights were nec-

essary to explain different partitions of their data, indicating that the phenomenological model

is not a parsimonious explanation of the sweep pitch shift.
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Using the classical behavioural effect we approached the development of a comprehensive

FM-encoding model in three steps. First, we re-examined and quantified the sweep pitch shift

in a behavioural experiment, and tested whether the experimental data could be explained by

existing computational models [22–24]. We found that mechanistic models of pitch processing

that attempt to describe the circuitry underlying perception rather than perceptual phenomena

[25] could not explain the sweep pitch shift. Current models of FM encoding [14] consider a

static representation of spectral information, and thus they predict that the sweep pitch shift

would not occur. Thus neither existing models of pitch processing nor FM-encoding could

explain the sweep pitch shift. In a second step we built a hierarchical model motivated by the

hypothesis that the sweep pitch shift results from the modulation exerted by feedback projec-

tions between the sweep and spectral representations. The feedforward components of the

model were based on results of previous studies on FM direction selectivity and included pro-

cessing of instantaneous frequency and processing of FM direction [10, 14, 26]. The feedback

architecture was based on generative hierarchical models and predictive coding [27, 28] and

informed by the human psychophysics results from the first part of the study. In the third and

last step, we used a new set of stimuli termed sweep trains to further validate the model. These

stimuli, consisting of a concatenation of five FM-sweeps, preserve the same acoustical features

of the original FM-sweeps but elicited different dynamics in the feedback system of the model

than their single-sweep counterpart. The ability of the model to predict the pitch elicited by

these new stimuli illustrated that the feedback mechanisms proposed in this work, and not bot-

tom-up acoustical features of the stimuli, are the driver of the sweep pitch shift.

Results

The sweep pitch shift revisited

First, we re-examined and quantified the sweep pitch shift, measured as the difference between

the perceived pitch and the average frequency of the sweep: Dp ¼ fperceived �
�f . Eight partici-

pants matched a total of 30 fast FM sweeps with frequency spans Δf 2 [−600, 600] Hz and 3

average frequencies �f 2 f900; 1200; 1500g Hz (see Methods). Each sweep had a duration of

40 ms and was preceded and followed by 5 ms of constant frequency. Participants’ task was to

match each sweep to a pure tone, which frequency was used to determine the elicited pitch of

the sweep.

The pitch shift Δp depended on the sweep’s span Δf (Fig 1A and S1 Table). The exact depen-

dence was consistent across participants for sweeps with Δf� 333 Hz lying in the vicinity of

the linear fit fperceived ’
�f þmDf . There was an average deviance from the fit of 46 Hz. Sweeps

with larger frequency spans resulted in wider distributions of fperceived (Pearson’s r = 0.48,

p< 10−14; Fig 1B); all subjects showed the same sweep pitch shift direction and comparable

orders of magnitude on the dependence of Δp with Δf (S1 Fig). Presenting the sweep before or

after the probe tone did not systematically affect the perceived pitch (S2 Fig). Raw data is avail-

able in an external repository (github.com/qtabs/fmPitch).

In their classical study, Brady and colleagues [17] showed that the absolute value of the

sweep pitch shift |Δp| is larger for down than for up sweeps. In a later study, Nabelek and col-

leagues [18] showed the reversed effect. To test if our data replicates any of these previous find-

ings, or shows no up/down asymmetry at all, we drew, for each absolute frequency span |Δf |,
the distribution of the differences between the pitch shift in up and down sweeps:

asymm"#jDf j ¼ jDpðDf Þj � jDpð� Df Þj ð1Þ
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Our results robustly replicated the observations from Nabelek and colleagues (Fig 1C). The

sweep pitch shift was significantly larger for up than down sweeps for |Δf |� 200Hz

(p< 2 × 10−5) but not for |Δf | = 66Hz (p = 0.77), according to two-tailed rank-sum tests (num-

ber of samples N = 96).

Last, we tested if the dependence of the sweep pitch with Δf was robustly replicated across

subjects. The slopes of the linear fits between fperceived and Δf were of similar magnitude in all

participants (mean slope m = 0.38, standard deviation across subjects σm = 0.07, a 18.5% of the

nominal value, corresponding to an effect size of d = 5.4; see S1 Fig).

Bottom-up models of pitch do not explain the sweep pitch shift

Current theories of pitch suggest that two complimentary codes of pitch coexist in the audi-

tory system: the spectral or place code, produced by the spectral decomposition of the sti-

muli performed by the basilar membrane; and the temporal code, comprised in the spike

timings of the neurons across the auditory pathway that are phase locked to the stimulus

waveform (see [29] for a review). If the sweep pitch shift was a consequence of bottom-up

pitch processing, we would expect the effect to be explainable by computational models that

Fig 1. Sweep pitch shift. A) Kernel density estimations on the perceived pitch are plotted separately for each of the 30 FM-sweeps used in experiment 1; each of the

three panels displays the data of each of the three average frequencies �f . Data points correspond to the average sweep pitch shift D ¼ fperceived �
�f (y-axis) of a target

sweep with a specific frequency span Δf (x-axis) reported by one participant. Red crosses show the mean and standard error of the average Δp across participants. Dark

dashed lines show the linear fit of the average Δp across participants. B) Kernel density estimations of the subjects’ standard deviation of the sweep pitch shift Δp, plotted

separately for the different frequency spans Δf. Each sample in the distributions corresponds to the standard deviation of the perceived pitch of a sweep in one subject

(i.e., in each distribution there are 8 × 3 points, one for each subject and �f ). The standard deviation is monotonically correlated to the absolute span |Δf | (Pearson’s

r = 0.48, p< 10−14). C) Kernel density estimations of the up/down asymmetry asymm"# distributions as defined in Eq (1). Each sample of the distributions corresponds

to the difference of the average absolute deviation from centre frequency between up and down sweeps of the same |Δf | for a given subject and centre frequency

(N = 8 × 3 = 24). Red crosses show the mean and the standard error of the data.

https://doi.org/10.1371/journal.pcbi.1008787.g001

PLOS COMPUTATIONAL BIOLOGY Neural modelling of the encoding of fast frequency modulation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008787 March 3, 2021 4 / 30

https://doi.org/10.1371/journal.pcbi.1008787.g001
https://doi.org/10.1371/journal.pcbi.1008787


use either of the two representations to infer pitch. To test this we computed the pitch pre-

dicted by one representative model of each family; i.e., one model using the spectral and one

model using the temporal codes. Although the possibility that the auditory system integrates

information from both codes has been theoretised (e.g., [25]) and implemented [30] before,

the combination of both codes has so far proposed to be purely additive. Thus, a combined

spectro-temporal approach could only explain the sweep pitch shift if at least one of the two

codes shows a positive pitch shift for up sweeps (Δf> 0) and a negative pitch shift for down

sweeps (Δf< 0).

In the spectral model, pitch can be directly inferred by computing the expected value of the

activity across cochlear channels in the auditory nerve [22, 25]. Predictions of the spectral

model approximate the empirical data for Δf* 0. Unlike the empirical data, however, predic-

tions of the spectral model show no systematic dependence of fperceived on Δf (Fig 2A). More

sophisticated spectral models designed to explain how the pitch of harmonic complex tones is

encoded [25] would yield identical results because the sinusoidal FM-sweeps used in the pres-

ent experiment evoke a single peak in the spectral distribution.

The temporal model was based on the principles of the summary autocorrelation function

(SACF), that measures pitch according to the phase-locked response in the auditory pathway

[23, 31]. We chose this model because it performs a relatively straightforward analysis of

phase-locked activity. As in the spectral model, predictions of the SACF approximate the

empirical data for Δf* 0, but do not show the dependence with Δf observed in the data

Fig 2. Predictions of the bottom-up models of pitch. A) Predictions of the spectral model. Heatmaps show the mean activation across the duration of

the stimuli at different cochlear channels, as simulated by a model of the auditory periphery in response to each sweep; units are arbitrary. Error bars

point to the expected value and standard deviation of the distribution across frequencies for each sweep. Each empty square denotes the expected

channel elicited by a pure tone with the frequency of the average experimental data of the corresponding sweep. B) Predictions of the temporal model.

Heatmaps show the distribution across periods elicited in the summary autocorrelation factor (SACF) for each sweep. The value corresponding to each

period was computed as the average activation of the SACF across four harmonics (see Methods); heatmap units are arbitrary. Error bars point to the

expected value and standard deviation of the distribution across periods for each sweep. Each empty square denotes the expected period elicited in the

SACF by a pure tone with the frequency of the average experimental data of the corresponding sweep.

https://doi.org/10.1371/journal.pcbi.1008787.g002
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(Fig 2B). This is most likely a consequence of the 2.5 ms integration time window for phase-

locked activity in the auditory system [32] being too large to integrate the rapidly changing fre-

quencies of our stimuli (up to 15 Hz/ms).

