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a b s t r a c t

This article presents the fifth-order weighted essentially non-oscillatory numerical
method for solving a five-equation two-pressure non-conservative model of isentropic
two-phase flow. The presence of non-conservative terms, shock waves and contact dis-
continuities offers more challenging tasks for developing the high order robust numerical
methods. The proposed numerical scheme suppresses the unwanted oscillations near
the steep gradients and resolves the contact discontinuities in an efficient way. Further,
different test problems are taken to validate the efficiency of the proposed numerical
scheme. Moreover, the improved central upwind scheme (CUP) is extended to solve the
same model for checking the accuracy of the proposed numerical method. The numerical
solutions obtained by the suggested scheme are compared with the solution profiles
obtained from modified central upwind scheme.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Mathematical modeling and numerical simulation of two-phase flows are currently very dynamic areas of the research.
he main reason to study the two-phase flow is its large number of applications in real-life phenomenon [1–4]. Besides
he importance of two-phase flow models, the non-hyperbolic character of these models is the main problem that is
aced during the modeling of such types of flows. It is well-known fact that the hyperbolicity is the necessary condition
or the well-posedness of the mathematical model of the two-phase flows [5]. Further, the authors in this article [5]
ave analyzed that many of the two-phase flow models with single pressure equation are ill-posed due to the presence
f complex-valued characteristics. Thus the researchers take more interest to model and simulate the hyperbolic two-
hase flows with separately pressure equations for both phases. The other problem is faced due to the presence of
on-conservative terms in the two-phase flow models. Almost all two-phase flow models either with single pressure
quation or two pressure equations include the non-conservative terms due to the interface interaction. In literature the
rominent non-conservative models with two pressure equations are introduced by Ransom-scofield in 1976 [6], Hicks
n 1981 [7], Ransom–Hicks in 1984 [8], Baer-Nunziato in 1986 [9] and Saurel-abgrall in 1999 [10] respectively. Later, the
esearchers have derived various three to six equations models from the above mentioned models [11–13]. For detail, the
eader is referred to the articles [14–18] and references therein.
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Here, five-equation two-pressure model of isentropic two-phase flow [19] is considered. This model is a reduced
ersion of Saurel-abgrall two-phase flow model that was presented in 1999 [10]. The considered model consists of five
quations, four of them express the laws of conservation of mass and momentum for gas and liquid phases. The fifth
quation expresses the evolution of gas volume fraction with the speed of mean interfacial velocity. Like other two-phase
low models, the considered model also consists of non-conservative terms. These non-conservative terms and hyperbolic
ature of the considered model offer difficulties for developing the high order robust numerical schemes. Here, the fifth-
rder finite volume WENO [20] and the second-order high resolution central upwind schemes [21] are developed for
olving the considered model. Initially, a theoretical solution and upwind non-conservative methods were proposed to
olve the considered model by Castro and Toro in the article [19]. They used the Monotonic Upstream-centered Scheme
or Conservation Laws (MUSCL) and Arbitrary accuracy Derivatives Riemann problem (ADER) approaches for developing
he second-order non-conservative numerical methods.

In this article, fifth-order finite volume WENO numerical scheme [20] is developed for solving the unsteady isentropic
ive-equation two-pressure model. Before applying the finite volume WENO scheme, we rewrite the fifth equation of a
onsidered model in a more compatible way to our numerical scheme as described in Section 2. The proposed numerical
cheme is more simple and entirely different as compare to the numerical schemes that were designed to solve the
onsidered model in the article [19]. Initially, the third-order finite volume WENO numerical scheme was presented by
iu et al. [22] in 1994 that was improved version of essentially non-oscillatory (ENO) numerical scheme [23–25]. In this
ersion of finite volume WENO scheme, they improved the order of accuracy and used the convex combination of all the
andidate stencils. Since then, these numerical schemes are being developed, modified and extended for different fields
f science and engineering, for detail see [26–34] and the references therein. The proposed numerical scheme resolves
he sharp discontinuities efficiently and ensures high order accuracy in the smooth regions.

