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A forward modeling technique is developed for determining the characteristic features of 

observed MHD modes from the line-of-sight data of the soft X-ray (SXR) tomography diagnostics in 

the Wendelstein 7-X (W7-X) stellarator. In particular, forward modeling is used to evaluate the 

poloidal mode numbers m, radial location, poloidal rotation direction and ballooning character of the 

MHD modes. The poloidal mode structures have been modeled by the radially localized Gaussian-

shaped emission regions rotating along the magnetic surfaces. In the present study the cases of rigid-

shape emission regions and flexible emission regions are modeled. Various mode phase velocity 

dependences on the magnetic surface position are simulated. The modeled phase dynamics of line-

integrated oscillations and the distribution of oscillation amplitudes are compared with the 

experimental signals of the SXR cameras which observe the plasma at various viewing angles in the 

poloidal cross-section. Application of this technique enables describing of the 1-50 kHz modes. In 

particular, in the discharge W7X-PID 20180918.045 three identified branches with the poloidal mode 

numbers m=8, m=10 and m=11 localized at ρ≈0.3 are rotating in the clockwise poloidal direction. The 

present paper reports the first application of the forward modeling technique to the data from the SXR 

diagnostics in W7-X. The high m-modes are identified by forward modeling in W7-X. 

 

1. Introduction. 

The Wendelstein 7-X stellarator (W7-X) has been designed to be MHD stable up to <>~4-

5% volume-averaged plasma beta [1]. In order to prove if the optimization criteria have been met, it is 

crucial to analyze and understand any MHD mode activity in the device. Moreover, modes might be 

caused by physics mechanisms beyond the MHD description and their study can thus provide a deeper 

insight into the processes determining the plasma stability in optimized stellarators. Furthermore, a 

well-diagnosed mode activity may be used for “MHD spectroscopy”, i.e. to obtain information about 

the radial location and spatial structure of observed modes, which is essential to understanding driving 

instabilities and underlying physics.  

In W7-X plasmas quasi-harmonic oscillations in the low kHz range up to multiple 100 kHz 

were observed in various discharges during OP1.2 (operational phase) by various plasma fluctuation 

diagnostics like magnetic probes [2], phase contrast imaging [3] and the soft X-ray tomography 

system [4-6]. In the present paper we focus on the 10-50 kHz modes observed by the soft X-ray 

tomography diagnostics. For this we are concentrating on the radial location and poloidal mode 

numbers of these modes.  



The data from soft X-ray (SXR) cameras are commonly used for studying spatial structures of 

MHD instabilities in magnetically-confined high-temperature plasmas, in W7-X the soft X-ray multi-

camera tomography system  (XMCTS) has been put in operation for this purpose [4-6]. An initial 

study on tomographic reconstruction of MHD modes based on surrogate data and errors expected for 

the XMCTS diagnostic is described in Ref[4]. The installation of the XMCTS in W7-X can be found 

in Ref [5]. The detailed description of the final XMCTS system and first results with experimental 

data from W7-X and their tomographic inversion are presented in Ref[6].  It consists of the 20 pinhole 

cameras, each equipped with a silicon diode detector array with 18 channels. This system provides 

excellent capabilities for studying the spatial structure of the MHD modes.  

The analysis of the mode structure from the SXR raw data is not straightforward one due to 

the line-of-sight integral nature of the SXR signals. The mode dynamics is usually observed by the 

poloidal propagation (in literature mostly called as “rotation”) of plasma parameter perturbations. The 

perturbation crosses twice a line-of-sight of SXR diagnostics during a full poloidal turn. In the SXR 

signals the impacts of positive and negative emissivity of the mode perturbations are combined. A 

spectral analysis of raw SXR signals can be used to determine the radial locations of MHD modes 

without tomographic inversion [7-11]. The poloidal mode number and radial location can be 

determined using a singular value decomposition (SVD) technique [7,9]. Forward modeling [7,12,13] 

can be used for this purpose as well. It can also reveal a detailed mode structure while the tomography 

method yields an unstable or spurious image. In particular, as is known, the modes are localized from 

other diagnostics or other knowledge, forward modeling can reveal finer structures than tomography. 

