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We introduce the magnon circular photogalvanic effect enabled by two-magnon Raman scattering. This
provides an all-optical pathway to the generation of directed magnon currents with circularly polarized light
in honeycomb antiferromagnetic insulators. The effect is the leading order contribution to magnon photocurrent
generation via optical fields. Control of the magnon current by the polarization and angle of incidence of the laser
is demonstrated. Experimental detection by sizable inverse spin Hall voltages in platinum contacts is proposed.
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The creation and control of spin currents at the nanoscale
are key goals in spintronics and magnonics [1]. The recent
synthesis of quasi-two-dimensional layered magnetic insula-
tors, such as transition-metal phosphorous trichalcogenides
MPX3 (M = Ni, Mn, Fe and X = S, Se) and chromium
trihalides CrX3 (X = Cl, I, Br) with a band gap of ∼1 eV
[2–8] is inspiring ideas on how to employ such materials in
future spintronics devices [9,10]. One of the most promising
approaches is to use optical means for spin current gen-
eration and control [11,12]. Importantly, this would allow
one to adapt concepts from photocurrent generation in elec-
tronic systems, in particular, the circular photogalvanic effect
(CGPE). The CPGE holds great promise for functionality
and applications since it allows one to selectively generate
currents and probe wave-function quantum geometry only on
the surface, as demonstrated in 3D [13] and 2D topological
insulators [14] as well as Weyl materials [15]. On the other
hand, the optical control of magnetization is naturally ex-
tended into the ultrafast (THz or faster) regime, as has been
demonstrated by coherent control of magnetism in pump-
probe experiments [16–23]. The prospects of combining the
expertise from CPGE and ultrafast magnetism research with
antiferromagnetic spintronics and optospintronics would pave
the way toward the next generation of ultrafast optospintronics
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research with functionality and devices on the horizon. How-
ever, there are a number of obstacles to overcome. One of
them is the theoretical foundation behind such an approach.

Here we lay the groundwork for an all-optical route to cre-
ate directed magnon currents in magnetic insulators through
the magnon circular photogalvanic effect (MCPGE) enabled
by two-magnon Raman scattering. We show that a circu-
larly polarized laser drive generates a magnon current whose
strength and direction are controllable through the angle of
incidence and polarization via the MCPGE. This magnonic
photocurrent is predicted to lead to an inverse spin Hall volt-
age of experimentally accessible values in platinum contacts,
with a characteristic angle dependence, enabling the experi-
mental verification of both the magnon current generation and
the underlying MCPGE with existing technology.

The MCPGE as proposed in this paper is the leading con-
tribution [24] to magnon photocurrents in antiferromagnetic
insulators. Earlier works have considered the direct coupling
of the laser field and the spins via the Zeeman interaction,
which is only dominant in the GHz regime and on resonance
[25–27]. In contrast, the two-magnon Raman process couples
the electric field of the laser to the spins via the same kinetic
processes that give rise to the antiferromagnetic exchange
interaction, which is ubiquitous in real materials and gives the
leading order contribution to the magnon current for optical
fields. Since the electric field is stronger than the magnetic
field by a factor c (with c the speed of light), it gives an
enhancement of the magnon current on the order of c2. Fur-
ther, since the Raman process creates pairs of magnons with
opposite and finite momenta (over the full Brillouin zone),
the excitation cross section greatly exceeds that of resonant
processes only exciting the system around �. These two-
magnon processes also dominate over single-magnon Raman
processes enabled by spin-orbit interaction [24,28].
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FIG. 1. Magnon photocurrent via two-magnon Raman scatter-
ing. (a) The magnetic unit cell with the vectors δ

(n)
i connecting the

nth-nearest neighbors. (b) Scattering of right-handed (left-handed)
photons into left-handed (right-handed) photons imparting spin
angular momentum and creating a magnon pair with zero net mo-
mentum carrying a net spin angular momentum current of 2h̄

In what follows, we study the generation of magnon
currents via two-magnon Raman scattering specifically in
collinear honeycomb antiferromagnets. However, the analysis
presented below can be straightforwardly extended to general
magnetic point groups. We find that the magnon current is
determined by the MCPGE and given by