The remaining article is organized as follow. In Section 2, the mathematical form of the isentropic two-phase flow
odel and eigenvalues of the considered model are given. The finite volume WENO numerical method for the considered
odel is derived in Section 3. In Section 4, the number of test problems are considered to validate and compare the

esults of proposed numerical method with the improved central upwind numerical method [21]. Finally, in Section 5,
he conclusions are presented.

. Isentropic two-phase flow model

This section presents the mathematical form and eigenvalues of the isentropic two-phase flow non-conservative model.
he fundamental equations for the considered model are given as follow

∂

∂t
(alρl) +

∂

∂x
(alρlul) = 0,

∂

∂t
(agρg ) +

∂

∂x
(agρgug ) = 0,

∂

∂t
(alρlul) +

∂

∂x
(alρlu2

l + alpl) = −pi
∂

∂x
(ag ),

∂

∂t
(agρgug ) +

∂

∂x
(agρgu2

g + agpg ) = pi
∂

∂x
(ag ),

∂

∂t
(ag ) + ui

∂

∂x
(ag ) = 0.

(1)

Here, ρl and ρg are densities, ag and al present the volume-fractions, ul and ug denote velocities and pl and pg are
ressures. Where subscripts g and l represent the gas and liquid phases respectively. Further, pi and ui represent the

interface pressure and interface velocity respectively. The same expressions are taken for the pi and ui as given in the
article [19], which are

pi = (alpl + agpg ) and ui =
(alρlul + agρgug )
(alρl + agρg )

(2)

The last equation of the model (1) represents the evolution of volume fraction. In this article, we rewrite this equation as
follow

∂t (ag ) + ∂x(agui) = ag∂x(ui). (3)

The model (1) consists eight unknowns ρl, ρg , ul, ug , pl, pg , al, ag and five equations. Thus to close the system additional
constraints are needed. These additional constraints are given as follow

1. Volume-fractions are related by the following relation

a + a = 1. (4)
l g

2



A. Rehman, R.D. Aslam, M.A. Meraj et al. Results in Applied Mathematics 10 (2021) 100155

w
a

T

Table 1
Parameters used in numerical computation of the five equation two pressure model.
Parameters Value

ρ0 103 kg/m3

kg 105 Pa
kl 3.03975 × 108 Pa
γl 7.15
γg 1.4

2. The liquid phase pressure is defined by using the Tait’s equation of state [19]

pl = kl

((
ρl

ρ0

)γl

− 1
)

, (5)

and gas phase pressure is defined

pg = kg (ρg )γg . (6)

Here ρ0, kg , kl, γl and γg are constant parameters and values are given in Table 1.

2.1. Eigenvalues

The considered model (1) with the help of Eq. (3) can be written in the form

∂tW + ∂xF (W ) = S(W ), (7)

where

W =

⎛⎜⎜⎜⎜⎝
alρl
agρg
alρlul

agρgug

ag

⎞⎟⎟⎟⎟⎠ , F (W ) =

⎛⎜⎜⎜⎜⎝
alρlul
agρgug

alρlu2
l + alpl

agρgu2
g + agpg
uiag

⎞⎟⎟⎟⎟⎠ , S(W ) =

⎛⎜⎜⎜⎜⎝
0
0

−pi∂x(ag )
pi∂x(ag )
ag∂x(ui)

⎞⎟⎟⎟⎟⎠ ,

ithW = (w1, w2, w3, w4, w5) = (alρl, agρg , alρlul, agρgug , ag ), F (W ) = (f1, f2, f3, f4, f5) = (alρlul, agρgug , alρlu2
l +

lpl, agρgu2
g + agpg , agui) and S(W ) = (s1, s2, s3, s4, s5). Now, the Eq. (7) can be rewritten as

∂t

⎛⎜⎜⎜⎝
w1
w2
w3
w4
w5

⎞⎟⎟⎟⎠ + ∂x

⎛⎜⎜⎜⎜⎜⎜⎝

w3
w4

w2
3

w1
+ pl(w1)

w2
4

w2
+ pg (w2)

w5(
(w3+w4)
(w1+w2)