 

2. Models and features of forward modeling techniques.  

The SXR forward modeling technique is based on a comparison of experimental data with the 

line-integration of a synthetic emissivity. In contrast to the usual tomography, the direct problem is 

solved in the forward modeling approach. Additional constraints implemented in forward modeling 

can substantially increase the diagnostic resolution, simplify and speed-up the subroutines in 

comparison with the conventional tomography. These constraints can be adapted according to the goal 

of the modeling.  

We are studying the fluctuations of SXR emission caused by plasma modes. The constant 

background SXR radiation part is out of scope of our modeling. The background part of the SXR 

emission is subtracted from the experimental data and is not considered in the model. The fluctuating 

plasma density inside the plasma mode causes positive and negative perturbations of the SXR 

emissivity in relation to the SXR background emissivity. For forward modeling of the plasma modes 

in the context of our study a synthetic perturbation pattern is applied. . The approach of using mode 

eigenfunctions can be used in forward modeling of line-integrated diagnostics such as SXR or phase 

contrast imaging diagnostics [14]. However these eigenfunctions are usually not known, if the mode 

type is unknown. Constraints in this case are based on the nature of typical MHD modes in 

stellarators. Most of the MHD modes in stellarators and tokamaks are localized on the magnetic flux 

surfaces. This fact is used as constraints in the models.  

The dependence of the mode rotation velocity on the poloidal angle should be implemented in 

the model as the next step. The perturbation rotation velocity is equivalent to the phase velocity of the 

mode. A rotation of the centers of the perturbations can be expressed by:

)sin()sin(),( 00  tkltl  , where A0 is the mode amplitude, l is the poloidal position of the 

perturbation in the magnetic flux surface, k is the wavevector,  ω is the angular frequency, t is the 

time. The phase velocity is the velocity of the constant phase  . From 0 dtd  we can obtain the 



phase velocity formula: )//(v dldklk    in the case of constant ω. The phase velocity 

dependence on the poloidal angle   θv l  is contained in the 1)/(  dldklk  
 
term. Thus, the angular 

dependence of the perturbation velocity can be modeled via the direct determination of the phase 

velocity vΦ(θ) or via the determination of the wavevector dependence   θlk . One of these two 

equivalent (for the constant ω) approaches can be selected in a particular case. For example, the shear 

Alfvén eigenmodes [15] are formed by coupling of two counterpropagating waves.  The coupling of m 

and m+1 continuum modes causes the toroidicity induced Alfvén eigenmode (TAE) formation. The 

coupling of the m and m+1 modes in the oversimplified case can be described as: 

)2θcos(~)θ)1(cos()θcos( tmtm   . Thus, the ballooning TAE mode is located mainly at the 

low field side where -π/2<θ< π/2. This mode can be modeled via the angular dependence of the 

combined mode wavevector in order to highlight the ballooning nature represented by the )2θcos(  

term. This case can be modeled via the direct determination of phase velocities of m and m+1modes.  

A dependence of the wavevector on the magnetic surface position causes deformation of the 

perturbation shape. This shape can be modeled by the eigenfunctions of the mode, if this information 

is available. The set of rigid rotating Gaussian perturbations can be used as a first approach in the 

opposite case. The angular dependence of the wavevector results in perturbation deformations. This 

can be taken into account in more sophisticated models. The perturbation length λ along the magnetic 

flux surface increases with phase velocity increasing ( λ~/v k ). The perturbation size in the 

perpendicular direction should be inversely proportional to the length along the flux surface due to the 

integrated perturbation amplitude conservation. This also should depend on the angular variable 

distance between the neighboring flux surfaces.  

Various criteria of a comparison of the experimental data with the line-integration of the 

synthetic emissivity can be selected. In the first approach the influence of the spatial mode structure on 

the line-integrated signals can be analyzed. For example, in the oversimplified ballooning TAE case 

the term cos(θ/2) indicates that the mode should be observed mainly in the low field side of a tokamak. 

One more criterion is based on the comparison of oscillation amplitudes in the different SXR lines-of-

sight. The techniques based on the spatial modes structure use this criterion.  These based on the mode 

amplitude (or amplitude and phase) distribution techniques are considered in ASDEX-U[9,10] for low 

frequency and low-m kink and tearing modes or high frequency low-m reversed shear Alfvén 

eigenmode (RSAE) modes in Alcator C-Mod [14].  

