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SPIN HAMILTONIAN IN THE MAGNON BASIS

In this Section we provide details on the spin Hamil-
tonian in the magnon basis, the spin current operator
and the interaction Hamiltonian for stimulated Raman
scattering. We consider a general spin Hamiltonian

H =
∑
〈ij〉

JijSi · Sj + Jz
∑
〈ij〉

Szi S
z
j − gµBB0 ·

∑
i

Si

+
∑
〈ij〉

Dνij ẑ · (Si × Sj), (1)

where Jij are bilinear exchange interactions, Jz is an
easy-axis anisotropy, and B0 = B0ẑ is an external
magnetic field along the easy axis. Also, D is the
next-nearest neighbor Dzyaloshinskii-Moriya interaction
(DMI) strength (the nearest neighbor DMI vanishes by
symmetry), and the function νij encodes the phase ac-
cumulated by electrons hopping along isosceles triangles,
which is νij = ±1 for hopping in a clockwise (anticlock-
wise) direction. The low-energy excitations of H are
found to lowest order in (1/S) by a Holstein-Primakoff
transformation, and transforming to Fourier space the
Hamiltonian is of the form

H = S
∑
k

Ψ†kHkΨk, (2)

where Ψ†k = (a†k, b−k) is a Nambu spinor and Hk =
h01 + h · τ , with τ the vector of Pauli matrices. The
components of the Hamiltonian are given by

h0 = J + 2J2
∑
i

cos(k · δ(2)i ) (3)

hx =
∑
i

[J1 cos(k · δ(1)i ) + J3 cos(k · δ(3)i )]

hy =
∑
i

[J1 sin(k · δ(1)i ) + J3 sin(k · δ(3)i )]

hz =
B

S
+ 2D

∑
i

sin(k · δ(2)i ),

where J = 3J1 − 6J2 + 3J3 + 3Jz, B = gµBB0, and

δ
(n)
i are the nth nearest neighbor vectors of the lattice.

The Hamiltonian is diagonalized to H =
∑

k εαkα
†
kαk +

εβkβ
†
−kβ−k via a paraunitary matrix Uk, given by

Uk =

(
cosh(θk/2) eiφksinh(θk/2)

e−iφksinh(θk/2) cosh(θk/2)

)
. (4)

Here the Bogoliubov angles are given by φk =

− arctan(hy/hx) and θk = − arctan(
√
h2x + h2y/h0) [1].
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FIG. 1. Bandstructure and Berry curvature. (a)
Magnon band structure of a collinear honeycomb antiferro-
magnet. The magnon branches are degenerate. (b) Berry
curvature of the α-branch. The Berry curvature for the β-
branch is equal but opposite in sign. In both panels, the
model parameters are S = 5/2, J1 = 1.54 meV, J2 = −0.14
meV, J3 = 0.3 meV, Jz = 8.6 µeV and B = 0, as appropriate
for MnPS3 [2, 3].

The Berry curvature of the magnon bands is defined
as Ωi(k) = − Im〈∇kΨi| × τz|∇kΨi〉 [2]. For a two-band
system, it may also be expressed in the form Ω(k) =
(2d3)−1d · (∂kxd × ∂kyd), where d = (h0, hx, hy). The
magnon dispersion and the associated magnon Berry cur-
vature of the α-branch are shown in Fig. 1, with exchange
parameters taken from Refs. [2, 3].

We note that the magnon Hamiltonian is invariant un-
der the combined symmetry T I, where T is the time-
reversal operator and I is a reflection in the inversion
center located halfway along an A − B bond. The T I
symmetry implies that the magnon dispersion is even in
k. In the presence of DMIs the T I symmetry is broken,
and the C6v symmetry of the excitation spectrum reduces
to that of the C3v subgroup. The combined time-reversal
and bond inversion symmetry requires Ω(k) = −Ω(−k).
However, in contrast to ferromagnetic systems, inversion
symmetry is broken already for a vanishing DMI. There-
fore, a non-zero Berry curvature appears even for D = 0
and in fact Ω(k) is independent of D.

We now define the magnon spin current operator in
the magnon basis [4–8]

J =
1

V

∑
k

Φ†k

(
vαk Kk

K∗k vβk

)
Φk, (5)

where Φ†k = (α†k, β−k), vik = ∇kεik are the magnon
velocities, and Kk = −e−iφk [(h0∇kd0 − d0∇kh0)/d −
i(hx∇khy − hy∇khx)/d0] with d0 = (h2x + h2y)1/2. We
note that for D = 0 the magnon velocity v−k = −vk

is odd since the magnon dispersion is even. The off-
diagonal elements Kk are related to the Berry curvature
via Ω(k) = (i/4d2k)K∗k × Kk, which is strongly remi-
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niscent of the relation between the Berry curvature and
interband matrix elements in electronic systems [9].