)

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0
0
s3
s4
s5

⎞⎟⎟⎟⎠ . (8)

Now, the speeds of sound for gas and liquid phases can be found as

cg =

√(
γgpg
ρg

)
, cl =

√(
γl(pl + kl)

ρl

)
. (9)

Hence, the eigenvalues for the considered system are

λ1 = ul − cl, λ2 = ug − cg , λ3 = ui, λ4 = ul + cl, λ5 = ug + cg . (10)

he considered model has real and distinct eigenvalues and it is strictly hyperbolic as cl and cg are strictly greater than
zero.

3. Construction of fifth-order WENO numerical scheme for considered model

This section presents the construction of finite volume WENO numerical scheme for approximating the isentropic two
phase flow model. As the considered model can be written in a compact form as follow

∂ W + ∂ F (W ) = S(W , x), t > 0, x ∈ Ω, (11)
t x

3
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and divide the domain Ω into cells Ci = [xi− 1
2
, xi+ 1

2
], i = 1, . . . ,N . Here, the center of ith cell is denoted by xi =(

x
i− 1

2
+x

i+ 1
2

)
2 and length of ith cell by △xi. By integrating the Eq. (11) over Ci, we have

d
dt

Wi(t) +
1

△xi

(
F (W (xi+ 1

2
, t) − F (W (xi− 1

2
, t))

)
=

1
△xi

∫ x
i+ 1

2

x
i− 1

2

S(W , x)dx, (12)

here Wi(t) =
1

△xi

∫ x
i+ 1

2
x
i− 1

2
W (x, t)dx. The Eq. (12) can be approximated as follow

d
dt

Wi(t) +
1

△xi

(
F̂i+ 1

2
− F̂i− 1

2

)
=

1
△xi

∫ x
i+ 1

2

x
i− 1

2

S(W , x)dx. (13)

here, F̂i+ 1
2

= 𭟋
(
W−

i+ 1
2
,W+

i+ 1
2

)
denotes the monotone numerical flux and W±

i+ 1
2

are pointwise approximations to

W (xi+ 1
2
, t). Here, we will use the Lax–Friedrichs flux (LFF) as a monotone numerical flux which is defined as below

𭟋
(
W−

i+ 1
2
,W+

i+ 1
2

)
=

1
2

(
F (W−

i+ 1
2
) + F (W+

i+ 1
2
) − ϑ(W+

i+ 1
2

− W−

i+ 1
2
)
)

, (14)

here ϑ = maxW |F ′(W )|. Now computational variables are Wi(t) which will approximate the cell-averages W (xi, t).
Further, the W−

i+ 1
2
and W+

i+ 1
2
are calculated through the adjacent cell-average values Wi by WENO reconstruction. The

point-wise reconstructed values W+

i+ 1
2
and W−

i+ 1
2
are obtained by the following relations

W+

i+ 1
2

= ω1Ŵ 1
i+ 1

2
+ ω2Ŵ 2

i+ 1
2

+ ω3Ŵ 3
i+ 1

2
, (15)

W−

i+ 1
2

= ω̃1W̃ 1
i+ 1

2
+ ω̃2W̃ 2

i+ 1
2

+ ω̃2W̃ 2
i+ 1

2
, (16)

here Ŵ l
i+ 1

2
and W̃ l

i− 1
2
, for l = 1, 2, 3, are reconstructed values and defined as

Ŵ 1
i+ 1

2
=

1
6

(
2W+

i + 5W+

i+1 − W+

i+2

)
, (17)

Ŵ 2
i+ 1

2
=

1
6

(
−W+

i−1 + 5W+

i + 2W+

i+1

)
, (18)

Ŵ 3
i+ 1

2
=

1
6

(
2W+

i−2 − 7W+

i−1 + 11W+

i

)
, (19)

nd

W̃ 1
i+ 1

2
=

1
6

(
11W−

i+1 − 7W−

i+2 + W−

i+3

)
, (20)