We selected these two representative models of pitch processing because they keep the larg-

est possible amount of information from the peripheral system. Our reasoning is that, if the

sweep pitch shift cannot be derived from a minimally-processed code extracted from the

peripheral output, it is very unlikely that it can be derived from any further bottom-up process-

ing of this information.

The FM-feedback spectral model

In this section we introduce a hierarchical model of FM-encoding in the auditory system,

termed FM-feedback spectral model, with two levels (Fig 3). In the first level, the spectral layer

holds a spectral representation of the sound. In the second level, the sweep layer encodes FM-

sweep direction. The spectral layer uses the spectral rather than the temporal code to represent

Fig 3. Diagram of the FM-feedback spectral model. The model consists of two levels: first, the spectral layer, with a

network integrating the spectral information of the sound (f network); and second, the sweep layer, with one network

specialised in detecting up (" network) sweeps and another network specialised in detecting down (# network) sweeps.

The spectral layer integrates afferent inputs from the auditory periphery and encodes a representation of the stimulus

that can be used to infer pitch. The sweep layer receives afferent inputs from the spectral layer that are used to decode

the direction of the sweeps. Feedback connections from the sweep layer to the spectral layer modulate the time

constants of the populations that are expected to be activated once the direction of the sweep has been decoded. The

inhibitory ensembles in the up and down network enforce competition between up and down ensembles in a winner-

take-all fashion. Note that the diagram is schematic and shows only 5 of the N = 100 populations and a single example

of the connections between the sweep and the spectral layers. The labels of the boxes of the peripheral system are also

schematic: the spectral resolution of the peripheral system is much higher. See Methods for specific details on the

mathematical formulation of the model.

https://doi.org/10.1371/journal.pcbi.1008787.g003
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the instantaneous frequency of the stimuli because the integration window of the auditory sys-

tem is too large to integrate the rapidly changing frequencies of the sweeps used in our experi-

ment [32]. The animal electrophysiology literature also converges in the notion that sweep

direction and rate are decoded from the spectral, and not the temporal representation of the

sounds [4, 6, 7, 11, 14, 33].

The main hypothesis introduced in the FM-feedback spectral model is that, once the direc-

tion of the sweep is encoded in the sweep layer, a feedback mechanism modulates the effective

time constant of the populations encoding the frequencies that are expected to be activated in

the next instant in the spectral layer. We expect this mechanism to qualitatively explain why

the posterior parts of the sweep are given a higher weight during perceptual integration and to

quantitatively reproduce the exact dependence of pitch with Δf observed in our data. An

implementation of the FM-feedback spectral model written in python is freely available at

github.com/qtabs/fmPitch.

Example responses of the excitatory populations of the model to up and down sweeps are

shown in Fig 4.

Modelling FM direction selectivity. We modelled FM direction selectivity using the prin-

ciples of delayed excitation, a mechanism where neurons with different best frequencies output

to the direction selective neuron with different delays [6, 10, 14, 26]. This mechanism intro-

duced consistent delays between the populations in the spectral and the sweep layers. A sweep

population receiving direct input from the spectral population encoding f0 and responding

Fig 4. Model responses to an up and a down sweep. A-E show the responses to an up sweep, and F-J to a down sweep. From top to bottom: (A/F) the instantaneous

predicted firing rate of the up-selective excitatory populations in the sweep layer; (B/G) the instantaneous firing rate of the down-selective excitatory populations in the

sweep layer; (C/H) the instantaneous firing rate of the populations in the spectral layer and, in the right of the panels, a schematic view of the probability distribution of

pitch derived from this representation; (D/I) the output of the model of the auditory periphery; (E/F) the instantaneous frequency of the sweeps along time. In all panels

except for E/J, y-axis represents the cochlear channel n, ordered from bottom (lowest best frequency) to top (highest best frequency). The stimuli were the up and a down

sweeps with Δ = ±300Hz and �f ¼ 1200 Hz used in the experiment.

https://doi.org/10.1371/journal.pcbi.1008787.g004
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selectively to up sweeps will receive increasingly delayed inputs from the spectral populations

centred at f< f0 (Fig 3). The relative delay in the connection between a spectral population m
and a target sweep population n depends linearly on the spectral distance between the two

ensembles: δtnm = |n −m|δt0. Although this configuration is optimal for linear sweeps with

slopes’ δt0/(fn − fn−1), adding parallel replicas of these populations with varying δt0 would

suffice to generalise the mechanism to a wider range of speeds and to non-linear sweeps. Popu-

lations selectively responding to specific rates have been reported in bats [34–37] and rodents

[3, 8, 9].

The sweep layer consists of two networks, each encoding one of the FM directions and

responding selectively to up (") and down (#) sweeps. Each of the networks consists of N
columns, each comprising an excitatory and an inhibitory population (Fig 3). Note that

populations in the sweep network also have a best-frequency and they are thus arranged

according to their corresponding cochlear channel: an up population in the sweep network

responds selectively to up sweeps when these span through a certain frequency range (see

Fig 4B).

To quantify direction selectivity, we used the standard direction selectivity index (DSI; e.g.,

[11]), defined as the proportion of the activity elicited in a network by an up sweep minus the

activity elicited in the same network by a down sweep with the same duration and frequency

span. An ideal network responding selectively to up sweeps will have a DSI = + 1 and an ideal

network responding selectively to down sweeps will have a DSI = −1. Similar DSI magnitudes

are measured in the down and the up network (Fig 5). Network selectivity to FM direction was

robust to variations of around 20% of the fitted value of the main parameters of the model per-

taining direction selectivity (δt0, and the conductivities and dispersion in the connectivity

matrices of the bottom-up connections). Deactivation of the feedback connections, however,

resulted in a (16 ± 1.4)% average decrease in absolute DSI, indicating that the feedback con-

nections sharpened direction selectivity.

Although we did not attempt to model FM rate selectivity, the DSIs monotonically

increased with |Δf | (Fig 5), a property that could be exploited in further developments of the

model to encode modulation rate [3, 7, 9].

Predictive mechanisms. Once neurons in the sweep layer encoded the sweep direction,

feedback connections targeting the spectral layer applied currents that facilitated the encoding

of expected frequencies. We will call them facilitation currents in the following. Let i be the

population in the up-sweep network receiving inputs from a population in the spectral layer

encoding a certain frequency f0. Due to delayed excitation, the population i becomes active

when it detects an up sweep occurring in the neighbourhood of frequencies f� f0. Although

Fig 5. Direction selectivity indices for the FM-sweeps of the experiment. DSI" and DSI# to sweeps with different �f
and |Δf |. DSI is defined as the proportional activity to up in comparison to down sweeps in a given network.

https://doi.org/10.1371/journal.pcbi.1008787.g005
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when f0 is the ending frequency of the sweep the following frequencies will not activate next,

most often f0 will be just an intermediate frequency within the sweep. Thus, activation of i
would imply that populations in the spectral layer with best frequencies immediately higher

than f0 are likely to activate next. The facilitation currents, encoded in the feedback projections

stemming from the sweep layer and targeting the spectral layer, reduce the reaction time of the

populations in the spectral layer that are expected to activate next using low-current feedback

excitatory signals. Similarly, feedback connections stemming from a population j in the down-

network that received timely inputs from a spectral population with best frequency f will target

populations in the spectral network with best frequencies immediately lower than f0.

NMDA receptors are typically responsible for conveying feedback excitatory information

in the cerebral cortex [38, 39]; specifically, NMDA-deactivation results in a reduced feedback

control in the auditory pathway [40]. Thus, while bottom-up drive was modelled using AMPA

dynamics, feedback connections were modelled according to NMDA-like synaptic gating

dynamics with a finite rising time constant [41]. Feedback current intensity was kept low in

comparison to the bottom-up driver by enforcing NMDA conductivity to be much smaller

than the AMPA conductivity (i.e., JNMDA� JAMPA).

The facilitation currents modulated the spectral population that is expected to fire next so

that it subtly increased its firing rate with respect to a not modulated population. Due to net-

work effects captured in the mean-field model [42], this subtle activation driven by a low-cur-

rent effectively reduces the neural population’s decaying time constant τpop (Fig 6), equivalent

to a smaller integration time window of a leaky integrator. Endowed with a smaller effective

integration time constant, the population integrates the sensory input faster and spends more

time in the high-firing-rate regime than a population that has not been facilitated. Since facili-

tated populations spend more time in the high-firing-rate regime, frequencies expressed in the

last part of the sweep have stronger contributions to the probability distribution of pitch.