A more improved comparison is based on the phase dynamics of line-integrated oscillations. 

This phase dynamics caused by the spatiotemporal mode evolution accumulates the contributions of 

the spatiotemporal evolution of each mode perturbation. The techniques based on the spatiotemporal 

approach are used for low frequency and low-m modes in RFP [11] and STOR-M [13] for low 

frequency and average-m modes in Wendelstein 7-AS [7] and U-3M [12].  

The perturbations cross the line-of-sight twice during a full poloidal turn along the flux 

surface. The line-integration of the opposite propagating mode perturbations leads to the interference 

that causes rather complex phase diagrams. The phase diagram is reconstructed on the base of 

synthetic perturbations in the real geometry of the SXR diagnostics. This diagram is used as an 

advanced criterion in forward modeling. It contains information about the mode structure encrypted by 

the line-integration.  For example, a divergence of the lines-of-sight causes a different apparent 

velocity of the perturbation in the near and far parts of the flux surface with respect to the camera. On 

the base of this difference it is possible to evaluate the mode rotation direction [13]. The asymmetry of 

the flux surfaces can be used for determination of this direction too [12]. In the present work, we first 

describe the experimental determination of the radial location, poloidal mode numbers and direction of 



10-50 kHz modes poloidal rotation in the W7-X stellarator by applying the forward modeling 

approach. 

3. SXR system and experimentally observed oscillations 

Figure 1 shows the lines-of-sight of the three SXR pinhole cameras plotted across the 

magnetic flux surfaces calculated by the VMEC equilibrium code [16]. The cameras with labels “1B”, 

“1D” and “1E” are chosen from the 20 available XMCTS cameras for covering different viewing 

angles sufficient for the signal processing technique. The view cones of the central line-of-sight span a 

poloidal angle of 3.7°. A discharge (W7X-PID 20180918.045) with transient 20-35 kHz oscillations is 

depicted in figure 2(a). This spectrogram represents oscillations measured by the SXR channel #18 of 

camera 1B. Similar spectrograms are observed in neighboring SXR lines-of-sight. Two frequency 

ranges, i.e. 29-37 kHz and 23-28 kHz, can be distinguished. The oscillation amplitude dynamics of 

these two parts can be represented by the time evolution of root mean square (rms) of the filtered SXR 

signal amplitudes. The rms represents the harmonic mode amplitude. Two bandpass filters are applied 

to the raw SXR data in order to separate the frequency ranges under consideration. The temporal 

evolution of the two frequency bands observed by the photodiodes of camera 1D are plotted in figures 

2(b,c). 

 

Figure 1. Lines-of-sight of SXR cameras 1B, 1D and 1E across the W7-X flux surfaces of the 

magnetic configuration W7-X ref 170. The red flux surface at ρ ≡ r/rLCFS ≈ 0.3 corresponds to the 

mode location under consideration whereas rLCFS represents the last closed flux surface. 

 



 

Figure 2. (a) Spectrum of SXR signal fluctuations of diode #18 (camera 1B). (b) rms of 29-37 kHz 

and (c) 23-28 kHz fluctuations (color coded) versus time and photodiode number of the  data from the 

SXR camera 1D. 

Note that within the narrow frequency range of 29-37 kHz the different branches can be observed 

(figures 2(a,b)). At 3.415 s of figure 2(b) a separation of the branch with a decreasing frequency and a 

branch with a frequency constant in time can be distinguished.  

A distinct pattern of the rms amplitude across the photodiodes can be recognized in figures 

2(b) and 2(c). The spatial pattern of the rms amplitudes can be explained by the interference of 

negative and positive parts of a single (or more) plasma mode(s) aligned with the magnetic flux 

surfaces as detected along the lines-of-sight of the SXR camera. This effect is described in detail in the 

next sections. The spatial structure of the single frequency branches is quasi-stationary. This indicates 

that the signal-to-noise ratio of the SXR diagnostics is sufficient for the mode analysis. The phase 

evolution of oscillations provides more detailed information about the nature of the modes. The time 

delay observed between different lines-of-sight is caused by the poloidal rotation of perturbations. The 

spatiotemporal evolution of the perturbation amplitude measured by the XMCTS camera 1D is shown 

in figure 3 for a time interval of 400 µs at t=3.4237 s. The measured, bandpass-filtered perturbation 

amplitude (the same bandpass parameters as in figure 2(b)) is color-coded. Along the vertical axis the 

line-integrated data from the diodes in the camera 1D are plotted against the time on the horizontal 

axis.  