W̃ 2
i+ 1

2
=

1
6

(
W−

i + 5W−

i+1 − W−

i+2

)
, (21)

W̃ 3
i+ 1

2
=

1
6

(
−W−

i−1 + 5W−

i−1 + W−

i

)
. (22)

The nonlinear weights ωl and ω̃l in Eqs. (15) and (16) are defined as

ωl =
ξl∑3

m=1 ξm
with ξl =

σl

ϵ + Bl
, l = 1, 2, 3, (23)

nd

ω̃l =
ξ̃l∑3

m=1 ξ̃m
with ξ̃l =

σ̃l

ε + B̃l
, l = 1, 2, 3, (24)

ere ε can be taken any small positive number for avoiding the denominator to become zero and we set ε = 10−7 in all
he simulations. Here, σ and σ̃ represent the linear weights and B and B̃ denote the smoothness indicators. The values
l l l l

4
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of σl and σ̃l are given as

σl =

⎧⎪⎨⎪⎩
3
10 if l = 1,
6
10 if l = 2,
1
10 if l = 3,

and σ̃l =

⎧⎪⎨⎪⎩
1
10 if l = 1,
6
10 if l = 2,
3
10 if l = 3.

(25)

he values of smoothness indicators Bl and B̃l are defined as

Bl =

⎧⎪⎪⎨⎪⎪⎩
13
12

(
W+

i − 2W+

i+1 + W+

i+2

)2
+

1
4

(
W+

i − 4W+

i+1 + W+

i+2

)2 if l = 1,

13
12

(
W+

i−1 − 2W+

i + W+

i+1

)2
+

1
4

(
W+

i−1 − W+

i+1

)2 if l = 2,

13
12

(
W+

i−2 − 2W+

i−1 + W+

i

)2
+

1
4

(
W+

i−2 − 4W+

i−1 + W+

i

)2 if l = 3.

(26)

and

B̃l =

⎧⎪⎪⎨⎪⎪⎩
13
12

(
W−

i+1 − 2W−

i+2 + W−

i+3

)2
+

1
4

(
3W−

i+1 − 4W−

i+2 + W−

i+3

)2 if l = 1,

13
12

(
W−

i − 2W−

i+1 + W−

i+2

)2
+

1
4

(
W−

i − W−

i+2

)2 if l = 2,

13
12

(
W−

i−1 − 2W−

i + W−

i+1

)2
+

1
4

(
W−

i−1 − 4W−

i + 3W−

i+1

)2 if l = 3.

(27)

This completes the procedure of spatial reconstruction. Next, we discretize the nonzero terms on the right hand side of
the Eq. (7).∫ x

i+ 1
2

x
i− 1

2

s3dx =

∫ x
i+ 1

2

x
i− 1

2

(−pi∂x(ag ))dx (28)

= − (p̄i)
(
(ag )i+ 1

2
− (ag )i− 1

2

)
(29)

ere, p̄i is the averaged value at the cell Ci and (ag )i± 1
2
are the source fluxes at the interfaces of the cell Ci. Further, for

the right interface of Ci, we write as

(ag )i+ 1
2

= (ag )+i + (ag )−i+1 (30)

imilarly, the values of left interface of the cell Ci and discretization of
∫ x

i+ 1
2

x
i− 1

2
s4 and

∫ x
i+ 1

2
x
i− 1

2
s5 are obtained. Further, Si

enotes the approximation of the expression
∫ x

i+ 1
2

x
i− 1

2
S(W , x)dx. Finally, we end up with the semi-discrete equation as follow

d
dt

W i(t) = −
1

△xi

(
F̂i+ 1

2
− F̂i− 1

2

)
+

1
△xi

Si, (31)

r the above equation can be written as
d
dt

W i(t) = O(W ). (32)

ow, for solving the system of ordinary differential Eq. (32), we apply the third-order TVD RK method [20] as follow

W (1)
= W n

+ dtO(W n),

W (2)
=

3
4
W n

+
1
4

(
W (1)

+ dtO(W (1))
)
,

W (n+1)
=

1
3
W n

+
2
3

(
W (2)

+ dtO(W (2))
)
,

(33)

here O(W ) is the spatial operator. The time step dt is estimated by using the relation CFL∗dx
max(|λ1|,|λ2|,|λ3|,|λ4|,|λ5|) , where CFL

enotes the Courant–Friedrichs–Lewy condition.