Fig 6. Effect of the predictive feedback mechanism on the population time constants in the spectral layer. τpop(h,

I) (green-blue solid lines) depends on the firing rate h and the synaptic input I (see Methods). The figure portraits two

different trajectories of the variable τpop(h, I) in the (h, I) space, both starting at an initial state (h* 0 in the regime of

spontaneous activity with no inputs) and finishing at an equilibrium state (with h* 40 Hz). The dashed purple line

shows a trajectory followed by the population when the forward synaptic input from the peripheral layer is plugged in

without feedback modulation. In this case, the population reacts slowly to the strong synaptic input, and eventually

converges to equilibrium. The dotted lines (orange and red) show the trajectory of the same population in the presence

of feedback modulation (i.e., the facilitation currents). The low-current feedback excitatory signals drive the

population to a state with a low effective time constant without substantially increasing its firing rate (orange section of

the trajectory). When the strong synaptic input from the auditory periphery is switched on (red section of the

trajectory) the population reacts quickly to the synaptic input, reaching equilibrium much faster than in the non-

modulated case.

https://doi.org/10.1371/journal.pcbi.1008787.g006
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Stimuli with constant frequency (e.g., pure tones) do not drive any of the sweep populations

and thus do not activate any feedback mechanisms. Therefore, in the absence of FM, the

model reduces to a purely bottom-up spectral model.

Reproduction of the sweep pitch shift by the FM-feedback spectral model. The FM-

feedback spectral model explains R2 = 0.97 of the variance of the experimental data (Fig 7A).

Moreover, there was a significant correlation between the variance of the model responses and

the standard error of the experimental data (rp = 0.63, p< 10−10), indicating that the larger var-

iability in the sweep pitch shift observed for the larger Δf can be understood as a consequence

of a wider spread activation across the spectral populations.

Up sweeps partially compensate for the differential delay in the basilar membrane responses

to low frequencies with respect to high frequencies, provoking higher synchronisation in the

auditory nerve [43]. Stronger peak activities result on slightly higher facilitation currents for

up than for down sweeps, causing a noticeable stronger absolute mean pitch shift for up than

for down sweeps, as observed in the experimental data (Fig 7B). Note that this is not the result

of the model overfitting the data, since the average error of the model fit (E[error]’ 1 channel

’ 50 Hz) is of the same order of magnitude as the up-down asymmetry E[asymm"#]’ 100 Hz.

To study the dependence of the model fit with the model’s parameters we recomputed the

explained variance R2 across the parameter space of the model (Fig 8). The model explained

the experimental data in a wide section of the parameter space, with an average R2 across a

Fig 7. Predictions of the FM-feedback spectral model for FM-sweeps. A) Heatmaps show the mean activation at different cochlear channels as simulated by a model of

the auditory periphery in response to each sweep; units are arbitrary. Error bars point to the expected value and standard deviation of the distribution across frequencies

for each sweep. Each empty square denotes the expected channel elicited by a pure tone with the frequency of the average experimental data of the corresponding sweep.

B) Predictions of the standard deviation of the perceived pitch. Error bars are estimations of standard error of the model calculated based on the dispersion of the

centroids for different �f and the standard deviations of the spectral distribution ρ of each condition. Kernel density estimations are the same experimental data as in Fig

1B. C) Predictions of the standard deviation and up/down asymmetry. Error bars show the model predictions of the up/down asymmetry coefficient asymm"# (see Eq

(1)) in the channel space. Kernel density estimations are the same experimental data as in Fig 1C.

https://doi.org/10.1371/journal.pcbi.1008787.g007
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5-point diameter sphere around the final parameters of E[R2] = 0.88 ± 0.01. To show that the

fit of the model was not simply caused by an overall stronger activation provoked by the facili-

tation currents, but by a decrease in the effective time constant of the populations, we also

computed the dependence of R2 with the conductivity of the feedback JNMDA while keeping

the population time constant τ fixed to τ = τmemb (see Methods). Even considering lower

τmemb than the physiologically valid nominal value τmemb = 20 ms, without an adaptive τ,

much stronger NMDA currents (JNMDA * JAMPA) are necessary to shift the peak of the distri-

bution of the responses across the spectral layer towards the experimental results.

Reproduction of previous experimental results. We tested whether the FM-feedback

spectral model was able to predict the pitch shift of additional data. For this, we chose the sti-

muli of Brady and colleagues [17], because this was the only study that investigated the depen-

dence of the sweep pitch shift with properties different than Δf. Specifically, in the experiment
II they considered FM-sweeps with a fixed 20 ms transition between 1000 Hz and 1500 Hz that

was located at six different positions within a 90 ms stimulus (see schematics in Fig 9A, left).

In the experiment III, they used FM-sweeps in the same Δf but with transitions of six different

durations (see schematics in Fig 9A, right). All stimuli had the same duration (90 ms) and fre-

quency span (1000-1500 Hz); in each of the two experiments there was a total of 12 stimuli (six

up, six down).

We compared the predictions of the FM-feedback spectral model with the experimental

results reported in the original paper (Fig 9B). The experimental trend is well reproduced by

the model (R2 = 0.49).

Testing the FM-feedback spectral model with a new class of stimuli

The results described so far are in favour of the hypothesis that there is a feedback system

between populations of the spectral and sweep representations that has strong repercussions

on perceptual behaviour. Next, to validate these findings, we introduced a new set of stimuli

specifically designed to contest the main hypothesis of the model. The new stimuli consist of

concatenations of several single sweeps with the same properties as the stimuli used in the first

experiment. We call them sweep trains in the following. Sweep trains present the same

Fig 8. Experimental fit in relation to the FM-feedback spectral model parametrisation. Heatmaps show the explained variance of

the experimental data R2. Unless stated otherwise, parameters not varied in the matrices correspond to the values listed in Table 1.

The two leftmost plots show the dependence of R2 with the conductivity of the feedback connections and the dynamics of the

excitatory population time constants. Different values of the nominal population’s time constant were used to illustrate that the

dynamic effect (rather than the resulting shorter time constant) is crucial to explain the experimental results; however, during the

parameter tuning the temporal constant was constrained to τmemb = 20 ms based on physiological observations [44]. The rightmost

plot shows the dependence of R2 on the width and reach (wωs and Δωs, respectively; see Methods) of the feedback connections. Black

crosses in the parameter space signal the final parametrisation.

https://doi.org/10.1371/journal.pcbi.1008787.g008
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acoustical properties as the single sweeps used in the first behavioural experiment and should

nominally elicit the same pitch percept as their single-sweep subcomponents. However, the

FM-feedback spectral model predicts that the feedback system will only reduce the time con-

stant of the spectral populations during the processing of the first sweep in the train, because

they will already have an elevated firing rate (and thus a low effective time constant) during

the processing of the subsequent sweeps in the train. Consequently, the model predicts that the

sweep trains will elicit a much more subtle pitch shift than their single sweep counterparts. We

tested this prediction in a perceptual experiment analogous to the first experiment.

Sweep trains show minimal sweep pitch shift

Sweep trains were constructed using the sweeps from experiment 1. To ensure that each

train was perceived as a single auditory object, we only used sweeps with |Δf |� 333 Hz,

resulting in a total of 3 × 6 = 18 stimuli. As in the results from Experiment 1 (Fig 1), the mag-

nitude of the pitch shift in sweep trains depended on Δf (Fig 10 and S1 Table, bottom). How-

ever, as qualitatively predicted by the FM-feedback spectral model, the effect sizes of the

correlation were lower than in the single-sweep experiment (cf., S1 Table, top). Data also

showed higher variability than in experiment 1 (S1 Fig). After completing the experiment,

some participants reported in informal conversation that the sweep train stimuli were

harder to match than the single-sweep counterparts. Although trains with small Δf were gen-

erally perceived as continuous tones, subjects reported that a few trains (putatively those

with the largest Δf) elicited a ringing-phone-like percept. Stimuli are available in the sup-

porting information (S1 Sounds).

Sweep-train stimuli show only a subtle up/down asymmetry that did not reach statistical

significance even for the larger Δf (p = 0.67, p = 0.96, p = 0.36 for |Δf | = 333, |Δf | = 200, |Δf | =

66, respectively; according to two-sided Wilcoxon signed rank tests with 24 samples per

condition).