〈J〉 = ζ Im(σ ) cos θ sin2 θ (sin 2φêy − cos 2φêx ), (1)

where σ is the nonzero element of the optical susceptibility
and θ and φ determine the propagation direction of the light
as shown in Fig. 2. Here, the z axis coincides with the Néel
vector of the system. For subgap excitations, the susceptibility
only shows a weak frequency dependence and in the following
we assume h̄ω = 1 eV. The magnitude of 〈J〉 is controlled by
the angle of incidence θ , while its direction is determined by
the polar angle φ and the chirality ζ of the laser. The current
vanishes at normal and in-plane incidence, and its direction
rotates in the substrate plane with a period 2φ as illustrated
by the flower shape in Fig. 2(c). Figures 2(a) and 2(b) show
the y component of the current as a function of θ and φ, for a
laser with left- or right-handed polarization, respectively. The
results clearly illustrate the direct proportionality of 〈J〉 to the
chirality of the laser and how the current can be controlled via
the MCPGE.

The expression for the magnon current 〈J〉 can be un-
derstood from a symmetry analysis of the system. The
light-matter coupling due to Raman scattering is quadratic in
the electric fields [24,29,30], which in line with previous work
gives a quadratic dependence of the current on the incident
electric field [13–15,31]. Since the magnon photocurrent is
obtained by expanding the optical susceptibility to lowest
order in the Raman interaction, only odd orders will con-
tribute. The third order susceptibility vanishes by symmetry,
and hence the leading order contribution comes from the
fifth-order tensor σi jklm. For a collinear Neél state, the system
has C3v symmetry and the susceptibility has to be invariant
under the corresponding symmetry transformations. The C3v

and index permutation symmetries reduce the original 32
elements of σi jklm to 16 nonzero elements, out of which three
are independent [32]. Among these, only one corresponds to

FIG. 2. Photoinduced magnon current. (a), (b) Photoinduced
magnon current along the y axis as a function of incidence and
polar angles θ and φ for left-handed (a) and right-handed (b) cir-
cular polarization. The current is normalized to the maximal value
Jmax obtained at θ ≈ 55◦ and φ = 45◦. The horizontal grid lines
indicate where the incident field is parallel to the x or y axis. (c)
The x component (orange) and y component (black) of the magnon
photocurrent as a function of polar angle φ. (d) Illustration of the
proposed experimental setup with a honeycomb antiferromagnet and
metallic contacts (Pt) for magnon current readout. In all panels, the
model parameters are S = 5/2, J1 = 1.54 meV, J2 = −0.14 meV,
J3 = 0.3 meV, Jz = 8.6 μeV, and B = 0, as appropriate for MnPS3

[36,37].

a process of net angular momentum transfer that can generate
a nonzero magnon current, leading to Eq. (1).

In a typical experiment, the sample and angle of inci-
dence are held fixed while the polarization is varied via
a quarter wave plate. Therefore, we show in Fig. 3(a) the
magnon photocurrent as a function of polarization for a given
configuration (θ, φ). The current is maximal for circular

FIG. 3. Experimental signatures. (a) Magnon photocurrent as a
function of polarization obtained by varying the angle between the
electric field of a linearly polarized laser and the fast axis of a
quarter wave plate. The resulting polarization is indicated below
the graph. (b) Inverse spin Hall effect voltage VISHE induced by a
magnon current as a function of temperature T . The main panel
shows the diagonal Stokes component, while the inset shows the
off-diagonal Stokes (blue, dotted), and diagonal (green, dashed) and
off-diagonal (brown, dot-dashed) anti-Stokes contributions to VISHE.
In both panels, the parameters are the same as in Fig. 2.
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polarization and gradually reverses its direction when the
polarization is tuned from left to right handed. Incidentally,
we find that the current vanishes for linear polarization. The
necessity for circularly polarized light can be understood from
the requirement of angular momentum conservation, as in-
dicated in Fig. 1: Due to the threefold rotation symmetry
of the honeycomb lattice, angular momentum is conserved
modulo 3h̄. Since each magnon pair generated through Raman
scattering carries 2h̄ spin angular momentum, the excitation
process requires a flip of the photon helicity contributing h̄ to
the total angular momentum.