The optomagnetic Raman interaction Hamiltonian
which describes the two-magnon Raman scattering in
first order perturbation theory is given by

HR =
∑
ijq′q

Rqq′(ê∗q · δ
(1)
j )(êq′ · δ(1)j )a†qaq′Si · Si+δ(1)j

, (6)

where the sum over j is over nearest neighbors. Trans-
forming to Fourier space and rotating to the magnon ba-
sis, we find

HR = S
∑
kq′q

Rqq′Φ†k

(
rkq′q tkq′q
t∗kq′q rkq′q

)
Φka

†
q′aq. (7)

Here Rqq′ = J1(ea/~)2γqγq′ and the matrix elements are
given by

rkq′q = g0q′q cosh θk +
1

2
sinh θk

(
gkq′qe

iφk + g∗kq′qe
−iφk

)
tkq′q = g0q′q sinh θk (8)

+ gkq′qe
iφk cosh2 θk

2
+ g∗kq′qe

−iφk sinh2 θk
2

The light-matter interaction is controlled by the function

gkq′q =
∑
i(ê
∗
q′ · δ

(1)
i )(êq · δ(1)i )e−ik·δ

(1)
i .

GENERAL FORM OF THE PHOTO-INDUCED
MAGNON CURRENT

We here present the general form of the photo-induced
magnon current arising from a symmetry analysis of the
susceptibility tensor. As discussed in the main text, we
define the optical susceptibility by

〈Ji1〉 = σi1i2i3i4i5(ω)ein,i2e
∗
in,i3e

∗
sc,i4esc,i5 . (9)

For a system invariant under the symmetry operation Tij ,
the transformed suscptibility

σ′i1i2i3i4i5 = (10)∑
j1j2j3
j4j5

Ti1j1Ti2j2Ti3j3Ti4j4Ti5j5σj1j2j3j4j5

must equal the original susceptibility σ. As the present
system is invariant under the symmetry group C3v, the
symmetry operations T are rotations around the z-axis
by an angle 2πn/3 for n ∈ {0, 1, 2}, as well as reflec-
tions in the planes through the origin with normal vec-

tors n̂ = êx, n̂ = − 1
2 êx +

√
3
2 êy and n̂ = − 1

2 êx −
√
3
2 êy.

The first reflection, taking x → −x, eliminates all ele-
ments with an odd number of indexes equal to x thus
reducing the number of non-zero elements from 32 to 16.
Imposing the remaining symmetries leaves five of these
elements independent, which we take as σyxyyx, σyyxxy,

σyyxyx, σyyyxx and σyyyyy. Due to the permutation sym-
metries i2 ↔ i4, i3 ↔ i5, the first, second and fourth of
these elements are identical, leaving the three indepen-
dent elements σ1 = σyyxxy, σ2 = σyyyyy and σ3 = σyyxyx.

The propagation direction of the incident field is deter-
mined by the unit vector n̂, which makes an angle θ with
the z-axis and an angle φ with the x-axis. A right-handed
coordinate system is defined by

ê1 = − sinφêx + cosφêy (11)

ê2 = cosφ cos θêx + sinφ cos θêy + sin θêz

n̂ = cosφ sin θêx + sinφ sin θêy − cos θêz,

which satisfy ê1 · ê2 = 0, êi · n̂ = 0 and ê1 × ê2 = n̂. As-
suming the direction of the incoming and scattered fields
are identical, as imposed by the dipole approximation,
we therefore have nsc = nin and

nin = cosφ sin θêx + sinφ sin θêy − cos θêz (12)

êin =
1√
2

(ê1 − iζê2)

= − 1√
2

(sinφ+ iζ cosφ cos θ)êx

+
1√
2

(cosφ− iζ sinφ cos θ)êy,

where for the polarization we only specify the x- and
y-coordinates since only these couple to the system.

Using these expressions for the polarization, the rela-
tions among the susceptibility elements induced by the
C3v symmetry, and summing over the independent po-
larization directions of the scattered photons, the photo-
induced magnon current in the x- and y-direction is given
by

〈Jx〉 =
1

2
(σ1 + σ2)(cos 2θ + 3) sin 2φ sin2 θ (13)

+ σ1 sin 4φ sin4 θ − iζ(σ1 − σ3) cos θ cos 2φ sin2 θ

〈Jy〉 =
1

2
(σ1 + σ2)(cos 2θ + 3) cos 2φ sin2 θ

− σ1 cos 4φ sin4 θ + iζ(σ1 − σ3) cos θ sin 2φ sin2 θ.