 

Figure 3. Spatiotemporal evolution of the SXR emission data of experimental program 

XP20180918.045, time range 400 µs at 3.4237 s, measured by the camera 1D.  A 29-37 kHz band-pass 

filter is applied to the data. (a) Raw data, (b) Numerical interpolation of the raw data of 18 diodes  



4. Forward modeling of mode perturbations aligned on the magnetic flux surfaces   

In order to extract information about the mode numbers and rotation direction from the line integrated 

SXR measurement we use a simplified eigenmode model for the mode pattern in the poloidal plane of 

the location of the SXR cameras (cf. figure 4). It is possible to perform “virtual measurement” along 

the lines-of-sight across the modeled X-ray radiation distribution. This “virtual measurement” is 

performed via the numerical integration for a given SXR camera geometry and using the flux surfaces 

from the plasma equilibrium calculated by VMEC. The expected signals for a radiation distribution 

can be modeled by the numerical integration and compared with the measured signals.  

 

Figure 4. Lines-of-sight of the SXR camera 1D (magenta) across the magnetic flux surfaces are 

shown in black from VMEC (vacuum-field matching conditions of XP20180918.045). A model 

radiation distribution of 20 Gaussian-shaped perturbations (of alternating positive and negative 

amplitudes, σ=0.025 m, color coded), exemplarily representing an m=10 MHD mode located at ρ≈0.3 

and poloidally propagating toward the green arrows. An SXR viewing angle of a single channel of 

3.7° is marked in channel #54 (green). 

Figure 4 represents, as an example, a modeled m=10 mode structure (color coded). The mode maxima 

and minima (blue color), consist of 2D Gaussians with their centers poloidally aligned on one of the 

magnetic flux surface. In this model, the constant background radiation distribution is assumed as 

subtracted, therefore, the negative radiation intensities can exist in the model. The individual 2D 

perturbation profile is modeled by the Gaussian 𝜉𝑖 = 𝜉0𝑖 ⋅ 𝑒
−(𝑟−𝑟𝑖)

2/𝜎2
where 𝑟𝑖 = 𝑟𝑖(t) is the 

coordinate of the perturbation center for a time point t, 𝜎 is the weight coefficient determining the 

spatial perturbation size and the index i=1,…, m indicates the perturbation number. Several attributes 

define the radiation distribution pattern: the number of maxima and minima (mode number m), the 

rotation velocity direction, the width of the Gaussians and their amplitudes (for a ballooning mode, the 

amplitude of the Gaussians varies with R and is maximal at the unfavorable curvature location). Using 

this approach a simultaneous presence of more than a single mode can be modeled. A similar signal 

processing approach for the SXR camera data has been reported by Weller et al. for Wendelstein 7-

AS [7] and used in ASDEX-Upgrade [9,10]. The presented forward modeling of the mode structure is 

similar to that of Refs. [12,13].  

5. Determination of the radial location, poloidal mode numbers, mode rotation direction 

and mode type    

5 a.  Basic description of the method  



The radial location of plasma modes can be estimated from the oscillation pattern shown in 

figure 2 as explained in the following. The oscillations are observed only by the SXR lines-of-sight 

which are crossing the modes. The edges of the rms distributions, where the mode amplitudes become 

observable, mark these radial locations. The radial mode locations are roughly equal to the impact 

parameters of these SXR lines-of-sight [7-11]. The phase evolution of the oscillations provides more 

detailed information about the mode dynamics. In our model description, one poloidal mode pattern is 

composed by a set of perturbations. Each of perturbations causes a relative increase (or decrease in the 

case of negative perturbations) of the measured SXR radiation along the corresponding line-of-sight. 