The magnon current can be detected via the inverse spin
Hall effect (ISHE) using the setup proposed in Fig. 2: A
magnon current generated in the bulk antiferromagnet prop-
agates toward the Pt contacts, where the resulting magnon
accumulation is converted into a spin current. The spin cur-
rent in turn generates a charge current via the ISHE, which
induces a voltage VISHE [38,39]. Following the discussion in
Refs. [40,41], we converted the magnon photocurrent into the
ISHE voltage shown in Fig. 3(b) [32]. To phenomenologically
account for the effects of magnon-magnon and magnon-
phonon scattering at finite temperatures, a linear temperature
dependence of the magnon decay rate is assumed. We find
a voltage VISHE ∼ 1 mV of the same order of magnitude as
signals detected from DC magnon currents launched via the
ISHE [42]. Figure 3(b) shows that the current decays rapidly
with temperature, and is effectively zero for T ≈ 30 K. This
is in line with experiments on MnPS3 [43], where the magnon
current was found to vanish above T ≈ 30 K, far below the
Neél temperature TN ≈ 80 K.

The symmetry analysis of collinear honeycomb antiferro-
magnets shows the generality of a nonzero magnon current
generated by the MCPGE, independent of the specifics of the
underlying spin Hamiltonian. This indicates that the mecha-
nism is a generic feature of a large class of materials, which
should favor an experimental verification. In what follows, we
derive Eq. (1) from a concrete microscopic spin Hamiltonian.

The magnetic structure of a collinear honeycomb antifer-
romagnet is described by the Hamiltonian

H =
∑
〈i j〉

Ji jSi · S j + Jz

∑
〈i j〉

Sz
i Sz

j − gμBB0 ·
∑

i

Si, (2)

where Ji j are bilinear exchange interactions, Jz is an easy-axis
anisotropy, and B0 = B0ẑ is an external magnetic field along
the easy axis. The ground state is approximately given by
the Neél state with spins on sublattice A (B) pointing in the
positive (negative) z direction. This model is appropriate for
van der Waals materials like MnPS3 in the monolayer or weak
interlayer coupling limit [36,44–46]. Equation (2) can be
augmented by including Dzyaloshinskii-Moriya interactions
(DMI). Interestingly, we find that the MCPGE is independent
of the DMI.

The low-energy excitations of H to lowest order in
1/S are found by Holstein-Primakoff linear spin-wave the-
ory. Transforming to Fourier space, the Hamiltonian is
H = S

∑
k �

†
kHk�k, where �

†
k = (a†

k, b−k ) is a Nambu
spinor, Hk = h01 + h · τ, and τ is the vector of Pauli ma-
trices. Including exchange interactions up to third-nearest
neighbors, the components of the Hamiltonian are given

by h0 = J + 2J2
∑

i cos(k · δ
(2)
i ), hx − ihy = ∑

i[J1e−ik·δ(1)
i +

J3e−ik·δ(3)
i ], and hz = B/S, where J = 3J1 − 6J2 + 3J3 + 3Jz,

B = gμBB0, and δ
(n)
i are the vectors between nth-nearest

neighbors. The Hamiltonian is diagonalized via a parauni-
tary matrix Uk giving H = ∑

k εαkα
†
kαk + εβkβ

†
−kβ−k. Here

εα/β,k = d ∓ hz is the dispersion of the upper and lower
magnon branches, respectively, and d = (h2

0 − h2
x − h2

y )1/2.
We note that the magnon Hamiltonian is invariant under

the combined symmetry T I, where T is the time-reversal
operator and I is a reflection in the inversion center located
halfway along an A − B bond. The T I symmetry implies
that the magnon dispersion is even in k. In the presence of
DMIs, the T I symmetry is broken, and the C6v symmetry
of the excitation spectrum reduces to that of the C3v sub-
group. Surprisingly, this is the only effect of DMIs in our
model, and all results presented here are independent of such
interactions [47].