Only the tensor element σ3 corresponds to a process
with net spin angular momentum transfer and can con-
tribute to the magnon current. Together with the re-
quirement of a real current, this gives Eq. (1) of the main
text

〈J〉 = ζ Im(σ) cos θ sin2 θ(sin 2φêy − cos 2φêx). (14)

DERIVATION OF THE OPTICAL
SUSCEPTIBILITY

We consider the optical response to an external pertur-
bation by writing the total Hamiltonian as H = H0+HR,
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where HR is assumed to be small. Here the equilibrium
Hamiltonian is H0 = Hs +

∑
k ~ωka

†
kak, where Hs is the

spin Hamiltonian of Eq.2Main-text written in the Bogoli-
ubov basis, and a†k creates a photon in mode k of energy
~ωk. Similarly HR is the Raman interaction Hamiltonian
of Eq.3Main-text.

The second order response of an observable Jµ is ob-
tained by expanding the time evolution operators in the
expectation value 〈Jµ〉(t) = 〈U(t0, t)JµU(t, t0)〉 to second
order in HR, and doing this we find

〈Jµ〉(t) = 〈Jµ〉0(t) + i

∫ t

t0

dt1 〈[Jµ(t), HR(t1)]〉0 (15)

−
∫ t

t0

∫ t1

t0

dt1dt2 〈[[Jµ(t), HR(t1)], HR(t2)]〉0

The expectation value 〈· · · 〉0 indicates a trace with the
equilibrium density matrix, and all operators are in the
Heisenberg picture with respect to the Hamiltonian H0.

To evaluate the second order term we insert complete
sets of eigenstates of H0 between all operators, and in-
troducing a phenomenological damping Γi to regularize
the integral over ti. Taking the Fourier transform of 〈J〉
we find only the static component is non-zero, and per-
muting some of the indexes gives the general expression

〈J〉 (16)

=
∑
mnl

[
JmlH

ln
R

εl − εm − iΓ1
− Hml

R Jln
εn − εl − iΓ1

]
ρmH

nm
R

εn − εm − iΓ2

−
∑
mnl

ρnH
nm
R

εn − εm − iΓ2

[
JmlH

ln
R

εl − εm − iΓ1
− Hml

R Jln
εn − εl − iΓ1

]
.

To evaluate the matrix elements we assuming that the
incoming field is initially in a number state |nqin〉sqin

with polarization sqin , and that the outgoing field is in
the vacuum state |0〉s with polarization s. For the matrix
elements to be non-zero, the right-most HR in each line
must then be proportional to a†qaqin and the left-most

HR to a†qinaq. This means that the photon contribution
to the energy difference εn − εm is −∆q in the first and
+∆q in the second term of Eq. 16.

Evaluating all possible combinations of the magnon op-
erators giving a non-zero contribution, we find

〈J〉 =
nqin

(RS)2

πV

∑
kqs

nkα + nkβ + 1

~ωqin
~ωq

(17)

{(
1

εk −∆q − iΓ2
− e−βεk

εk + ∆q − iΓ2

)
×[

t∗kqinq(vαk + vβk)tkqqin
iΓ1

+
K∗krkqinqtkqqin

εk − iΓ1

]
+

(
1

εk −∆q + iΓ2
− e−βεk

εk + ∆q + iΓ2

)
×[

t∗kqinq(vαk + vβk)tkqqin
−iΓ1

+
t∗kqinqrkqqinKk

εk − iΓ1

]}
.

From this expression we can identify the Stokes compo-
nent as the first terms in the parentheses. Here, the tem-
perature effects come from the the factor (nkα+nkβ+1),
which describes the thermal occupation of the magnon
pair states. In the zero temperature limit, this contribu-
tion reduces to (nkα + nkβ + 1) → 1. Similarly, we can
identify the anti-Stokes component as the second terms
in the parentheses, which differs from the Stokes compo-
nent by the factor −e−βεk . However, since the magnon
spectrum is gapped, this term vanishes for T → 0, so that
only the Stokes component survives in the zero temper-
ature limit.