Fig 9. Predictions of the FM-feedback spectral model for Brady’s stimuli. A) Schematic view of the stimuli from [17]. In experiment II (left) the transient was fixed to a

20 ms duration and its onset was systematically varied so that the transition falls at different segments of the stimulus. In experiment III (right) the stimulus offset was

fixed at 90 ms and the transient’s onset varied between 10 and 50 ms, resulting in transients of different durations. We extended the duration of these last stimuli to 95 ms

to prevent the ramping at the end of the stimulus from overlapping with the FM transient. B) Model predictions. Heatmaps show the distribution of the activation across

channels (y-axis) for different transient onsets (x-axis). Squares printed over the distributions mark the estimations of the experimental results in the channel space.

https://doi.org/10.1371/journal.pcbi.1008787.g009
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The FM-feedback spectral model explains the diminished pitch shift in the

sweep trains

Next, we assessed the ability of the FM-feedback spectral model to quantitatively explain the

effect size of the pitch shift observed in the sweep trains. The fit with the experimental data was

comparable to that of the single sweep stimuli: the model explained R2 = 0.99 of the variance of

the data (Fig 11A). As in the first experiment, the standard deviations of the experimental data

was strongly correlated to the width of the model responses (rp = 0.75, p< 10−10; Fig 11B).

Last, we tested whether the different up/down asymmetry (asymm"#) observed in the single

sweeps and sweep train data could be quantitatively explained by the FM-feedback spectral

model. In the single-sweep data, the model predicts a stronger sweep pitch shift magnitude

|Δp| for up sweeps (Fig 7C) because these elicit a stronger peak activation in the auditory nerve

[45], resulting in stronger facilitation currents. Qualitatively, a much weaker asymmetry was

expected in the sweep-train data, since the spectral populations have already high firing rates

(and thus low effective integration time constants) during the processing of the ending four

fifths of the stimuli. In sweep trains, then, only the first sweep contributes to the sweep pitch

shift, whereas the remaining sweeps provide equal contributions to the range of spanned fre-

quencies, diluting the shift magnitude by four fifths. Modelling results on the up/down asym-

metry closely reproduced the empirical data (Fig 11C), fully explaining the observed

differences between the two classes of stimuli.

Discussion

In this work we have built a novel model that describes how feedback projections between the

two different known representations of FM (i.e., spectral and sweep) could be used in the

brain to facilitate encoding. This contrasts with the classical view of FM encoding as a bottom-

up process [14]. The feedback mechanism proposed in this work uses predictions generated by

populations encoding FM direction to aid encoding in populations encoding instantaneous

frequency, enhancing direction selectivity and shortening FM processing time. Since this pre-

dictive facilitation is not intrinsically restricted to the fast-FM characteristic of formant transi-

tions in speech, similar facilitation mechanisms could also boost encoding efficiency for the

slower FM underlying the perception of prosody and melody.

In this work we have used the model to encode sinusoidal (pure-tone) FM stimuli that are

far from the complexity of natural speech sounds. In speech, phonemes are characterised by

concurrent formant transitions that span complementary frequency ranges. Moreover, each of

Fig 10. Sweep pitch shift for sweep trains. Kernel density estimations on the perceived pitch are plotted separately for each of the 18 sweep trains used in the

experiment. The y-axis of each plot shows the magnitude of the sweep pitch shift Δp. The x-axis list the spans of each of the sweeps. Red crosses show the mean and

standard error of the data. Dark dashed lines show the group linear fit of the data.

https://doi.org/10.1371/journal.pcbi.1008787.g010
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these formant transitions are carried by harmonic complex tones rather than pure tones. It is

currently unclear how the mechanisms introduced here could be used in natural settings to

encode phonemes. One possibility is that sinusoidal sweeps are first decoded in the sweep

layer and integrated in a later step of the ascending hierarchy. Since the populations encoding

direction selectivity in the FM-feedback spectral model are tuned to specific best frequencies,

the sweep layer is potentially able to encode simultaneous sweeps spanning complementary

frequency ranges and represented by parallel harmonic series. Neural populations in the sweep

layer could output to a third level of abstraction where combinations of concurrent sweeps

across harmonic series are mapped into phonemes. Therefore, the FM-feedback spectral

model could be the first basic building block towards a more comprehensive understanding of

speech processing.

Bottom-up pitch models and pitch codes

The bottom-up integration of the spectral representation, cornerstone of the classical spectral

or place theories of pitch [46], predicted a null sweep pitch shift. Other attempts of bottom-up

models have also failed to parsimoniously explain the pitch shift: A previous phenomenological

Fig 11. Predictions of the FM-feedback spectral model for sweep trains. A) Heatmaps show the distribution of the activation across the spectral representation (y-axis

are cochlear channels) for different sweep frequency spans Δf (x-axis). Error bars point to the expected value and standard deviation of the distribution across frequencies

for each sweep. Each empty square denotes the expected channel elicited by a pure tone with the frequency of the average experimental data of the corresponding sweep.

B) Predictions of the standard deviation of the perceived pitch. Error bars are estimations of standard error of the model calculated based on the dispersion of the

centroids for different �f and the standard deviations of the spectral distribution ρ of each condition. Kernel density estimations show the empirical subjects’ standard

deviation of the sweep pitch shift Δp in sweep trains, plotted separately for the different frequency spans Δf. Each sample in the distributions corresponds to the standard

deviation of the perceived pitch of a sweep in one subject. The standard deviation is monotonically correlated to the absolute span |Δf | (rs = 0.63, p< 10−27). C)

Predictions of the standard deviation and up/down asymmetry. Error bars show the model predictions of the up/down asymmetry coefficient asymm"# (see Eq (1)) in the

channel space. Kernel density estimations show the empirical up/down asymmetry distributions in sweep trains, as defined in Eq (1). Each sample of the distributions

corresponds to the difference of the average absolute deviation from centre frequency between up and down sweeps of the same |Δf | for a given subject and centre

frequency. Red crosses show the mean and the standard error of the data.

https://doi.org/10.1371/journal.pcbi.1008787.g011
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model suggested that a leaky integration of the instantaneous frequency could result in the end-

ing segments of the sweeps having a stronger weight in the pitch decision, which would qualita-

tively explain the direction of the pitch sweep shift [21]. However, this model predicts the same

pitch shift in single sweeps than sweep trains and the same absolute pitch shift in up and down

sweeps, in direct contradiction with the empirical data.

Our simulations showed that current bottom-up modelling approaches based on a tempo-

ral code cannot even extract robust pitch information from most FM-sweeps used in the

experiments. This is most likely a consequence of the fast change rate in the periodicities of

fast FM stimuli. Typically, pitch decisions based on the auditory nerve temporal code are made

after integrating over four cycles of the period of the stimuli [32, 47], coinciding with the dura-

tion threshold for accurate pitch discrimination [48]. However, our stimuli presented an aver-

age change of *25 Hz across four repetitions of their average frequency, making this

integration virtually impossible.

Another possibility is that a combination of the temporal and spectral codes is used to pro-

cess the pitch of FM-sweeps, and that the sweep pitch shift emerges from this integration.

Both, spectral and temporal representations of pitch play different roles in pitch processing,

and it has been previously suggested that both codes could be added to perform pitch decisions

(see [25] for a review). However, the temporal code had no usable pitch information at |Δp|>

200 Hz that could be integrated with the spectral code.

Although it is methodologically impossible to explore and anticipate the space of all possible

models of pitch processing and more sophisticated bottom-up mechanisms might theoretically

suffice to explain the sweep pitch shift in sweeps and sweep trains, the feedback modulation

mechanism introduced in this study is, to date, the only available account of the experimental

data.

Relation to predictive coding and hierarchical processing strategies

The presence of predictive feedback modulation in the subcortical sensory pathway has been

shown before in humans [49, 50] and non-human mammals [51]. Previous studies often inter-

preted it in the context of the predictive coding framework [27, 28, 52], a theory of sensory

processing that postulates that sensory information is encoded as prediction error; i.e., that

neural activity at a given level of the processing hierarchy encodes the residuals of the sensory

input with respect to a generative model encoded higher in the hierarchy.

The FM-feedback spectral model can also be understood in the light of this formalism: it

presents three hierarchical layers of abstraction: the inputs from the peripheral system, the

spectral layer, and the sweep layer. The top layer performs predictions on the sensory input

incoming at the immediately lower representation of the hierarchy. However, unlike the classi-

cal predictive coding microcircuit where the generative model used to perform predictions

and prediction error are kept in separate neural ensembles [53], the sweep network simulta-

neously holds a representation that is both, descriptive for its own representation and predic-

tive for the immediately lower representation in the hierarchy.