The optomagnetic Hamiltonian can be derived from a tight-
binding model by considering a half-filled Mott insulator
interacting with a photon field [30], which recovers the re-
sults by Fleury and Loudon [24,29]. The electromagnetic field
couples to the electronic system via standard Peierls substi-
tution with the vector potential A(r) = ∑

qs γq(eiq·reqsaqs +
e−iq·re∗

qsa
†
qs), where γq = (h̄/2ε0ωqV )1/2 and eqs is a polar-

ization vector. For sufficiently weak fields and in the dipole
approximation, as controlled by the respective parameters λ =
e|A|a/h̄ 	 1 and |q| 	 1, the Peierls phases can be expanded
and the effective spin Hamiltonian to lowest order in t/U is
given by [30]

HR = S
∑
kq′q

Rqq′�
†
k

(
rkq′q tkq′q
t∗
kq′q rkq′q

)
�ka†

q′aq. (3)

Here �
†
k = (α†

k, β−k ), Rqq′ = J1(ea/h̄)2γqγq′ , and to simplify
the notation we have defined q ≡ {q, s}.

The matrix elements tkq′q give the form factor Mkqin =∑
q |tkqinq|2 of the Raman cross-section for two-magnon ex-

citations. In the linear spin wave approximation, the cross
section is given by R(qin ) = ∑

kq |tkqinq|2δ(εαk + εβk − �q)
with �q = h̄ωqin − h̄ωq. The cross section is shown in
Fig. 4(a) for a right-handed circularly polarized laser, scat-
tered into either a left- or right-handed photon. At normal
incidence, there is an almost complete polarization selection
favoring scattering into left-handed photons. This is accom-
panied by an almost perfect selection rule favoring magnon
excitation at the K point, as seen by the k dependence of the
form factor Mkqin in Fig. 4(b). As the angle of incidence is
decreased, the relative contributions for scattering into left-
and right-handed photons approach each other and become
identical for an in-plane laser. This can be understood by con-
sidering the projection of the electric field onto the substrate
plane: At normal incidence, the projected field is circular
and angular momentum conservation requires scattering into
a mode of opposite handedness. For in-plane incidence, the
projected field is linear and thus consists of equal parts left-
and right-handed photons.

The optical susceptibility tensor is calculated via the
second-order Kubo formalism [25,26] using the magnon cur-
rent operator J [32]. The magnons are assumed to be in initial
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FIG. 4. Optical properties of honeycomb antiferromagnets.
(a) Raman cross section as a function of � = h̄ωin − h̄ωsc for a
right-handed polarized laser at normal incidence (solid lines), and at
incidence angles θ = π/4 (dashed lines) and θ = π/2 (dotted lines).
The blue (orange) curves show the cross section for scattering into
a left-handed (right-handed) photon. (b) Normalized Raman form
factor Mkqin as a function of k for a right-handed polarized laser at
normal incidence. In all panels, the parameters are the same as in
Fig. 2.

equilibrium at a temperature T and the photons to be in the
initial state |nqin〉

∏
q |0q〉, with a single macroscopically pop-

ulated photon mode corresponding to the incident laser. Since
the experimental setup of Fig. 2 is insensitive to the energy and
polarization of the scattered photons, the current is integrated
over scattered photon states.

The magnon photocurrent consists of a Stokes and an anti-
Stokes component [32], with the latter vanishing in the zero
temperature limit. Further, both components have contribu-
tions from both the diagonal and off-diagonal terms of the
magnon current operator. For the spin parameters considered
here [36,37], the diagonal Stokes term is larger than the re-
maining contributions by about three orders of magnitude [see
Fig. 3(d)], and the photo-induced magnon current is therefore
given to a very good approximation by

〈J〉(qin ) = 2G

h̄ωqin�

∑
s

∫
dk2

(2π )2
(nkα + nkβ + 1)

× (vαk + vβk )|tkqqin |2�k. (4)

