Supplemental Material: All-Optical Generation of Antiferromagnetic Magnon
Currents via the Spin Circular Photogalvanic Effect

SPIN HAMILTONIAN IN THE MAGNON BASIS

In this Section we provide details on the spin Hamil-
tonian in the magnon basis, the spin current operator
and the interaction Hamiltonian for stimulated Raman
scattering. We consider a general spin Hamiltonian
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where J;; are bilinear exchange interactions, J, is an
easy-axis anisotropy, and By = DBpz is an external
magnetic field along the easy axis. Also, D is the
next-nearest neighbor Dzyaloshinskii-Moriya interaction
(DMI) strength (the nearest neighbor DMI vanishes by
symmetry), and the function v;; encodes the phase ac-
cumulated by electrons hopping along isosceles triangles,
which is v;; = £1 for hopping in a clockwise (anticlock-
wise) direction. The low-energy excitations of H are
found to lowest order in (1/S) by a Holstein-Primakoff
transformation, and transforming to Fourier space the
Hamiltonian is of the form

H=2S8Y UlHW,, (2)
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where \I’L = (aL,b_k) is a Nambu spinor and Hy =
hol + h - 7, with 7 the vector of Pauli matrices. The
components of the Hamiltonian are given by
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where J = 3J; — 6Jy + 3J3 + 3J,, B = gupBy, and
5571) are the nth nearest neighbor vectors of the lattice.
The Hamiltonian is diagonalized to H = eakaiak +

egkﬁikﬁ_k via a paraunitary matrix Uy, given by
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Here the Bogoliubov angles are given by ¢
—arctan(hy/h,) and O = — arctan(y/h2 + hZ/ho) [1].
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FIG. 1. Bandstructure and Berry curvature. (a)

Magnon band structure of a collinear honeycomb antiferro-
magnet. The magnon branches are degenerate. (b) Berry
curvature of the a-branch. The Berry curvature for the (-
branch is equal but opposite in sign. In both panels, the
model parameters are S = 5/2, J1 = 1.54 meV, Jo = —0.14
meV, J3 = 0.3 meV, J, = 8.6 ueV and B = 0, as appropriate
for MnPSs [2, 3].

The Berry curvature of the magnon bands is defined
as Q;(k) = —Im(V ;| x 7|V ¥;) [2]. For a two-band
system, it may also be expressed in the form Q(k) =
(2d*)~'d - (Ok,d x O, d), where d = (hg,hy, hy). The
magnon dispersion and the associated magnon Berry cur-
vature of the a-branch are shown in Fig. 1, with exchange
parameters taken from Refs. [2, 3].

We note that the magnon Hamiltonian is invariant un-
der the combined symmetry 7Z, where 7T is the time-
reversal operator and Z is a reflection in the inversion
center located halfway along an A — B bond. The TZ
symmetry implies that the magnon dispersion is even in
k. In the presence of DMIs the TZ symmetry is broken,
and the Cg, symmetry of the excitation spectrum reduces
to that of the Cj, subgroup. The combined time-reversal
and bond inversion symmetry requires Q(k) = —Q(—k).
However, in contrast to ferromagnetic systems, inversion
symmetry is broken already for a vanishing DMI. There-
fore, a non-zero Berry curvature appears even for D = (
and in fact (k) is independent of D.

We now define the magnon spin current operator in
the magnon basis [4-8]
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where CIDL = (ali,ﬂ_k), vk = Vik€x are the magnon
velocities, and Ky = —e x[(hgVidy — doViho)/d —
i(haVichy — hyVichg)/do] with do = (h2 + h2)/2. We
note that for D = 0 the magnon velocity v_x = —vy
is odd since the magnon dispersion is even. The off-
diagonal elements Ky are related to the Berry curvature
via Q(k) = (i/4d})K; x Ky, which is strongly remi-



niscent of the relation between the Berry curvature and
interband matrix elements in electronic systems [9].

