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1 | Introduction

In settings where people who speak different languages need to understand each

other, particularly when misunderstandings could cause serious problems, inter-

preters are relied upon to provide fast and accurate translations. Often interpret-

ing is done consecutively, where the interpreter waits for a speaker to produce a

short message before translating it for the intended recipient. In certain settings

the delay in translation that is inherent to consecutive interpreting can be unde-

sirable, for example if the speaker is making a speech for a large group of people,

or if a speaker is testifying during a trial. In such scenarios, interpreters rely on si-

multaneous interpreting, a mode of interpreting where sentences are translated

online almost as soon as they are uttered, leaving only as much latency as neces-

sary for correct comprehension and translation of the speaker’s message.

Simultaneous interpreting is a highly skilled profession that generally requires

a postgraduate degree and takes years of training to fully master. Simultaneously

attending to a speaker’s message and formulating and producing a translation

requires careful allocation of attention and a high degree of fluency in both the

source and the target language. Language pairs can differ in word order, making

it necessary to keep whole phrases or sentences in working memory in order to

correctly reformulate them into the target language word order. Even when lan-

guage pairs are closely related, interpreting can offer up unexpected challenges,

for example in the form of “false friends” (cognates that are not literal transla-

tions).
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While interpreting has a long history (with documented use at various royal

courts going back many centuries, for instance), simultaneous interpreting

specifically is a surprisingly recent phenomenon. The first documented use

of simultaneous interpreting in a public forum was at the Nuremberg trials in

1945-1946 (Gaiba, 1998). For the first few years, there was no serious study of

the mechanisms underlying simultaneous interpreting, with research focusing

on issues with more direct practical consequences, such as the ethics of inter-

preting and the quality of the produced translations. Starting in the late 1960s

however, several researchers Barik (1973), Gerver (1969, 1974a, 1974b, 1975),

and Goldman-Eisler (1972) started performing experiments with interpreters,

systematically manipulating the input stream in various ways and examining

the quality of the produced output stream. Other researchers joined in, propos-

ing theoretical models of the cognitive mechanisms underlying simultaneous

interpreting (Gerver, 1975; Moser, 1978).

In that same era, Marslen-Wilson (1973, 1975) started researching speech shad-

owing, another paradigm that requires concurrent speech perception and speech

production. In speech shadowing, participants are instructed to repeat a spoken

message as quickly as they can manage, but in the original language, rather than

in another language. In this paradigm there is no need to wait for a coherent

message before initiating translation, resulting in very short latencies (at least

in some participants, for more on the difference between “close” and “distant”

shadowers see Marslen-Wilson, 1985). At such short latencies, speech is often

reproduced before comprehension is fully realized, with participants in effect by-

passing their conceptual processing to some degree in order to achieve the short-

est possible latency. This is a remarkable adaptive mechanism that enables much

faster reproduction, but in simultaneous interpreting, such a mechanism is not

feasible. Listening to one language and reproducing the message in another re-

quires comprehension to reach the conceptual level before production can be
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initiated. Even if we allow for interlingual links at the lexical level, complete

translation of a message would require a complete conceptual representation,

especially in the case of idiomatic expressions or interpreting between languages

with large differences word order.

Most of the recent research into simultaneous interpreting does not concern

itself with these low-level psycholinguistic processes, but is instead focused

on cognitive differences between interpreters and regular bilinguals or mono-

linguals, driven by the idea that mastering a skill as cognitively demanding

as interpreting might convey more general cognitive benefits (e.g., improved

working memory capacity). Many of these studies find that interpreters perform

better than normal bilinguals on a variety of working memory tasks (see e.g.,

Stavrakaki et al., 2012), semantic fluency tasks (see e.g., Stavrakaki et al., 2012),

a Simon task (Woumans et al., 2015; but for contradictory findings see Yudes

et al., 2011), the Attentional Network Task (Woumans et al., 2015), and the

Wisconsin Card Sorting Task (Yudes et al., 2011). An alternative explanation,

that interpreters (and foreign language teachers) might be (self-)selected for

these professions based on these cognitive traits, seems unlikely given the

finding that trainee interpreters are intermediate between normal bilinguals

and professional interpreters in working memory performance, and continue to

improve during training. Further evidence for the cognitive differences resulting

from adaptation rather than innate ability comes from a longitudinal fMRI study

showing structural and functional adaptation over the course of a year-long

training programme (Hervais-Adelman, Moser-Mercer, & Golestani, 2015).

A general caveat to this line of interpreting research is that cognitive ad-

vantage studies which include a professionally bilingual control group (such

as teachers of a foreign language) generally find no significant difference

between interpreters and professional bilinguals (see e.g., Christoffels et al.,

2006), which suggests that any cognitive advantage might be related to better
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second language proficiency, frequent code-switching, or frequently performing

translation-related tasks. However, this notion of a benefit to general cognitive

ability for highly proficient bilinguals is itself controversial, with several recent

meta-analyses of bilingual cognitive advantage studies failing to find evidence

in support of the notion that bilingualism conveys benefits in terms of cognitive

abilities such as task-switching and working memory capacity (see e.g., Lehtonen

et al., 2018; Paap et al., 2019). Most recently, Santilli et al. (2019) compared pro-

fessional interpreters and proficient bilinguals specifically on language-related

tasks, rather than the usual cognitive control and working memory measures.