Combining the generative model and stimulus representations in the same neural code

solves some of the open questions of classical predictive coding architectures recently summa-

rised by Denham and Winkler [54]: i) “what precisely is meant by prediction?”, ii) “which gen-

erative models [within the hierarchy] make the predictions?”, and iii) “what within the

predictive framework is proposed to correlate with perceptual experience?”. In the FM-feed-

back spectral model, the predictions can be summarised as the probability distribution of pat-

terns of activation expected to come next in the lower level given what has been encoded so far

in the higher level. These conditional probability distributions are encoded in the feedback
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connections stemming from the neurons holding the high-level representation and targeting

the neurons holding the lower level representations. Such connectivity patterns would repre-

sent the statistics between the representations in the two levels, and could have arisen naturally

during development after sufficient exposure to the stimuli. The perceptual experience in the

FM-feedback spectral model is encoded in the activation along the two hierarchical stages,

which encode different aspects of the stimuli.

Another key difference between the FM-feedback spectral model’s architecture and the

classical predictive coding microcircuit is that, rather than encoding the residuals of the spec-

tral representation with respect to the FM-sweep representation, neurons in the spectral layer

simply encode the spectral content of the stimulus. However, since the decoding of the predict-

able parts of the stimuli is faster, predictability potentially ensues a significant decrease on the

amount of signal produced during the encoding. Such mechanism would explain why even

expected stimuli, for which the residual should theoretically be zero, do still evoke measurable

responses (e.g., [51]).

Comparison with previous measurements of the sweep pitch shift

Our experimental findings qualitatively replicated the sweep pitch shift found in previous

studies; namely, we found that the pitch elicited by FM-sweeps was biased towards the fre-

quencies spanned in the ending part of the sweeps [17], and that the perceptual bias is mono-

tonically related to the frequency span Δf [18, 19]. On average, we estimated a putative linear

relation between the pitch shift Δp and Δf of around m’ 0.38, slightly higher than Brady’s

[17] (m’ 0.34 with transitions of 50 ms) and Nabelek’s [18] (m’ 0.32 with transitions of 40

ms) reports, and significantly higher than Rossi’s [19] (m = 1/6’ 0.17 with transitions of 200

ms) estimation. Since Rossi’s transitions were 5 times longer than ours, the estimations are dif-

ficult to compare. However, the disagreement seems to indicate that the pitch shift is stronger

with shorter durations. This observation would be fully compatible with the mechanism of

predictive facilitation described in the FM-feedback spectral model: since the time to decode

FM direction is independent of sweep duration, whilst only the most posterior part of the stim-

ulus is facilitated in the short sweeps, in a long sweep the facilitation currents would affect a

much larger portion of the sound, potentially including frequencies occurring even before �f .

In their original study Brady and colleagues [17] found that some sweeps of 20 ms duration

elicited pitch values that coincided and even exceed the frequency span of the stimuli, espe-

cially in up sweeps. This perceptual extrapolation or overshoot has been replicated in two later

studies [55, 56] and seems to further confirm the idea that the sweep pitch shift is driven by

feedback between the sweep and spectral layer. However, the facilitation currents present in

our model could not provoke activation of frequencies that are not initially present in the stim-

ulus. One possibility is that the facilitation currents induce activation in neurons encoding fre-

quencies that, although beyond the spectral range spanned by the sweep, are present in the

stimulus spectrum. This scenario is unlikely in our data because we used frequency modulated

sinusoids that elicit a unimodal distribution of responses in the auditory periphery. However,

the three studies that showed the overshoot effect used spectrally rich stimuli. This would also

explain why our model predicts smaller effect sizes than Brady’s data in Fig 9. To clarify this

point further work could either test if, as predicted by our model, sinusoidal sweeps do not

produce an overshoot, and if an extension of our model able to handle spectrally rich stimuli

does reproduce the overshoot effect shown in previous experimental data.

The FM-feedback spectral model also provides for a mechanistic interpretation of the two

additional experiments reported in Brady’s original study [17]. In Brady’s experiment II, the

transient duration of the sweep is kept constant but its onset is varied across the stimulus
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duration. When the transient is located near the beginning of the stimulus, the greatest part of

the sounds excites neurons encoding frequencies close to the posterior parts of the transient

pushing the distribution of the responses away from the average frequency towards the ending

frequencies of the sweep f1. This shift is larger than expected for a sound without a transient

because of the feedback modulation of the later frequencies exerted by the sweep network.

When the transient is located at the very end of the stimulus, the longer portion of the stimulus

exciting f0 compensates for the shift in the frequency distribution, bringing the perceived pitch

closer to the starting frequencies of the stimulus.

In Brady’s experiment III, the transient’s onset is kept constant and it is the duration of the

transient that is varied. The decreased sweep pitch shift observed for shorter in comparison to

longer transient durations can be explained by the FM-feedback spectral model as a conse-

quence of the stimuli presenting a larger segment with the initial frequency, thus shifting the

distribution of the responses towards f0.

FM encoding and physiological location of the sweep and spectral layers

The earliest neural centre within the auditory pathway showing FM direction selectivity in

mammals is the inferior colliculus [3–6], although thalamic nuclei (medial geniculate body) [6,

7] and auditory cortex [4, 8–11] show generally stronger DSIs. Thus, the sweep layer postu-

lated in the FM-feedback spectral model could be implemented even at early stages of the audi-

tory hierarchy. Similarly, since all the nodes in the ascending auditory pathway contain

tonotopically arranged nuclei, the spectral layer could be putatively located as early as in the

cochlear nucleus. The physiological location of the mechanisms described here remains an

open question.

Conclusion

In this work we have harnessed a well-established perceptual phenomenon to inform a model

of FM direction encoding. We have shown that representative bottom-up models of pitch pro-

cessing do not explain the pitch elicited by fast FM sweeps. Based on neurobiological consider-

ations, we hypothesised that FM direction-selective neurons alter the way that spectral

information is encoded via a feedback mechanism. We used the hypothesis to develop a model

that proposes how this feedback modulation might be exerted and how it might affect the

pitch percept elicited by FM sweeps. Although we cannot logically exclude other potential

explanations for the effect, we provide evidence that our hypothesis is a likely and plausible

mechanism underlying the encoding of formant transitions. These mechanisms could be part

of a larger hierarchical network that transforms formant transitions into phonemes, phonemes

into syllables, and syllables into words. Unravelling the fundamental building blocks of this

hierarchy is a necessary prerequisite for a comprehensive understanding of the computational

mechanisms underlying speech perception in the human brain.

Materials and methods

Ethics statement

The study was approved by the ethics committee of the University of Leipzig (ethics approval

number 273/14-ff). All participants provided informed verbal consent.

Measuring the sweep pitch shift in single sweeps

Participants. Eight participants (4 female), aged 22 to 31 (average 26.9) years old, were

included in the study. They all had normal hearing thresholds between 250 Hz and 8 kHz
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(<25dB HL) according to pure tone audiometry (Micromate 304, Madsen Electronics). All

reported at least five years of musical experience, but none of them was a professional musi-

cian. See the section Inclusion criteria bellow.

We considered a sample of N = 8 as sufficient for two reasons. First, the sweep pitch shift

has been independently demonstrated in several previous studies [17–19]. The first experiment

in our study is a replication of these previous studies that allowed us to quantify the sweep

pitch shift. Second, low-level psychoacoustic phenomena are typically characterised by small

inter-subject variabilities, so not many participants are necessary to demonstrate their gener-

alisability [57]. We have selected 8 participants to ensure that that was the case, but the litera-

ture is populated with highly reproducible results that are inferred from experiments

performed on populations as small as N = 4 [58]. Ours and previous data confirms that indeed

the sweep pitch shift is present and shows the same direction and order of magnitude at the

single subject level (S1 Fig; see also Tableau IV in [19] showing the effect in 18 subjects). Both

experiments carried out in our study were taxing and extremely long, lasting for up to three

hours per subject. Thus, while increasing the sample size would have not resulted in a stronger

demonstration of the effect, it would have incurred an unjustified waste of resources.

Stimuli. Stimuli were 50 ms long frequency-modulated sweeps. Frequency was kept con-

stant during the first and final 5 ms of the sweeps. The modulation was asymptotic (i.e., linear

in the period T = 1/f space) and carried out in 40 ms. Stimuli were ramped-in and ramped-out

with 5 ms Hanning windows overlapping the sections with constant frequency.

There were 30 single sweeps with 10 linearly distributed frequency spans Δf 2 [−600, 600]

Hz and 3 average frequencies �f 2 f900; 1200; 1500g Hz. For each sweep with a given Δf and

�f , the initial and final frequencies were f0 ¼ �f � Df =2 and f1 ¼ �f þ Df =2.

Sounds were delivered by over-ear headphones Sennheiser (Sennheiser electronic GmbH &

Co. KG; Germany) HD201 connected to a Realtek (Realtek Semiconductor Corp.; Taiwan)

ALC1150 soundcard. Participants were required to adjust the loudness of the stimuli to a com-

fortable level during the pure-tone-test (see Inclusion Criteria), so that they had a wide range

of pure tones to use as reference. The experiment was carried out in a quiet room. Stimuli

were produced and delivered by a custom-made MATLAB (MathWorks, Natik, USA) script.