The optomagnetic Raman interaction Hamiltonian
which describes the two-magnon Raman scattering in
first order perturbation theory is given by
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where the sum over j is over nearest neighbors. Trans-

forming to Fourier space and rotating to the magnon ba-
sis, we find
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Here Rqq = Ji(ea/h)?vq7q and the matrix elements are
given by
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The light-matter interaction is controlled by the function
- Dy /A Dy —ik.s
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GENERAL FORM OF THE PHOTO-INDUCED
MAGNON CURRENT

We here present the general form of the photo-induced
magnon current arising from a symmetry analysis of the
susceptibility tensor. As discussed in the main text, we
define the optical susceptibility by

(Jir) = Oirigiziais (W)€in,iz€in iy €oc,iy €scyis- (9)

For a system invariant under the symmetry operation Tj;,
the transformed suscptibility
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must equal the original susceptibility o. As the present
system is invariant under the symmetry group Cj,, the
symmetry operations T are rotations around the z-axis
by an angle 27n/3 for n € {0,1,2}, as well as reflec-
tions in the planes through the origin with normal vec-
tors i = &,, i = —1&, + L3¢, and h = —Le, — L&,
The first reflection, taking x — —x, eliminates all ele-
ments with an odd number of indexes equal to x thus
reducing the number of non-zero elements from 32 to 16.
Imposing the remaining symmetries leaves five of these
elements independent, which we take as oyzyyz, Tyyzays

Oyyzyz, Oyyyzs ad Tyyyyy. Due to the permutation sym-
metries iy <> i4, i3 <> i5, the first, second and fourth of
these elements are identical, leaving the three indepen-
dent elements 01 = Oyyzay, 02 = Oyyyyy a0d 03 = Tyyaya-

The propagation direction of the incident field is deter-
mined by the unit vector n, which makes an angle 6 with
the z-axis and an angle ¢ with the z-axis. A right-handed
coordinate system is defined by

é; = —sin¢é, + cos &, (11)
€ = cos ¢ cos B, + sin ¢ cos €, + sin fe,

n = cos ¢ sin #€, + sin ¢ sin &, — cos fe,,

which satisfy € -€é; =0, &;-n =0 and é; X é; = n. As-
suming the direction of the incoming and scattered fields
are identical, as imposed by the dipole approximation,
we therefore have n,. = n;,, and

n;, = cos ¢sin e, + sin ¢ sin #&, — cos f€, (12)
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where for the polarization we only specify the z- and
y-coordinates since only these couple to the system.
Using these expressions for the polarization, the rela-
tions among the susceptibility elements induced by the
C3, symmetry, and summing over the independent po-
larization directions of the scattered photons, the photo-

induced magnon current in the x- and y-direction is given
by
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Only the tensor element o3 corresponds to a process
with net spin angular momentum transfer and can con-
tribute to the magnon current. Together with the re-
quirement of a real current, this gives Eq. (1) of the main
text

(J) = ¢Im(o) cos O sin? O(sin 2¢&, — cos 2¢é,).  (14)

DERIVATION OF THE OPTICAL
SUSCEPTIBILITY

We consider the optical response to an external pertur-
bation by writing the total Hamiltonian as H = Hy+ Hg,



where Hp is assumed to be small. Here the equilibrium
Hamiltonian is Hy = Hs + >, ﬁwkalak, where H, is the
spin Hamiltonian of Eq.2Main-text written in the Bogoli-
ubov basis, and aL creates a photon in mode k of energy
hwy. Similarly Hg is the Raman interaction Hamiltonian
of Eq.3Main-text.

The second order response of an observable J, is ob-
tained by expanding the time evolution operators in the
expectation value (J,,)(t) = (Ul(to,t)J,U(t, to)) to second
order in Hg, and doing this we find
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The expectation value (---)( indicates a trace with the
equilibrium density matrix, and all operators are in the
Heisenberg picture with respect to the Hamiltonian Hy.

To evaluate the second order term we insert complete
sets of eigenstates of Hy between all operators, and in-
troducing a phenomenological damping I'; to regularize
the integral over ¢;. Taking the Fourier transform of (J)
we find only the static component is non-zero, and per-
muting some of the indexes gives the general expression
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To evaluate the matrix elements we assuming that the
incoming field is initially in a number state |ng,,)s,,
with polarization sq;, , and that the outgoing field is in
the vacuum state |0)5 with polarization s. For the matrix
elements to be non-zero, the right-most Hg in each line
must then be proportional to agaqm and the left-most
Hp to a};m agq. This means that the photon contribution
to the energy difference €, — €,, is —Aq in the first and
+Aq in the second term of Eq. 16.