Here G is a constant depending on the intensity I and photon
energy h̄ωqin of the incident laser, nkα (nkβ) is the thermal
magnon population, �−1 is a phenomenological magnon life-
time, and �k = h̄ωqin − εαk − εβk. Taking I = 1012 W/cm2

and h̄ωqin = 1 eV, we find G ≈ 3.6 × 10−12 meV/Å.
Since the magnon pairs |αk, β−k〉 carry zero net momen-

tum, momentum conservation forces the wave vectors of
the incident and scattered photons to be identical. Taking
qin = q = q(cos φ sin θ, sin φ sin θ,− cos θ ), where θ and φ

are defined in Fig. 1, the polarization of the incident laser
can be written as êin = (ê1 − iζ ê2)/

√
2. Here ê1, ê2, and q

constitute a right-handed coordinate system and ζ = 1 (ζ =
−1) for right-handed (left-handed) polarization. Evaluating
the symmetry allowed elements of the susceptibility tensor
from Eq. (4), only σ = σyyxyx is found to give a nonzero
contribution to 〈J〉, see Eq. (1).

To understand the origin and angular dependence of the
magnon photocurrent, we consider the momentum space
structure of the excited magnon population for different
(θ, φ). At normal incidence (θ = 0), the excited magnon pop-

ulation has C3 rotational symmetry and, depending on the
field chirality, magnons are excited mainly at K or at K ′
[see Fig. 4(d)]. Expanding the Raman form factor Mk around
Kτ = 4πτ/(3

√
3a)êx, with τ = ±1 at K (K ′), we find Mk =

3(RSa)2/2(1 − ητ ) + O(k2). Thus, we find a near perfect
optical selection rule for two-magnon excitations in honey-
comb antiferromagnets. However, the C3 symmetry leads to
a vanishing current when integrated over the Brillouin zone.
Analogously, at in-plane incidence (θ = π/2), the excited
magnon population is C2 symmetric, again leading to a van-
ishing integrated current. In the intermediate range 0 < θ <

π/2, the magnon population is asymmetric and interpolates
between the limiting cases at θ = 0 and θ = π/2, leading to
a maximal current at θ = arctan

√
2 ≈ π/3 (see Fig. 2).

The angular dependence of 〈J〉 is understood by noting that
as a function of φ, the maxima of the magnon population ro-
tate around the K or K ′ points at a distance d (θ ) with d (0) = 0
and d (π/2) = a/2. The period of the rotation results from
the coincidence of the in-plane projected polarization at φ

and φ + π . This leads to a clockwise (anticlockwise) rotation
of the current with a period π for right-handed (left-handed)
fields.

In conclusion, the current generation process creates
magnon pairs |αk, β−k〉 with zero net momentum and net
angular momentum 2h̄. This requires absorption and emission
of photons with net angular momentum, and thus circularly
polarized light. Since the process is symmetric under the
transformation k → −k, the magnon current and MCPGE
requires an asymmetric excited magnon population that is
achieved by irradiating the system at an oblique angle. Chiral
magnon photocurrents thus arise from the interplay of mo-
mentum imbalance induced by the chiral optical field and the
net angular momentum carried by magnon pairs.

To summarize, we have proposed an all-optical mechanism
to generate magnon photo-currents via two-magnon Raman
scattering. The current is directly proportional to the chirality
of the incident laser and can therefore be controlled via the
MCPGE. For realistic fields, the magnon current should be
measurable with existing technology via the induced inverse
spin Hall voltage in a Pt contact. Our results are independent
of the details of the microscopic spin Hamiltonian and can be
derived solely from the symmetries of the magnetic ground
state and the requirement of angular momentum conservation,
indicating that the MCPGE should be a generic feature of a
large class of antiferromagnetic insulators.

The present symmetry analysis of honeycomb lattice
antiferromagnets is straightforwardly extended to general
magnetic point groups and, in general, we expect the MCPGE
current to compete with currents insensitive to the po-
larization. However, for certain point groups, the optical
susceptibility vanishes by symmetry, thus prohibiting the gen-
eration of magnon photocurrents. This is exemplified by the
square lattice antiferromagnet, where an additional site inver-
sion symmetry forces both the photocurrent and the magnon
Berry curvature to vanish.