Scripts running the experiment and generating the sounds are freely available in github.com/

qtabs/fmPitch/experiment.

Experimental design. Each trial consisted of a sequential presentation of a target sweep

and a probe pure tone. After the presentation, the participant was asked whether the second

sound evokes a higher, equal, or lower pitch percept than the first sound. Participants were

allowed to replay the sounds as many times as needed in case of doubt. After the response, the

software adjusted the frequency of the probe tone by steps of ±� = ±25 Hz, bringing the pitch

of the sound closer to the participant’s percept (e.g., if the participant judged the target sweep

as having a lower pitch than the probe tone, the frequency of the probe tone was reduced by 25

Hz). This procedure was repeated until the participant reported that the two sounds evoked

the same pitch percept. Then, the frequency of the matched pure tone was stored as the per-

ceived pitch of the sweep reported in that trial, and a new trial with a new target sweep began.

The initial frequency of the probe tone was sampled from a Gaussian distribution centred on

the average frequency �f of the target sweep.

Each of the 30 sweeps was matched four times, so that there were 120 trials in total in the

experiment. The relative order of the probe tone and the target sweep was reversed in half of

the trials to assess if presentation order affects the sweep pitch shift. Thus, the experiment can

be described as a 10 (10 different frequency spans) × 3 (3 average frequencies) × 2 (probe

played first or last) factorial design.
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Inclusion criteria. We initially recruited 22 participant candidates, which were screened

by a first behavioural test assessing their capacity to match pure tones against pure tones

(pure-tone-test), and then by a second behavioural test measuring their consistency when

matching sweeps against pure tones (sweep-test). 14 of those 22 participants did not comply

with the inclusion criteria: one was unable to match pure tones of the same frequency, 13 were

unable to match sweeps against pure tones consistently. Consistency was assessed indepen-

dently for each subject: i.e., the test did not evaluate whether the subject conformed to the

results of other participants or if the subject showed a sweep pitch shift in any direction. The

test only served to evaluate whether the subject approximately adjudicated the same pure tones

to the same sweep, and was meant to exclude subjects that, due to poor pitch discrimination

abilities or lack of motivation, were unable to perform the task.

The pure-tone-test was designed to ensure that participants had understood the task. We

used the same experimental design as in the main experiment, including the same frequency

step of 25 Hz, but both probe and target consisted of pure tones. During the pure-tone-test,

the software provided feedback after each trial informing the participant whether the response

was correct or incorrect. The pure-tone-test was divided in batches of six trials, and it con-

cluded when the participant correctly matched the pitch of every trial in one batch. Most par-

ticipants completed the pure-tone-test in the first batch; the participant excluded during the

pure-tone-test failed to provide correct estimates for as many as six batches.

The sweep-test was used to evaluate whether participants could perform self-consistent

judgements on the pitch of FM-sweeps. During the sweep-test, participants undertook a block

of 12 trials consisting in 4 repetitions of the same 3 sweeps: fDf ¼ 67 Hz; �f ¼ 900 Hzg,

fDf ¼ � 200 Hz; �f ¼ 1200 Hzg, and fDf ¼ � 67 Hz; �f ¼ 1500 Hzg. We chose these sweeps to

ensure diversity of the sweep properties while keeping |Δf | small enough to ensure that the

sweeps would elicit an unequivocal pitch percept according to Hart’s law [59]. After the com-

pletion of this block, we scored the participant’s pitch matching consistency as the inverse of

the average of the absolute differences between the reported pitch in each sweep. Participants

with an average standard deviation larger than twice the frequency increment step 2� = 50 Hz

were excluded from the experiment.

Since Hart’s law [59] establishes that the sweeps used during the sweep-test elicit an

unequivocal pitch percept, excluded participants were either unable or unwilling to perform

consistent pitch judgements on sweeps. The inclusion of participant with inconsistent judge-

ments would have contaminated the data with random guesses that could bias our estimations

of the sweep pitch shift towards Δp = 0. Six of the excluded participants reported no previous

musical experience; the remaining 8 had at least five years of musical training.

Experimental procedure. The 8 included participants matched the remaining 27 sweeps

in four additional blocks. No sweep type was repeated within a single block, and all sweeps

were presented 4 times across the entire experiment, resulting in 27 trials per block. The order

of the sweeps within each block was randomised and the relative position of the probe tone

with respect to the target stimulus was pseudorandomised so that in half of the trials in each

block the probe tone was presented before the target sweep. Participants were instructed to

take rests between blocks and were allowed to take as many shorter rests between trials as

needed. To encourage precision, a 5€ award was offered to participants that kept their self-

consistency along the main experiment with the same criterium as in the evaluation: a smaller

standard error than 2� = 50 Hz within each sweep type. Only sweeps expected to yield the

most unequivocal pitch sensation according to Hart’s law [59] (i.e., |Δf |� 200 Hz) were used

to compute the overall self-consistency; participants were however unaware of this. Partici-

pants typically completed the experiment within 3 hours.
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Measuring the sweep pitch shift in sweep trains

Participants. The same 8 participants who completed the first experiment were invited to

repeat the measurements with the new stimuli.

Stimuli. Stimuli were concatenations of 5 sweeps adding up to a total of 250 ms (sweep

trains; see Fig 12). The sweeps were taken from a subset of 18 elements from the first experi-

ment with 6 different frequency spans Δf 2 [−333, 333] Hz. To ensure continuity of the stimu-

lus waveform, the sweeps were concatenated in the frequency domain (i.e., we computed the

waveform of the stimuli by performing a Fourier transform over the concatenation of the time

courses of the instantaneous frequencies). 5 ms Hanning windows were applied only at the

very beginning and very end of the sweep trains.

Experimental design. The matching procedure was the same as in the first experiment:

the participants matched the pitch of the sweep trains to probe pure tones whose frequency

they could adjust with the aid of a computer software. To ensure that there were no effects of

stimulus duration, the probe tones had the same duration as the sweep trains (i.e., 250 ms). As

in the first experiment, each of the 18 sweep trains was matched four times, so that there were

72 trials in the second experiment. The relative order of the probe tone and the target sweep

train was also reversed in half of the trials. Thus, the second experiment can be described as a 6

(different frequency spans) × 3 (average frequencies) × 2 (probe played first or last) factorial

design.

Experimental procedure. Since the participants were already familiar with the task and

proved to be able to match the pitch of FM-sweeps consistently, the experiment contained no

pure-tone- or sweep- test. Four repetitions of the 18 sweep-trains were distributed across 5

blocks following the same principles as described in the first experiment. Participants typically

completed the second experiment within 2 hours.

Bottom-up models of pitch

Spectral models of pitch processing. The responses at the auditory nerve were computed

with a model of the peripheral auditory system [22, 60]. The model’s output represents the

expected firing rate pn(t) in a fibre of the auditory nerve associated with the nth cochlear chan-

nel (n = 1, 2, . . ., N) at an instant t. The frequency range of the cochlear model was discretised

in N = 100 channels, spanning frequencies from fmin = 125 Hz to fmax = 10 kHz.

The perceived pitch corresponded to the expected cochlear channel k, E[k], according

to a probability distribution ρ derived from the integral of pn(t) over the duration of

Fig 12. Examples of the stimuli. Waveform s(t) and instantaneous frequency f(t) of the sweep with �f ¼ 1200 Hz and Δf = −200 Hz and its corresponding sweep train.

https://doi.org/10.1371/journal.pcbi.1008787.g012
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the stimulus L:

E½k� ¼
X

n

nrn with rn ¼

R L
0
dt pnðtÞ

P
n

R L
0
dt pnðtÞ

ð2Þ

To compare the predictions of the model with the experimental data, we also computed the

expected channels E[k] associated to pure tones with the frequency of the average perceived

pitch of each sweep.

Temporal models of pitch processing. The SACF used in this work follows the original

formulation by Meddis and O’Mard [23, 24]. Essentially, this model poses the existence of an

array of M periodicity detectors responding more saliently to a preferred period δtm. The

instantaneous firing rate Am(t) of the mth periodicity detector (m = 1, 2, . . ., M) follows:

tSACF
m

_AmðtÞ ¼ � AmðtÞ þ
X

n

pnðtÞ pnðt � dtmÞ ð3Þ

where the auditory nerve activity pn(t) in the cochlear channel n at an instant t is computed

as in the previous section. The characteristic periods δtm are uniformly distributed between

δtm = 0.5 ms and δtm = 30 ms, which allows the model to capture periodicities corresponding

to frequencies between 2 kHz and 135 Hz up to four lower harmonics. We kept a fixed integra-

tion constant tSACF
m ¼ 2:5 ms; using variable tSACF

m that depend linearly on δtm (see details in

[31, 61]) did not result in substantial changes in our results.