Interpreters scored better than bilinguals on interpreting-specific skills such as

word translation, but not on more general language tasks such as picture naming

and word reading, suggesting that interpreting experience benefits a very narrow

set of skills, rather than a broad set of executive functions. Whether a so-called

“interpreter advantage” exists in any meaningful sense therefore remains an

open question, one that will surely drive further interpreting research for years

to come. In this dissertation, however, I focused not on the supposed cognitive

benefits of learning to perform simultaneous interpreting, but on the act of

simultaneous interpreting itself, how it relates to speech shadowing, and its

implications for our understanding of speaking and listening more generally.

Speech production and speech comprehension, although linked by the

simple fact that the output of the former is the input for the latter, are most

often studied in isolation from each other. In experiments investigating the

mechanisms of speech comprehension, the participant is often tasked with

producing a non-verbal and non-linguistic (or verbal but only nominally linguis-

tic, for instance "yes" or "no") response to linguistic stimuli, while in speech

production research, the participant is tasked with producing a spoken response

to non-linguistic stimuli or linguistic stimuli presented in a very constrained

fashion. The interaction and overlap between production and comprehension
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mechanisms is thus fairly poorly understood, despite evidence that temporal

overlap between comprehension and production processes is quite common. In

conversational turn-taking, for instance, there is a very short (and sometimes

non-existent) latency between turns, often cited as evidence for the idea that

the second speaker is able to plan at least part of their speech in advance while

listening to (and comprehending) the speech of the first speaker (see Levinson,

2016, for review).

Early research into interaction between production and comprehension was

focused on the intelligibility of speech presented to a participant in the midst of

producing unrelated speech. While such studies were not driven by any detailed

models of production and comprehension and therefore not designed to test de-

tailed predictions about production or comprehension, these studies neverthe-

less started a fruitful tradition. Arguably one of the most useful insights about

the interaction between production and comprehension comes from Broadbent

(1952) who, in an early study of simultaneous production and comprehension,

states about the difficulty of the task: "One aspect of this problem is the relation

of the behavioral mechanisms used in speaking to those required for listening,

since both may be needed simultaneously" (p. 267).

Barik (1973) claims that interpreters partly get around this limitation by mak-

ing use of the naturally occurring pauses in the input speech for their output

production, but Gerver (1975) notes that this cannot be sufficient time for the

interpreter articulate a full translation of the input speech. More specifically, if

output were produced in the pauses in the input, pauses would need to make up

at least half of the input speech signal (assuming similar speech rates for input

and output speech), but Gerver (1975) demonstrates empirically that the input

speech contains fewer pauses than would be required and that the input speech

and output speech instead overlap significantly. Goldman-Eisler (1972) goes fur-

ther yet in claiming that interpreters largely ignore the chunking and pauses in
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the input speech, noting that 90% of interpreter utterances are either composed

of multiple input chunks or initiated before an input chunk has ended. Pauses

are demonstrably used in some strategic fashion by interpreters, as evidenced

by the comparatively larger portion of output speech articulated during pauses

than during input speech, but as Gerver (1975) states, this does not necessarily

mean that pauses are essential to the process. Regardless of how pauses are used,

it is clear that to the extent that speech production and comprehension occur

concurrently in simultaneous interpreting, a degree of independence between

comprehension and production processes is required.

Christoffels and De Groot (2004) postulate the existence of separate input and

output lexicons, as well as separate lexicons for each language, enabling the se-

lective inhibition of the L2 output and L1 input lexicons during interpreting. This

is an effective way of solving the problem of simultaneous lexical processing for

both comprehension and production, to be sure, but it is not very plausible. One

only needs to consider the problems language acquisition would run into if in-

put and output lexicons were entirely separate: hearing a word used in context

would not be sufficient to learn how to produce the word, instead, production of

every word would need to be learned by trial and error, despite knowledge of the

word already being present in the comprehension domain. While early acqui-

sition may involve plenty of trial and error learning, acquisition of new words

in older children and adults is trivial: comprehension of a word in its proper

context enables use of that word in production from that point onward (as long

as it is recalled). For example: if I buy a new kind of fruit at the grocery store,

and the cashier tells me it is called a "torp", I will be able to tell anyone I meet

from then on that I have bought (and eaten) a "torp". The word will be available

for production without any conscious transfer. Ultimately, the question of how

comprehension and production processes are temporally coordinated during si-

multaneous interpreting (and speech shadowing) so as not to interfere with each
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other remains open. The aim of this dissertation is to put forth a more plausible

explanation and provide experimental evidence for it.