Evaluating all possible combinations of the magnon op-
erators giving a non-zero contribution, we find
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From this expression we can identify the Stokes compo-
nent as the first terms in the parentheses. Here, the tem-
perature effects come from the the factor (nkqo +nxsg+1),
which describes the thermal occupation of the magnon
pair states. In the zero temperature limit, this contribu-
tion reduces to (nke + nkg + 1) — 1. Similarly, we can
identify the anti-Stokes component as the second terms
in the parentheses, which differs from the Stokes compo-
nent by the factor —e~#. However, since the magnon
spectrum is gapped, this term vanishes for T' — 0, so that
only the Stokes component survives in the zero temper-
ature limit.

Finally, taking the limit I'; — 0 and evaluating the sum
over q, and we find the Stokes and anti-Stokes currents
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Here, top simplify the notation, we have written €, =
€ak T €3k, Ay = hwq,, — ex and Ak = hwg,, + €.
Also, ™! is the magnon lifetime, 3 = (kgT)~' and
G = ng,, (RS)2A/(2rhe)3. Using the relation ng,, =
IV/(hwq,, c), we find
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Assuming I = 1012 Wem ™2, fiwg,, = 1 eV and a vertical
extent z =5 A of the system, we have

G =5.78914-10"2* Jm ™! (21)

RELATION BETWEEN INVERSE SPIN HALL
VOLTAGE AND MAGNON CURRENT

Following the discussion in Ref. [10], we first consider
the conversion of the magnon current to a spin current
at the MnPS3 /Pt interface. Using a Boltzmann equation



to model the magnon diffusion and accumulation at the

interface, the authors of Ref. [10] find the spin current
. )\71\[ b(COSh[dN/AN] - 1)
5= 4y (1 + 0) sinh[dy /Ay]

()L (22)

where Ay is the spin diffusion length of Pt, d the thick-
ness of the Pt layer and b = G,,ely/Dyy,. Further, 1, is
the magnon diffusion length, D,, = 2, /7, the diffusion
coefficient, and 7, the magnon non-conserving lifetime
of MnPS3. Finally G,,. is the conversion coefficient from
a magnon to spin current, given by

Gme = (ﬂ'S/h)szge(€F>2a12:’taiAnPS3Emv (23)

where Jgq is the electron-magnon exchange coupling, g.
the Pt density of states at the Fermi energy, ap; and
amnps, the lattice constants of Pt and MnPSs respec-
tively, and E,, the mean magnon lifetime. Using the
parameter values Ay = dy = 1 nm, l,,, = 3 pm [11] and
T = 10 ps, as well as Jgq = 1 meV, g. = 0.08 (eVad, )™,
apy = 3.9 A, aMnps; = 6.1 A and E,, =5 meV, we find
Gme = 0.37. This gives a conversion factor between j,
and (J), of Cs,, = 0.054.

We now consider the conversion of the induced spin
current to a voltage Vigyg via the inverse spin Hall effect
(ISHE). Following Ref. [12], we find the ISHE voltage is
given by

% WOSHEAN tanh(dN/2)\N)
h dNO'N

Visue = Jss (24)
where w is the width of the MnPSj3 layer, and fsyg and
on are the spin Hall angle and the electrical conduc-
tivity of Pt. Using the parameters values w = 1 mm,
Osug = 0.04 and oy = 2 (uQm)~!, we find a conver-
sion factor between Visgg and js of Cy s = 28000. Thus,
the ISHE voltage measured in response to the photo-
generated magnon current is given by

Vistg = CysCom (J) 1 ~ (170Vm?/J)(J) 1, (25)

for a magnon current given in J/m?.

This results assumes the magnon current is generated
right at the MnPS3 /Pt interface. In practice, there would
be an attenuation of the magnon current associated with
the propagation through the magnetic substrate. Al-
though the attenuation is hard to predict, a rough esti-
mate can be obtained by comparing the magnon diffusion
length [,,, to the thickness d,,, of the MnPS3 layer and as-
suming an exponential decay. Thus, we use a = e~ %m/Im
as our attenuation factor. Assuming d,,, = 10 pm we find
a = 0.04, and a voltage Visgg on the order of mV.
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