Stimuli presenting periodicities at a certain frequency f typically elicit peaks of activation

in the detectors tuned to the preferred period δtm = 1/f = T0 and to the periods correspond-

ing to all subsequent lower harmonics δtm = 2T0 = T1, δtm = 3T0 = T2, etc. Thus, evidence

for the period T at an instant t, B(t)T can be represented as the BðtÞT ¼
X

m2fMTg
AmðtÞ,

where MT are the indices of the periodicity detectors tuned to T, 2T, 3T, etc. (i.e.,

MT ¼ fm : dtm ¼ nT 8 n 2 ½1; 2; 3; :::�g). We estimated B(t)T using four harmonics;

extending or reducing the number of harmonics used to estimate B(t)T did not significantly

alter our results.

The perceived pitch corresponded to the expected period T, E[T], according to a probability

distribution ρ derived from the integral of BT(t) over the duration of the stimulus L:

E½T� ¼
X

T

TrT with rT ¼

R L
0
dt BTðtÞ

P
n

R L
0
dt BTðtÞ

ð4Þ

To compare the predictions of the model with the experimental data, we computed the

expected period E[T] associated to pure tones with the frequency of the average perceived

pitch of each sweep.

Details on the predictive model of FM encoding

Spectral layer and pitch estimations. The spectral layer consists on an array of N = 100

neural populations that integrate the output of the peripheral model. Neural populations are

modelled according to a mean-field derivation [62] on linear integrate-and-fire neurons that,

although first formulated to describe dynamics in cortical regions dedicated to visual decision

making, has shown a great versatility approximating the dynamics of many different cortical

areas (e.g., [63]). We decided to use a simple point model without physiological detail because

we do not know exactly the location in the brain of the system we are modelling.
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The firing rate hn(t) of the nth ensemble follows the dynamics of a leaky integrator:

tpop _hf
nðtÞ ¼ � h

f
nðtÞ þ �ðI

f
nðtÞÞ ð5Þ

where ϕ(x) = (cx − I0)/(1 − e−g(cx − I0)) is the transfer function of the mean-field model and τpop

are adaptive time constants:

t
pop
e;i ðh; IÞ ¼ tmemb

e;i DT
@x�ðxÞjx¼I

h
ð6Þ

ΔT = 1mV is the size of the spike initialisation of the neural model and tmemb
e ¼ 20 ms and

tmemb
i ¼ 10 ms [44] are the neural membrane time constants for excitatory and inhibitory

populations, respectively. Using adaptive integration time constants makes the populations to

react faster to changes when they are marginally active and have weak synaptic inputs, a behav-

iour often reported in tightly connected populations of neurons [42]. This component is the

key of the feedback mechanism used to increase the responsiveness of the populations encod-

ing the expected parts of the sweeps (Fig 6). The analytic formulation of τpop(h, I) stems from a

theoretical study of networks of exponential-integrate-and-fire neurons [42].

Inputs IfnðtÞ were modelled with AMPA synaptic dynamics [41]. AMPA synapses present

short time constants that are able to preserve the fine temporal structure of auditory input, and

thus are the major receptor type conveying bottom-up communication in the auditory path-

way (e.g., [64]).

IfnðtÞ ¼ JAMPA
in

X

k

oin
nkS

AMPA
in;k ðtÞ ð7Þ

where JAMPA
in

is the effective synaptic efficacy of the peripheral input. We allowed some disper-

sion in the propagation from the peripheral model to the spectral layer by using a Gaussian-

shaped connectivity matrix. This ensured that the bandwidth of the self-excitation in the spec-

tral representation is independent of the number of cochlear channels:

oin
nm ¼

1
ffiffiffiffiffiffi
sin
p e�

ðm� nÞ2

2sin ð8Þ

where the normalisation factor
ffiffiffiffiffiffi
sin

p
ensures that the total input to a population under a uni-

form peripheral input remains the same regardless of the dispersion σin. The synaptic gating

variable SAMPA
in;n ðtÞ follows [41]:

tAMPA _SAMPA
in;n ðtÞ ¼ � S

AMPA
in;n ðtÞ þ pnðtÞ ð9Þ

Note that we used the index f to denote variables in the spectral layer. The perceived pitch

corresponded to the expected cochlear channel k, E[k], according to a probability distribution

ρ derived from the integral of hfnðtÞ over the duration of the stimulus L (cf. Eq (2)):

E½k� ¼
X

n

nrn with rn ¼

R L
0
dt hfnðtÞ

P
n

R L
0
dt hfnðtÞ

ð10Þ

The time constant τAMPA = 2 ms was taken from the literature [41]. The effective conductiv-

ity JAMPA
in

¼ 0:38 nA was manually tuned within the realistic range such that the peripheral

system would elicit firing rates on the range 5Hz� hn(t)� 100 Hz in the integrator ensembles.

The transfer function and its parameters, empirically derived for networks of integrate-and-

fire neurons, were taken from [62].
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Sweep layer and direction selectivity. We used delayed excitation [10, 26, 35] to model

FM-direction selectivity. Two additional mechanisms for FM direction selectivity have been

identified in IC, MGB and auditory cortex in the animal electrophysiology literature: asym-

metric sideband inhibition [3, 35, 36], and duration sensitivity [6, 36, 37]. Although both

delayed excitation and sideband inhibition contribute to direction selectivity in the mammal

auditory pathway [3, 35, 36], the two mechanisms are often redundant and yield equivalent

results when embedded in a neuronal model [14]. We chose to use delayed excitation alone for

simplicity but, given that all models show similar direction and rate selectivity to FM-sweeps,

replacing it by or adding any extra mechanism is unlikely to affect the model predictions.

The sweep layer consists of four arrays of N = 100 neural populations following the same

dynamics described in the previous section (i.e., Eq (5)). From the four arrays, two (one excit-

atory, one inhibitory) are tuned to up sweeps, and two (again, one excitatory and one inhibi-

tory) are tuned to down sweeps (Fig 3). The neural populations are characterised by the

instantaneous firing rates h"en ðtÞ; h
"i
n ðtÞ (up) and h#en ðtÞ; h

#i
n ðtÞ (down), and receive synaptic

inputs I"en ðtÞ; I
"i
n ðtÞ (up) and I#en ðtÞ; I

#i
n ðtÞ (down), respectively for excitatory and inhibitory pop-

ulations. Although the transfer functions ϕ(x) are the same for all the ensembles, the parame-

ters c, I0, and g are different for excitatory and inhibitory populations [62].

Excitatory and inhibitory inputs to populations in the sweep layer are modelled according

to AMPA-like and GABA-like synaptic gating dynamics [41]:

_SAMPA
a;n ðtÞ ¼ �

SAMPA
a;n ðtÞ
tAMPA

þ haen ðtÞ þ sx; a ¼"; #; f

_SGABA
a;n ðtÞ ¼ �

SGABA
a;n ðtÞ
tGABA

þ hain ðtÞ þ sx; a ¼"; #

where ξ is an uncorrelated Gaussian noise sampled independently for each synapse and instant

t, and σ = 0.0007 nA is the amplitude of the noise [62]. The total synaptic input for each popu-

lation is then:

I"en ðtÞ ¼ JAMPA
f

X

m

of "
nmS

AMPA
f ;m ðt � dtnmÞ�

JGABA
X

m

oie
nmS

GABA
#;m ðtÞ þ SGABA

";n ðtÞ

 !

þ IEbkg

I"in ðtÞ ¼ JAMPA
s

X

m

oei
nmS

AMPA
";m ðtÞ þ IIbkg

I#en ðtÞ ¼ JAMPA
f

X

m

of #
nmS

AMPA
f ;m ðt � dtnmÞ�

JGABA
X

m

oie
nmS

GABA
";m ðtÞ þ SGABA

#;n ðtÞ

 !