Finally, taking the limit Γi → 0 and evaluating the sum
over q, and we find the Stokes and anti-Stokes currents

〈J〉st(qin, sin) = 2G
∑
s

∫
dk2

(2π)2
(nkα + nkβ + 1)(

t∗kqinq(vαk + vβk)tkqqin
Γ~ωqin

∆k (18)

+
K∗krkqinqtkqqin + t∗kqinqrkqqinKk

π~ωqinεk

[
~ωqin

+ ∆k ln
εk
∆k

]
+ i

K∗krkqinqtkqqin − t∗kqinqrkqqinKk

~ωqin
εk

∆k

)
〈J〉as(qin, sin) = −2G

∑
s

∫
dk2

(2π)2
(nkα + nkβ + 1)e−βεk(

t∗kqinq(vαk + vβk)tkqqin
Γ~ωqin

∆̄k (19)

−
K∗krkqinqtkqqin + t∗kqinqrkqqinKk

π~ωqinεk

[
~ωqin + ∆̄k ln

εk
∆̄k

]
+ i

K∗krkqinqtkqqin − t∗kqinqrkqqinKk

~ωqin
εk

∆̄k

)
.

Here, top simplify the notation, we have written εk =
εαk + εβk, ∆k = ~ωqin

− εk and ∆̄k = ~ωqin
+ εk.

Also, Γ−1 is the magnon lifetime, β = (kBT )−1 and
G = nqin

(RS)2A/(2π~c)3. Using the relation nqin
=

IV/(~ωqinc), we find

G =

(
I

~ωqin
c

)(
A

V

)(
J2
1S

2e4a4

32π3~3c3ε20

)
. (20)

Assuming I = 1012 Wcm−2, ~ωqin
= 1 eV and a vertical

extent z = 5 Å of the system, we have

G = 5.78914 · 10−24 Jm−1 (21)

RELATION BETWEEN INVERSE SPIN HALL
VOLTAGE AND MAGNON CURRENT

Following the discussion in Ref. [10], we first consider
the conversion of the magnon current to a spin current
at the MnPS3/Pt interface. Using a Boltzmann equation



4

to model the magnon diffusion and accumulation at the
interface, the authors of Ref. [10] find the spin current

js =
λN
dN

b(cosh[dN/λN ]− 1)

(1 + b) sinh[dN/λN ]
〈J〉⊥, (22)

where λN is the spin diffusion length of Pt, dN the thick-
ness of the Pt layer and b = Gmelm/Dm. Further, lm is
the magnon diffusion length, Dm = l2m/τm the diffusion
coefficient, and τm the magnon non-conserving lifetime
of MnPS3. Finally Gme is the conversion coefficient from
a magnon to spin current, given by

Gme = (πS/~)J2
sdge(εF )2a2Pta

5
MnPS3

Ēm, (23)

where Jsd is the electron-magnon exchange coupling, ge
the Pt density of states at the Fermi energy, aPt and
aMnPS3

the lattice constants of Pt and MnPS3 respec-
tively, and Ēm the mean magnon lifetime. Using the
parameter values λN = dN = 1 nm, lm = 3 µm [11] and
τm = 10 µs, as well as Jsd = 1 meV, ge = 0.08 (eVa3Pt)

−1,
aPt = 3.9 Å, aMnPS3

= 6.1 Å and Ēm = 5 meV, we find
Gme = 0.37. This gives a conversion factor between js
and 〈J〉⊥ of Csm = 0.054.

We now consider the conversion of the induced spin
current to a voltage VISHE via the inverse spin Hall effect
(ISHE). Following Ref. [12], we find the ISHE voltage is
given by

VISHE =
2e

~
wθSHEλN tanh(dN/2λN )

dNσN
js, (24)

where w is the width of the MnPS3 layer, and θSHE and
σN are the spin Hall angle and the electrical conduc-
tivity of Pt. Using the parameters values w = 1 mm,
θSHE = 0.04 and σN = 2 (µΩm)−1, we find a conver-
sion factor between VISHE and js of CV s = 28000. Thus,
the ISHE voltage measured in response to the photo-
generated magnon current is given by

VISHE = CV sCsm〈J〉⊥ ≈ (170Vm2/J)〈J〉⊥, (25)

for a magnon current given in J/m2.
This results assumes the magnon current is generated

right at the MnPS3/Pt interface. In practice, there would
be an attenuation of the magnon current associated with
the propagation through the magnetic substrate. Al-
though the attenuation is hard to predict, a rough esti-
mate can be obtained by comparing the magnon diffusion
length lm to the thickness dm of the MnPS3 layer and as-
suming an exponential decay. Thus, we use α = e−dm/lm

as our attenuation factor. Assuming dm = 10 µm we find
α = 0.04, and a voltage VISHE on the order of mV.
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