Our results suggest a deeper link between the magnon
photocurrent found in this work and the Berry curvature,
which should be explored in future works. We also note the
close analogy of the optical selection rules discussed above
to the selection rules for interband transitions in electronic
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honeycomb systems [48]. The key role of quantum geometry
for light-matter interaction has recently been noticed in the
contexts of electronic flat-band systems [49] and nonlinear
optical responses [50–52], and one can expect a similar role
for the quantum geometry of magnon wave functions on the
photon-magnon interaction. A natural extension of our work
is to consider the photoinduced magnon current in topological
magnetic systems where the integrated Berry curvature is
nonzero [53] and where a quantized response could be present
[54,55].
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[11] P. Němec, M. Fiebig, T. Kampfrath, and A. V. Kimel, Nat. Phys.
14, 229 (2018).

[12] H. Ishizuka and M. Sato, Phys. Rev. Lett. 122, 197702
(2019).

[13] J. W. McIver, D. Hsieh, H. Steinberg, P. Jarillo-Herrero, and N.
Gedik, Nat. Nanotechnol. 7, 96 (2012).

[14] S.-Y. Xu, Q. Ma, H. Shen, V. Fatemi, S. Wu, T.-R. Chang, G.
Chang, A. M. M. Valdivia, C.-K. Chan, Q. D. Gibson, J. Zhou,
Z. Liu, K. Watanabe, T. Taniguchi, H. Lin, R. J. Cava, L. Fu, N.
Gedik, and P. Jarillo-Herrero, Nat. Phys. 14, 900 (2018).

[15] Q. Ma, S.-Y. Xu, C.-K. Chan, C.-L. Zhang, G. Chang, Y. Lin,
W. Xie, T. Palacios, H. Lin, S. Jia, P. A. Lee, P. Jarillo-Herrero,
and N. Gedik, Nat. Phys. 13, 842 (2017).

[16] A. Kirilyuk, A. V. Kimel, and T. Rasing, Rev. Mod. Phys. 82,
2731 (2010).

[17] T. F. Nova, A. Cartella, A. Cantaluppi, M. Först, D. Bossini,
R. V. Mikhaylovskiy, A. V. Kimel, R. Merlin, and A. Cavalleri,
Nat. Phys. 13, 132 (2017).

[18] D. Afanasiev, J. R. Hortensius, B. A. Ivanov, A. Sasani, E.
Bousquet, Y. M. Blanter, R. V. Mikhaylovskiy, A. V. Kimel,
and A. D. Caviglia, Nat. Mater. 20, 607 (2021).

[19] A. S. Disa, M. Fechner, T. F. Nova, B. Liu, M. Först, D.
Prabhakaran, P. G. Radaelli, and A. Cavalleri, Nat. Phys. 16,
937 (2020).

[20] A. Stupakiewicz, C. S. Davies, K. Szerenos, D. Afanasiev, K. S.
Rabinovich, A. V. Boris, A. Caviglia, A. V. Kimel, and A.
Kirilyuk, Nat. Phys. 17, 489 (2021).

[21] J. Walowski and M. Münzenberg, J. Appl. Phys. 120, 140901
(2016).

[22] S. Schlauderer, C. Lange, S. Baierl, T. Ebnet, C. P. Schmid,
D. C. Valovcin, A. K. Zvezdin, A. V. Kimel, R. V.
Mikhaylovskiy, and R. Huber, Nature (London) 569, 383
(2019).

[23] F. Siegrist, J. A. Gessner, M. Ossiander, C. Denker, Y.-P.
Chang, M. C. Schröder, A. Guggenmos, Y. Cui, J. Walowski,
U. Martens, J. K. Dewhurst, U. Kleineberg, M. Münzenberg, S.
Sharma, and M. Schultze, Nature (London) 571, 240 (2019).

[24] P. A. Fleury and R. Loudon, Phys. Rev. 166, 514 (1968).
[25] I. Proskurin, A. S. Ovchinnikov, J.-i. Kishine, and R. L. Stamps,

Phys. Rev. B 98, 134422 (2018).
[26] H. Ishizuka and M. Sato, Phys. Rev. B 100, 224411 (2019).
[27] I. Proskurin and R. L. Stamps, Symmetry approach to chiral

optomagnonics in antiferromagnetic insulators, in Chiral-
ity, Magnetism and Magnetoelectricity: Separate Phenomena
and Joint Effects in Metamaterial Structures, edited by E.
Kamenetskii (Springer International Publishing, Cham, 2021)
pp. 207–240.