Due to the poloidal rotation of the mode structure along the flux surface, the time lags can be observed 

between those lines-of-sight which observe the plasma at different poloidal positions. For the 

following analysis the model described in Sec. 3 is applied.  

As a first step the radially thin perturbations (σ=0.001 m) are used to fit the experimentally 

observed paths of centers of the perturbations by variation of the mode number. The paths of ten 

perturbations (i.e. mode maxima) are represented in figure 5 by the black lines. The width of the black 

lines represents a perturbation size of sigma=0.001m and the paths are plotted along 200 synthetic 

SXR channels to obtain a higher resolution. The experimental data are shown as a contour plot. 

Numerical interpolation of measured data is used in order to construct the SXR distribution along the 

cross-section on the base of 18 lines-of-sight. 

 

Figure 5. Evolution of an oscillating part of the experimental SXR emission measured by cameras 1B 

(top), 1D (middle) and 1E (bottom (color-coded)). The same 29-37 kHz band-pass filter, as in figure 3, 

is applied to the experimental data. The black lines mark the projected mode paths calculated for the 

maxima of a radially narrow m=10 mode (σ=0.001m) in the case a single clockwise turn. For one of 

the selected maxima, the projected propagation is detailed for the movement near (yellow color) and 

far (magenta color) from the camera 1D.  

The mode rotation in the poloidal direction is visible by the spatial shift of the perturbation with 

increasing time. A simultaneous rotation of the perturbations is observed by all operational XMCTS 

cameras, in particular 1B, 1D and 1E (as it is seen from figures 3 and 5). The perturbations cross the 



lines-of-sight twice during a full poloidal turn along the flux surface (see figure 4). The line-

integration of the opposite propagating mode perturbations leads to the interference that causes the 

rather complex phase diagrams depicted in figures 3 and 5. The poloidal movement of individual 

perturbations projected onto the detection plane of the camera leads to an apparent propagation in the 

opposite directions for perturbations near and far with respect to the camera. In figure 5 the two 

directions are indicated by the yellow and magenta lines. The path along the distant part of the flux 

surface (magenta) is longer due to the divergence of lines-of-sight (cf. figure 4) resulting in a lower 

projected velocity in the phase diagram. Here we assume the same poloidal linear velocity of the mode 

in the near and far parts of the flux surface with respect to the camera. The different projected 

velocities enable us to determine the poloidal direction of mode rotation. From figure 5 one can 

deduce that the mode rotates in the clockwise direction [13]. The difference in the projection velocities 

can also be caused by asymmetry of the flux surfaces [12], but it is not a case of W7-X. Relatively 

sharp edges of the oscillation localizations in the space are visible in figures 2,3 and 5. The oscillation 

amplitudes increase distinctly at channel #23 of camera 1B, at channel #58 of camera 1D, and at 

channel #81 of camera 1E. The impact parameters of these lines-of-sight correspond consistently to a 

normalized radius of ρ ≈ 0.3. Note that for determining the radial location and the rotation direction of 

the mode, the model of figure 4 is not necessary as these parameters can be directly deduced from the 

(bandpass-filtered) raw data. Forward modeling is described for a detailed mode analysis. The poloidal 

mode number and radial mode location in the forward model are manually adjusted. In our 

calculations the case of a constant angular poloidal rotation velocity in the VMEC straight-line 

coordinate system [16] is used except especially mentioned cases. The path along the flux surface is 

used in our calculations for the poloidal mode velocity modeling.  The distance between the 

neighboring points of the flux surface is passed during the uniform time interval in our model. For 

example, in the case of a constant linear mode velocity this distance is constant. We use the 

normalized path ln in our calculations. The ln=1 value corresponds to the single poloidal turn of the 

mode. In order to compare these calculations with experimental data we perform the matching of two 

parameters: the initial phase and the rotation velocity. We adjust the phase by aligning the first 

crossing of the calculated perturbation paths with the maxima of the experimental perturbations. In the 

second step, we superpose other maxima of the experimental perturbations with another crossing in 

order to match the proportionality between time and ln.  By this step we adjust the poloidal rotational 

velocity. The matching of these two parameters should result in an agreement between the 

experimental data and calculated mode paths, if the poloidal mode number m and the radial location ρ 

are matching. A comparison of the calculated mode paths for different mode numbers with the 

experimental data is shown in figure 6.  