. Numerical test problems

This section presents different types of test problems for the five-equation two-phase flow model. Both WENO and
odified central upwind numerical schemes [21] are applied to simulate the two phase flows. The numerical solutions
btained from the WENO scheme are compared with the solutions obtained from the central upwind numerical scheme.
ll test problems are taken from [19].

est Problem 1: In this test problem, the numerical solutions are obtained in the computational domain [0, 1] and initial
iscontinuity is located at x = 0.5. The computational domain is divided into 400 grid points. The left and right states for
5
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t

Fig. 1. The numerical solutions obtained at t = 1.3 × 10−4 by WENO and CUP schemes.

his Riemann problem are considered as

(ρg , ρl, ug , ul, αg , αl)(x, 0) =

{
(719.6856, 1225.8912, −350, −350, 0.9), x < 0.5,
(719.6856, 1225.8912, 350, 350, 0.9), x > 0.5. (34)

The solution profiles for the gas velocity, liquid velocity, gas pressure, liquid pressure, gas volume-fraction and liquid
volume-fraction are obtained at t = 1.3× 10−4 and are given in Fig. 1. The numerical solution comprises four symmetric
rarefaction waves and a trivial contact discontinuity. The proposed and modified central upwind numerical schemes have
6
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Fig. 2. Comparison of the numerical results obtained by finite volume WENO and CUP schemes.

good agreement with each other as there is no discontinuity in the solution domain. Even though the solution profiles for
the gas and liquid pressures show that the finite volume WENO numerical scheme is less diffusive as compare to modified
central upwind scheme.

Test Problem 2: This test problem is considered for checking the accuracy of the considered numerical schemes. For
this test problem the solution domain consists the sharp discontinuity. The system is subjected to the following initial
conditions

(ρg , ρl, ug , ul, αg , αl)(x, 0) =

{
(719.6856, 1225.8912, −350, −250, 0.9), x < 0.5,
(719.6856, 1225.8912, 350, 250, 0.1), x > 0.5. (35)

The solution profiles for gas volume fraction, liquid volume-fraction,gas pressure and liquid pressure are obtained at
t = 1.3 × 10−4 and shown in Fig. 2. The solution domain for this Riemann problem consists of the four rarefaction
waves and a non-trivial contact discontinuity. Despite the presence of sharp discontinuity, both numerical schemes do
not produce the unwanted oscillations near the sharp discontinuity.

Test problem 3: This test problem is considered for checking the efficiency and accuracy of the derived numerical schemes.
In this problem, the computational domain [0, 1] is discretized into 800 grid points. The initial conditions are considered
as follow respectively.

(ρg , ρl, ug , ul, αg , αl)(x, 0) =

{
(719.6856, 1225.8912, 150, 150, 0.9), x < 0.5,

(719.6856, 1225.8912, −150, −150, 0.9), x > 0.5. (36)

The numerical solutions for the gas velocity, liquid velocity, gas pressure and liquid pressure are computed at time
t = 1.3 × 10−4 and given in Fig. 3. The solution domain consists of four weak shock waves and a trivial contact
discontinuity. The proposed numerical scheme resolved the discontinuities in a very efficient way, as shown in Fig. 3.
The solution profiles for liquid velocity and liquid pressure show that the WENO scheme captures the constant states
7
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T
s

v

Fig. 3. Comparison of the numerical results obtained by finite volume WENO and CUP schemes.