[28] T. S. Parvini, V. A. S. V. Bittencourt, and S. V. Kusminskiy,
Phys. Rev. Res. 2, 022027(R) (2020).

[29] P. A. Fleury, S. P. S. Porto, and R. Loudon, Phys. Rev. Lett. 18,
658 (1967).

L100404-5

https://doi.org/10.1088/1361-648X/abec1a
https://doi.org/10.1038/nature22060
https://doi.org/10.1038/nature22391
https://doi.org/10.1126/science.aar4851
https://doi.org/10.1038/s41563-018-0040-6
https://doi.org/10.1038/s41565-018-0121-3
https://doi.org/10.1038/s41565-019-0438-6
https://doi.org/10.1103/PhysRevLett.124.027601
https://doi.org/10.1103/RevModPhys.90.015005
https://doi.org/10.1038/s41567-018-0063-6
https://doi.org/10.1038/s41567-018-0051-x
https://doi.org/10.1103/PhysRevLett.122.197702
https://doi.org/10.1038/nnano.2011.214
https://doi.org/10.1038/s41567-018-0189-6
https://doi.org/10.1038/nphys4146
https://doi.org/10.1103/RevModPhys.82.2731
https://doi.org/10.1038/nphys3925
https://doi.org/10.1038/s41563-021-00922-7
https://doi.org/10.1038/s41567-020-0936-3
https://doi.org/10.1038/s41567-020-01124-9
https://doi.org/10.1063/1.4958846
https://doi.org/10.1038/s41586-019-1174-7
https://doi.org/10.1038/s41586-019-1333-x
https://doi.org/10.1103/PhysRev.166.514
https://doi.org/10.1103/PhysRevB.98.134422
https://doi.org/10.1103/PhysRevB.100.224411
https://doi.org/10.1103/PhysRevResearch.2.022027
https://doi.org/10.1103/PhysRevLett.18.658


EMIL VIÑAS BOSTRÖM et al. PHYSICAL REVIEW B 104, L100404 (2021)

[30] B. S. Shastry and B. I. Shraiman, Phys. Rev. Lett. 65, 1068
(1990).

[31] R. Fei, W. Song, L. Pusey-Nazzaro, and L. Yang, Pt-symmetry
enabled spin circular photogalvanic effect in antiferromagnetic
insulators, arXiv:2104.08341.

[32] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.104.L100404 for further discussion of the
diagonalization of the spin Hamiltonian, the general symmetry-
allowed forms of the magnon current and nonlinear susceptibil-
ity tensor, and the relationship between the magnon current and
inverse spin Hall current, which includes Refs. [33–35].

[33] Y. Zhang, S. Okamoto, and D. Xiao, Phys. Rev. B 98, 035424
(2018).

[34] H. Katsura, N. Nagaosa, and P. A. Lee, Phys. Rev. Lett. 104,
066403 (2010).

[35] M. Naka, S. Hayami, H. Kusunose, Y. Yanagi, Y. Motome, and
H. Seo, Nat. Commun. 10, 4305 (2019).

[36] A. R. Wildes, B. Roessli, B. Lebech, and K. W. Godfrey,
J. Phys.: Condens. Matter 10, 6417 (1998).

[37] R. Cheng, S. Okamoto, and D. Xiao, Phys. Rev. Lett. 117,
217202 (2016).

[38] L. J. Cornelissen, J. Liu, R. A. Duine, J. B. Youssef, and B. J.
van Wees, Nat. Phys. 11, 1022 (2015).

[39] R. Lebrun, A. Ross, S. A. Bender, A. Qaiumzadeh, L. Baldrati,
J. Cramer, A. Brataas, R. A. Duine, and M. Kläui, Nature
(London) 561, 222 (2018).

[40] K. Ando, S. Takahashi, J. Ieda, Y. Kajiwara, H. Nakayama, T.
Yoshino, K. Harii, Y. Fujikawa, M. Matsuo, S. Maekawa, and
E. Saitoh, J. Appl. Phys. 109, 103913 (2011).