 

Figure 6.   Evolution of an oscillating part of the experimental SXR emission measured by camera 1D  

(as in figure 5b, the same for all the windows) and the numerical calculations of the m=8, m=9 and 



m=10 mode paths (black lines) calculated for a radial narrow mode (σ=0.001m) for a single turn in the 

clockwise direction. The color-codding is the same as in figure 5. 

The maxima of the experimental data coincide only with the modeled mode paths (black lines) for the 

m=10 mode (figure 6c).  The low amplitudes of the mode traces for channels #69-71 of camera 1D are 

caused by the decreased signal intensity due to the partly shadowed photodiodes (further details can be 

found in Ref. [5]). Figure 7 shows the effect of the radial mode perturbation width. A modeled m=10 

mode having a wider perturbation size (σ =0.025m) is compared with the experimental data. The effect 

of the finite perturbation width, causing oscillations in channels #56 and #57 of camera 1D, is in good 

agreement with the experimentally measured data.  

 

Figure 7. Evolution of (a) experimental and (b) modeled data of the m=10 mode (mode size σ=0.025 

m). The same numerical interpolation of the 18 channels is used for both graphs. The black lines 

indicate the m=10 mode path calculated for a thin mode (σ=0.001m) for a single clockwise turn.  

 

5.b Comparison of various poloidal velocities 

Two equivalent approaches can be used for modeling the variable mode velocity, as it was 

highlighted in the introduction. A spatiotemporal analysis is used to model the phase dynamics of line-

integrated oscillations mentioned in the foregoing chapter. It is logical to determine the phase mode 

velocity vΦ (equal to the perturbation velocity) directly, in contrast to an implicit definition by the 

spatiotemporal analysis based on the wavevector. It is possible to use the poloidal angle θ of the 

perturbation or the perturbation position at the magnetic surface l for the poloidal dependence 

modeling. In our modeling we use the perturbation position normalized to the magnetic surface 

perimeter length ln . The linear phase velocity is vΦ =dl/dt ≈ Δl/Δt. It is matched with the experimental 

one via the scaling, as described above. Thus we can use a variable perturbation step Δl along the 

magnetic flux surface for a uniform time interval Δt as a gauge of the variable phase velocity. An 

actual experimental phase velocity is compared with the modeled one by the implicit Δt selection. 

Also we use the dependence of this step on the magnetic surface position Δl(l) or Δl(ln).  

The poloidal phase mode velocity depends on the driving instability as well as on the plasma 

rotation velocity. In turn, the poloidal phase velocity depends on the ρ value and poloidal angle θ. 

However, a detailed analysis of the plasma background physics [14,15] is outside of the scope of the 

present work. Below we compare three different cases of the mode rotation to demonstrate once more 

the forward modeling technique. The case of a constant angular poloidal phase velocity in the VMEC 

straight-field-line coordinate system is the reference one. This case is used in all the calculations 

represented above.  It is compared with the case of a constant angular poloidal phase velocity in the 



physical coordinate system and with the case of a constant linear phase velocity. The angular 

dependence of the phase velocity is modeled via different distances between the neighboring points on 

the flux surface. The mode passes these distances during the uniform time interval. In our model the 

neighboring points on the flux surface are chosen by the u = const, θ = const or l = const laws, where u 

is the poloidal coordinate in the VMEC straight-field-line coordinate system [16], θ is the physical 

poloidal angle and l is the path along the flux surface. The comparison of these calculations is shown 

in figure 8 for the case of thin perturbations (σ=0.001m).  

 

Figure 8. Step Δl versus the position on the flux surface (a) and the major radius (b) for the constant 

VMEC velocity, constant angular velocity and constant linear velocity modeling; (c) lines mark m=10 

(σ=0.001m) mode paths calculated for the three phase velocities (marked by the same colors); (d) and 

(e) camera 1D experimental data and m=10 (σ=0.001m) mode paths as black lines for u=const and 

l=const respectively. 

The two cases: u = const and l = const are in a good agreement with the experimental data (cf. figure 

8). The dependence of the mode rotation velocity on the poloidal angle introduces an additional 

correction to the calculated phase diagram of the modes, but the main features are defined by m and ρ 

of the mode.  