more efficiently as compare to the modified central upwind scheme. The central upwind scheme produces two humps
near x = 0.3 and x = 0.7 in above mentioned solution profiles.

est problem 4: This test problem is considered for checking the efficiency of considered numerical schemes as the
olution domain consists of a sonic point. The initial conditions for this Riemann problem are given as

(ρg , ρl, ug , ul, αg , αl)(x, 0) =

{
(719.6856, 1225.8912, 1000, 2400., 0.9), x < 0.5,

(261.5970, 2277.81, 1028.3588, 2774.36, 0.9), x > 0.5. (37)

The solution profiles for gas velocity, liquid velocity, gas pressure,liquid pressure, gas density and liquid density are
obtained at time t = 4.0 × 10−4 and shown in Fig. 4. Further, the computational domain is divided into 300 grid points.
The solution domain consists of a single isolated rarefaction wave. As we know that the sonic flows offer difficulties for the
numerical methods in the form of entropy glitch. The proposed numerical schemes handle the sonic point in an efficient
way.

For the next two problems, taken from the article [35], we will add some terms in the right hand side of the Eq. (7).
Now, the term S(W ) in Eq. (7) is defined as follow

S(W ) =

⎛⎜⎜⎜⎜⎝
0
0

−pi∂x(ag ) + alρlg + FD
pi∂x(ag ) + agρgg + FD

ag∂x(ui) +
vi
H

⎞⎟⎟⎟⎟⎠ .

Here, g(= 9.81), FD and vi represent the gravity, drag force and interface velocity. Further, the drag force and interface
elocity are defined as F = C (u −u ) and v =

pg−pl , where C is the drag coefficient and a = ρ c , k = {l, g}. Note that,
D d g l i al+ag d k k k

8
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Fig. 4. Numerical solutions obtained by finite volume WENO and CUP scheme at t = 1.3 × 10−4 s.

the drag force is only considered for the sedimentation test problem. For more detail about these problems, the reader is
referred to [35] and references therein.

Test problem 5: This test problem is known as one dimensional water-faucet problem and initially introduced by
Ransom [36]. In this test problem, 12 m long vertical pipe is considered that is initially filled with 80% liquid and 20%
gas. Initially, the liquid and gas velocities are 10 m/s and 0 m/s respectively. The solution profiles of void-fraction and
9
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Fig. 5. Numerical solutions obtained by finite volume WENO and CUP scheme at t = 0.4 s.

ressures at t = 0.4 s are obtained by using the value of (1/H) = 20 000, as given in Fig. 5. The results obtained by
onsidered numerical schemes show good agreement with available results in [35].

est problem 6: This test problem is known as sedimentation problem and initially introduced by Youngs [36]. Here, the
ength of vertical pipe is taken 2 m long. Initially, the pipe is filled with a uniform two-phase mixture. Later, the two
hases will gradually split into two single-phase zones because of the gravity effect. The solution profiles of void-fraction
nd pressures at t = 10 s are obtained by setting the value of (1/H) = 20 000, as given in Fig. 6. The solution profiles are
losely matched with the results obtained by the authors in [35]. Hence, for extensive detail about the Test problems 5
nd 6, the reader is referred to [35].

. Conclusions

In this article, the finite volume WENO numerical scheme was developed to obtain the numerical solutions of the
nsteady isentropic two-phase flow model. Despite, the presence of non-conservative terms in the considered model and
he presence of shock waves, volume fraction contact discontinuities and sonic point in the solution domains of different
est problems, the designed high order numerical scheme resolved the contact discontinuities efficiently, did not create
he unwanted oscillations near the shock waves and also did not affect by the presence of sonic point. The robustness
f proposed numerical method was checked by considering the different test problems. Further, the numerical solutions
btained by using high order WENO scheme were compared with the solutions those obtained by the CUP numerical
cheme. Overall the performance of the designed numerical scheme was better than the high-resolution central upwind
umerical scheme.
10
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Fig. 6. Numerical solutions obtained by finite volume WENO and CUP scheme at t = 10 s.
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