þ IEbkg

I#in ðtÞ ¼ JAMPA
s

X

m

oei
nmS

AMPA
#;m ðtÞ þ IIbkg

where IE
bkg

and II
bkg

are constant background inputs putatively sourced in external neural popu-

lations [62].
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The excitatory-to-inhibitory and inhibitory-to-excitatory connectivity matrices ωei and ωie

are Gaussian shaped and centred in the identity matrix:

oa
nm ¼ e�

ðn� mÞ2
2sa ; a ¼ ei; ie ð11Þ

The remaining connectivity matrices ωf" and ωf# are defined to constraint the up (down)

feed to inputs from lower (higher) frequencies and to limit the range of the connection to a

small number of populations Δωf of the spectral representation:

of "
nm ¼

(
1 if 0 � n � m � Dof

0 otherwise

of #
nm ¼

(
1 if 0 � m � n � Dof

0 otherwise

The free parameters were initialised to standard values (the effective conductivities JAMPA
f ,

JGABA, and JAMPA
s , according to [62]; the baseline delay δt0 to 2 ms/channel; and the dispersion

constants σin, σei, σei, and Δωf, to 0.1N) and manually tuned so that the networks showed direc-

tion selectivity for the FM-sweep characteristics (duration, rates, Δf) of the stimuli used in the

first part of the study. Unless stated otherwise, all simulations listed in this work correspond to

the parameters listed in Table 1.

The direction selectivity index (DSI; e.g., [11]) described in the Results section was com-

puted as the proportion of the activity elicited in a network by an up sweep minus the activity

elicited in the same network by a down sweep with the same duration and frequency span:

DSIa ¼
P

n

R
dtð½haen ðtÞ�þDf � ½h

ae
n ðtÞ�� Df Þ

P
n

R
dtð½haen ðtÞ�þDf þ ½haen ðtÞ�� Df Þ

a ¼"; # ð12Þ

where ½haen ðtÞ�Df is the firing rate haen ðtÞ elicited in the network by a sweep with a frequency span

Δf.
Feedback connections. Feedback connections from the sweep layers to the spectral layer

were modelled according to NMDA-like synaptic gating dynamics with a finite rising time

constant [41].

_SNMDA
a;n ðtÞ ¼ �

SNMDA
a;n ðtÞ
tNMDA

þ sx

þð1 � SNMDA
a;n ðtÞÞg haen ðtÞ; a ¼"; #

with γ = 0.641. NMDA currents are added to the total synaptic input of the neurons in the

spectral layer as an additional term in (7):

IfnðtÞ ! Î fnðtÞ ¼ IfnðtÞ þ JNMDA
X

a¼";#

X

m

oaf
nmS

NMDA
a;m ðtÞ

The connectivity matrices oa"
nm, oa#

nm were chosen such that the target of the NMDA-driven

activation was limited to a number of Δωs and leave a gap of wωs populations between the
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centre frequency of the source and target ensembles (see Fig 13, right):

o"fnm ¼

(
1 if wos � m � n � Dos þ wos

0 otherwise

o#fnm ¼

(
1 if wos � n � m � Dos þ wos

0 otherwise

Table 1. Model parameters. Most parameters were taken from the original studies that derived the mean field approximations used in the model and are cited accordingly.

Other free parameters, like the number of bins of the tonotopic axis N, were fixed to reasonable but arbitrary values at the beginning of the model construction and were

not adjusted during the analyses (ad-hoc). Free parameters that were manually tuned are labelled as tuned (x), where x is: 1, for parameters tuned so that the spectral layer

integrates the peripheral representation correctly; 2, for parameters tuned to achieve FM-direction selectivity; and 3, for parameters tuned so that the feedback signalling

resulted in a fair fit between the model’s pitch predictions and the experimental observations. Short description of the parameters in the last column are further explained

along the Methods section. Connectivity parameters are more eloquently described in Fig 13.

parameter value (unit) source description

N 100 channels ad-hoc number of cochlear channels

dt 0.1 ms ad-hoc time step for the numerical integration

periph dt 0.01 ms ad-hoc dt in the peripheral model

periph fmin 125 Hz [60] best frequency of the first cochlear channel

periph fmax 10000 Hz [60] best frequency of the last cochlear channel

tmemb
e 20 ms [44] membrane time constant of excitatory neurons

tmemb
i 10 ms [44] membrane time constant of inhibitory neurons

Δ 1 mV [42] action potential initiation sharpness

cexcitatory 310 (V nC)−1 [62] transfer function parameters (excitatory populations)

Iexcitatory
0

125 Hz [62] transfer function parameters (excitatory populations)

gexcitatory 0.16 s [62] transfer function parameters (excitatory populations)

cinhibitory 615 (V nC)−1 [62] transfer function parameters (inhibitory populations)

Iinhibitory
0

177 Hz [62] transfer function parameters (inhibitory populations)

ginhibitory 0.087 s [62] transfer function parameters (inhibitory populations)

IE
bkg

0.23 nA [62] baseline input current (excitatory populations)

II
bkg

0.10 nA [62] baseline input current (inhibitory populations)

σ 0.0007 nA [62] synaptic noise amplitude

γ 0.641 [41] NMDA coupling factor

τAMPA 2 ms [41] decay time constant of AMPA synapses

τGABA 5 ms [41] decay time constant of GABA synapses

τNMDA 100 ms [41] decay time constant of NMDA synapses

JAMPA
in

0.38 nC tuned (1) AMPA conductivity of the peripheral input

JAMPA
f 0.55 nC tuned (2) AMPA conductivity of the spectral populations

JAMPA
s 0.67 nC tuned (2) AMPA conductivity of the sweep populations

JGABA 0.30 nC tuned (2) GABA conductivity (sweep populations only)

JNMDA 0.05 nC tuned (3) NMDA conductivity (feedback connections only)

σin 0.1N channels tuned (2) dispersion in peripheral input to spectral populations

σie 0.5N channels tuned (2) dispersion in inhibitory-to-excitatory connections

σei 0.03N channels tuned (2) dispersion in excitatory-to-inhibitory connections

Δt0 1 ms/channel tuned (2) baseline delay of the delayed-excitation mechanism

Δωf 0.05N channels tuned (2) connection width (spectral to sweep populations)

Δωs 0.05N channels tuned (3) connection width of the feedback (sweep to spectral)

wωs 0.05N channels tuned (3) connection gap of the feedback (sweep to spectral)

https://doi.org/10.1371/journal.pcbi.1008787.t001
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The gap wωs> 0 is enforced to avoid resonances between sweep-selective and spectral pop-

ulations with the same centre frequency during the encoding of pure tones. The free parame-

ters were initialised to standard values (the NMDA conductivity JNMDA to the value

recommended by [62], and the connectivity parameters wωs and Δωs to 0.1N) and manually

tuned so that the pitch predictions of the model (as computed in Eq (10)) matched the empiri-

cal data.

Supporting information

S1 Fig. Subject specific estimations of the linear fits between the pitch shift Δp and Δf. Each

plot shows the slopes m of the linear fit fperceived �
�f þmDf for each subjects, for the single

sweep (left) and sweep train (right) stimuli; error bars mark the 95% confidence intervals of

the estimations.

(EPS)

S2 Fig. Effect of the presentation order on Δp. Kernel density estimations of the difference

between the perceived pitch evaluated when the sweep was presented before the probe tone

f 
perceived

and the perceived pitch evaluated when the probe tone was presented before the sweep

f!
perceived

; no systematic effect of the presentation order was found for any of the conditions.

Each sample of the distributions corresponds to the difference of the average perceived pitch

between presentation orders of the same Δf for a given subject and centre frequency

(N = 8 × 3 = 24). Error bars show the average and the standard error of the groups. Average

difference across Δf was 145Hz ± 227Hz, largely overlapping 0.

(EPS)

S1 Table. Summary statistics on the relationship between the perceived pitch and the

frequency span for single sweeps and sweep trains. The slope of the linear fit, Pearson’s cor-

relation rp, and Spearman’s correlation rs for the relationship between fperceived and Δf are

Fig 13. Connectivity matrices. Matrices show the connection between the first 25 ensembles of each source-target

group. From left to right, matrices correspond to: excitatory-to-inhibitory ωei, inhibitory-to-excitatory ωie; bottom-up

AMPA connections spectral-to-up ωf", spectral-to-down ωf"; and feedback NMDA connections up-to-spectral ω"f,
down-to-spectral ω# f. Labels are encircled in a white square in the top right of each plot. The free parameters of each

connectivity matrix are defined geometrically in the plots.

https://doi.org/10.1371/journal.pcbi.1008787.g013
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presented for each centre frequency �f and direction of the presentation (probe before sweep,

!; and sweep before probe, ). Spearman’s correlation is systematically larger than Pearson’s,

indicating that the elicited pitch is related to Δf in a non-linear monotonic way.

(TEX)

S1 Sounds. Stimuli used in the experiments. Each waveform corresponds to each of the

single-sweeps and sweep-trains used in the first and second experiment, respectively.

File names indicate the properties of the stimulus as follows: [sweep/train]_fbar< �f
>_delta<Δf >.wav; e.g., train_fbar1200Hz_delta-333Hz.wav is the sweep-train

with �f ¼ 1200 Hz and Δf = −333Hz used in the second experiment.

(ZIP)
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