Modeling of the thick perturbations can introduce one more correction to the phase diagram of 

the modes. The shape of perturbations can be flexible. The perturbation size along the magnetic flux 

surface and in the perpendicular direction can depend on the poloidal angle. This flexibility can be 

explained by the angular dependence of the mode wave vector and, consequently, of the phase velocity 

perturbation. The perturbation size parallel to the flux surface is increasing in the regions of a higher 

phase velocity. The size of the perturbation in the perpendicular direction can depend on the set of 

factors such as a size of the perturbation in the parallel direction, such as a distance between the 

neighboring flux surfaces. The perturbation shape should be constructed by the curvilinear shape of 

the flux surface. This curvature can be neglected in the case of the high m-modes under consideration. 

In this case the displacement of the flux surface from the straight line in the small enough length of 

perturbation is rather insignificant. We can use a rotating Cartesian coordinate system (x,y) with the 

axis x parallel to the flux surface and the axis y perpendicular to the flux surface for every position in 



the flux surface l . The individual 2D perturbation profile in this case is modeled by the Gaussians  
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  where xi and yi  are the coordinates of the perturbation center for the 

position along the flux surface l; σx and σy are the corresponding weight coefficients. We cannot 

simulate a real plasma mode without knowledge of σx(l) and σy(l) dependences in this mode. 

Nonetheless, according to our simulation, the distortions of the phase diagram are not significant even 

in the case of the strong σx(l) and σy(l) dependences. The comparison of a rigid mode case with a 

flexible perturbations case possessing a strong flexibility: σx ~ ∆l 
2
, σy ~ ∆l 

-1
 is shown in figure 9. 

 

Figure 9. Modeled topology of the m=10 mode: (a) rigid model (σ=0.025m) and (b) flexible model. 

The corresponding evolution of the modeled line-integrated responses (c) and (d) 

The phase diagrams are rather similar in the two models as is seen from figures 9(c) and 9(d). This 

effect has been expected in the high-m case under consideration. The phase diagram is determined 

mainly by the centers of the short in comparison with the flux surface length perturbations.   

5.c Ballooning-like mode analysis  

 We use the modes with a single poloidal mode number, although the modes with co-existing different 

poloidal mode numbers could be observed by XMCTS. For modeling of a ballooning-like mode we 

use the sum of perturbations of two modes with poloidal mode numbers m=10 and m+1=11 with equal 

radial location and size (σ=0.025m). In figure 10 the non-ballooning m=10 mode is compared with the 

m=10 ballooning-like mode. A stable pattern of the SXR response is formed in the single m case 

(figure 10(c)) in contrast to the time-varying SXR response of the ballooning-like mode (figure 10(d)). 

An interference of perturbations of m and m+1modes causes a distortion of the SXR response pattern. 

Similar distortions are observed in the case of the anti-ballooning mode or in the cases of combination 

of m and m+2 modes (typical for the elipticity induced by the Alfvén eigenmodes, EAE). If the 

amplitude of one of the poloidal harmonics of the combined mode is substantially higher, this mode is 

seen as a single m mode. A regular, stable pattern of the SXR response is observed experimentally at 

3.42 s (as is seen from figures 3,5,7(a)). We can conclude that the observed mode is determined as an 

m=10 single poloidal mode (or a mode with the strongly dominant m=10 component).  



 

 Figure 10. Modeled topology of (a) an m=10 mode and an (b) m=10 ballooning-like mode 

(σ=0.025m). The corresponding evolution of the modeled line-integrated responses (c) and (d) 

 

5.d Amplitude distribution analysis 

One more available experimental property of the modes under consideration is the time-averaged 

mode amplitude distribution (see figure 2). It is expected that the perturbation interference in the case 

of multiple m modes should form different patterns of the time-averaged mode amplitude. Non-

uniformity of the fluctuations amplitude are observed in figure 2(b) and figure 2(c) at 3.3-3.4 s but are 

not observed in figure 2(c) at 3.5 s. Figure 11 shows the amplitude distribution versus the photodiode 

obtained by numerical integration of the data given in figures 10(c)(d) for single m mode and 

ballooning-like modes.  