[41] Steven S.-L. Zhang and S. Zhang, Phys. Rev. B 86, 214424
(2012).

[42] D. Wei, M. Obstbaum, M. Ribow, C. H. Back, and G.
Woltersdorf, Nat. Commun. 5, 3768 (2014).

[43] W. Xing, L. Qiu, X. Wang, Y. Yao, Y. Ma, R. Cai, S. Jia, X. C.
Xie, and W. Han, Phys. Rev. X 9, 011026 (2019).

[44] K. Kim, S. Y. Lim, J. Kim, J.-U. Lee, S. Lee, P. Kim, K. Park,
S. Son, C.-H. Park, J.-G. Park, and H. Cheong, 2D Mater. 6,
041001 (2019).

[45] B. L. Chittari, Y. Park, D. Lee, M. Han, A. H. MacDonald, E.
Hwang, and J. Jung, Phys. Rev. B 94, 184428 (2016).

[46] N. Bazazzadeh, M. Hamdi, F. Haddadi, A. Khavasi, A. Sadeghi,
and S. M. Mohseni, Phys. Rev. B 103, 014425 (2021).

[47] This follows from the fact that in honeycomb antiferromagnets,
the terms of the Hamiltonian describing the DMI are propor-
tional to the identity matrix.

[48] W. Yao, D. Xiao, and Q. Niu, Phys. Rev. B 77, 235406 (2008).
[49] G. E. Topp, C. J. Eckhardt, D. M. Kennes, M. A. Sentef, and P.

Törmä, Light-matter coupling and quantum geometry in moiré
materials, Phys. Rev. B 104, 064306 (2021).

[50] Z. Li, T. Tohyama, T. Iitaka, H. Su, and H. Zeng,
arXiv:2007.02481.

[51] J. Ahn, G.-Y. Guo, and N. Nagaosa, Phys. Rev. X 10, 041041
(2020).

[52] J. Ahn, G.-Y. Guo, N. Nagaosa, and A. Vishwanath,
arXiv:2103.01241.

[53] E. Viñas Boström, M. Claassen, J. W. McIver, G. Jotzu, A.
Rubio, and M. A. Sentef, SciPost Phys. 9, 61 (2020).

[54] F. de Juan, A. G. Grushin, T. Morimoto, and J. E. Moore, Nat.
Commun. 8, 15995 (2017).

[55] Z. Ni, K. Wang, Y. Zhang, O. Pozo, B. Xu, X. Han, K. Manna,
J. Paglione, C. Felser, A. G. Grushin, F. de Juan, E. J. Mele, and
L. Wu, Nat. Commun. 12, 154 (2021).

L100404-6

https://doi.org/10.1103/PhysRevLett.65.1068
http://arxiv.org/abs/arXiv:2104.08341
http://link.aps.org/supplemental/10.1103/PhysRevB.104.L100404
https://doi.org/10.1103/PhysRevB.98.035424
https://doi.org/10.1103/PhysRevLett.104.066403
https://doi.org/10.1038/s41467-019-12229-y
https://doi.org/10.1088/0953-8984/10/28/020
https://doi.org/10.1103/PhysRevLett.117.217202
https://doi.org/10.1038/nphys3465
https://doi.org/10.1038/s41586-018-0490-7
https://doi.org/10.1063/1.3587173
https://doi.org/10.1103/PhysRevB.86.214424
https://doi.org/10.1038/ncomms4768
https://doi.org/10.1103/PhysRevX.9.011026
https://doi.org/10.1088/2053-1583/ab27d5
https://doi.org/10.1103/PhysRevB.94.184428
https://doi.org/10.1103/PhysRevB.103.014425
https://doi.org/10.1103/PhysRevB.77.235406
https://doi.org/10.1103/PhysRevB.104.064306
http://arxiv.org/abs/arXiv:2007.02481
https://doi.org/10.1103/PhysRevX.10.041041
http://arxiv.org/abs/arXiv:2103.01241
https://doi.org/10.21468/SciPostPhys.9.4.061
https://doi.org/10.1038/ncomms15995
https://doi.org/10.1038/s41467-020-20408-5