 

Figure 11. Distribution of rms amplitudes of the modeled mode structure: (a) for a single m mode, as 

in figure 10(c), and (b) for a modeled ballooning mode, as in figure 10(d). The rms values of 

oscillations are plotted versus photodiodes of camera 1D.  



 

The time-averaged amplitude distribution is clearly different, as it has been expected. A more uniform 

distribution in the case of ballooning-like modes (and other multiple m modes) is substantially 

different from the uniform case of a single m mode. Thus, our numerical modeling shows not only a 

similar phase evolution of the perturbations but also demonstrates a non-uniform distribution of the 

experimentally observed fluctuation amplitudes (see figure 2) in the case of a single m mode. This 

non-uniform distribution is used for discrimination of single m modes from other modes. Three 

branches of W7X-PID 20180918.045 contain the non-uniform distribution of the SXR oscillations 

amplitude as is seen from figure 2. The branch observed at 3.5 s contains a rather uniform distribution. 

This last branch is caused by the multiple-m mode according to the criterion of the amplitude 

distribution uniformity.  

 

5.e Mode numbers in the W7X-PID 20180918.045 discharge 

 

The capabilities of the forward modeling technique are demonstrated in the foregoing sections. 

The application of the described numerical forward modeling of mode structures to different parts of 

the spectra allows separating of three different single m mode branches in the W7-X discharge W7X-

PID 20180918.045, as shown in figure 12. 

 

Figure 12. Poloidal mode numbers of the three different mode branches in the discharge W7X-PID 

20180918.045 (raw FFT spectra shown in figure 2(a)). 

The separation of the mode branches follows from the comparisons to the modeled oscillation phase 

analysis as well as directly from the mode amplitude distribution analysis of the raw data (as shown in 

figure 2). One can see from figure 2 that the last branch (23-28 kHz at 3.5 s) is a more complex case. 

The responsible mode cannot be described by a single poloidal mode number m. A more detailed 

analysis of the combined m case (discrimination from (m, m+1); (m, m+2); … combinations) is limited 

by the spatial resolution of a single SXR camera. The combination of all the 20 available XMCTS 

cameras in W7-X and more complex modeling may provide a more sophisticated technique in this 

case. Our forward modeling technique can be used for determination of single m modes in the W7-X 

discharges. It can be used for discrimination of more complex mode structures from the single m 

modes as well. The dependence of mode rotation velocity on poloidal angle can introduce an 



additional correction to the calculated phase diagram of the modes, but the main features are defined 

by m and ρ of the mode. 

6. Conclusions  

A forward mode modeling technique of MHD mode analysis on the base of lines-of-sight data 

of SXR diagnostics is first applied for W7-X geometry. The real geometry of SXR cameras is used in 

our modeling. The poloidal mode structures are modeled by the radially localized Gaussian-shaped 

emission regions rotating along the magnetic surfaces.  A set of models with a constant phase velocity 

and a phase velocity depending on the poloidal angle are considered. A model with rigid shapes of 

emission regions are compared with a flexible model of these regions. In this model the parallel and 

perpendicular sizes of the flexibly shaped emission regions depend on the poloidal angle. Two 

techniques based on the comparison of calculated and measured data are used. The calculated 

spatiotemporal phase evolution of line-integrated modeled data is compared with the experimental 

data in the first technique. The spatial distribution of the oscillation amplitudes versus the SXR 

channel is compared in the second technique.  All the models shows, that in the case of a high-m mode 

the phase diagram is determined mainly by the poloidal mode number m and radial location of mode ρ. 

So, this technique allows us to determine reliably the radial location ρ, poloidal mode number m and 

mode rotation direction of high-m modes with a single m.  Thus the single m modes are discriminated 

from other modes (for example, ballooning modes). First for the W7-X stellarator the 20-40 kHz 

modes are analyzed using forward mode modeling technique. In particular, in the discharge 

#180918045 there are identified three single m mode branches with poloidal mode numbers m=8, 

m=10, m=11 localized at ρ≈0.3 and rotating in the clockwise direction (when looking in the positive 

toroidal direction).  As a result, using the forward modeling in W7-X the high m-modes are identified.    
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