Existing process models of interpreting are generally box-and-arrow models

without a computational implementation. These models are generally useful

graphical representations of the chain of processes required to successfully per-

form simultaneous interpreting, but as a means of testing theories about cog-

nitive processes they fall short because they do not make falsifiable predictions

about quantitative aspects of behavior (e.g., speech latencies, pause durations, or

error rates). Similarly, purely descriptive statistical models of experimental data

can confirm quantitative behavioral predictions in an experimental paradigm,

but a computationally implemented process model is essential because it would

allow us to generate such quantitative predictions.

In my view, a satisfactory process model of temporal coordination of simulta-

neous speech production and comprehension (as in simultaneous interpreting

and speech shadowing) should allow for at least partially overlapping produc-

tion and comprehension, be broadly consistent with the existing psycholinguis-

tic literature (concerning e.g., response selection processes, the time course of

lexical access in comprehension and production, etc.) and explain the seem-

ingly concurrent use of shared resources and mechanisms without resorting to

implausible theories (e.g., the model should not require separate lexicons for

production and comprehension). To validate such a process model it should

be implemented computationally, and its predictions tested against behavioral

data such as error rates or speech latencies from simultaneous interpreting and

speech shadowing.
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1.1 Overview of the upcoming chapters

In Chapter 2, I introduce a process model of speech comprehension and produc-

tion in speech shadowing and simultaneous interpreting. The processing stages

and starting values for the durations of those stages are derived from a review of

the psycholinguistic literature, but I find that these literature-derived parameters

cannot fit the error rates I observe in behavioral experiment unless I introduce

a novel mechanism or parameter. I hypothesize a switch cost is incurred each

time interpreters switch between comprehension and production at the lexical

processing stage. If this switch cost is set at approximately 50 milliseconds, our

model closely fits the observed error rates.

In Chapter 3, I collect novel data to further test the model proposed in Chapter

2. I find that performance on randomized word lists (i.e. text without seman-

tic or syntactic structure) is not consistent with model predictions. Varying the

durations of processing stages in the model within psycholinguistically plausi-

ble bounds also does not result in an acceptable fit. I take this as evidence that

my model, as originally proposed, lacks a top-down contextual facilitation com-

ponent that could plausibly explain the difference in performance on narrative

versus non-narrative text.

In Chapter 4, I attempt to uncover the locus and magnitude of this top-down

contextual facilitation. I pool the data from Chapters 2 and 3 and reannotate

them for speech latencies; I also compile a wide variety of lexical and contextual

covariates for this dataset. I then use a multilevel Bayesian regression to examine

the relative effects of these lexical and contextual factors on speech latencies in

speech shadowing and simultaneous interpreting.

Chapters 5 and 6 detail research conducted in service of the study reported in

Chapter 4. These chapters do not deal with simultaneous language comprehen-
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sion and production directly, but concern psycholinguistic research methods in

a broader sense.

In Chapter 5, I expand on counterintuitive effects of transitional probabilities

identified in Chapter 4, and demonstrate how these can arise from collinearities

in linear models. I explore how frequencies and transitional probabilities are dis-

tributed in a representative corpus, and make a case for informed a priori selec-

tion between predictors known to be collinear.

In Chapter 6, I discuss the construction and validity of word embeddings, a

class of models of distributional semantics (as used in Chapter 4) and introduce

a novel set of word embeddings trained on subtitle corpora. I demonstrate that

models trained on pseudoconversational text perform as well as, and in some

cases better than, models trained on the most commonly used training corpora

(Wikipedia text). A combined corpus outperforms both subtitles and Wikipedia,

highlighting a need for contextual diversity in NLP training corpora.

In Chapter 7, I summarise the key findings from the preceding chapters and

discuss how these findings relate to our broader understanding of comprehen-

sion and production processes as they occur during simultaneous interpreting

and speech shadowing.





2 | A lexical bottleneck in shadowing and translating

of narratives1

Abstract

In simultaneous interpreting, speech comprehension and production processes

have to be coordinated in close temporal proximity. To examine the coordination,

Dutch-English bilingual participants were presented with narrative fragments

recorded in English at speech rates varying from 100 to 200 words per minute

and they were asked to translate the fragments into Dutch (interpreting) or re-

peat them in English (shadowing). Interpreting yielded more errors than shad-

owing at every speech rate, and increasing speech rate had a stronger negative

effect on interpreting than on shadowing. To understand the differential effect

of speech rate, a computational model was created of sub-lexical and lexical pro-

cesses in comprehension and production. Computer simulations revealed that

the empirical findings could be captured by assuming a bottleneck preventing

simultaneous lexical selection in production and comprehension. To conclude,

our empirical and modelling results suggest the existence of a lexical bottleneck

that limits the translation of narratives at high speed.

1Adapted from Van Paridon, J., Roelofs, A., & Meyer, A. S. (2019). A lexical bottleneck in shadowing
and translating of narratives. Language, Cognition and Neuroscience, 34(6), 803–812. https://doi.
org/10.1080/23273798.2019.1591470
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2.1 Introduction

Simultaneous interpreting, also known as conference interpreting, is the online

oral translation of spoken language. Most often used at international confer-

ences and institutions, this mode of translation provides a near instantaneous

translation to the listener. While there is an extensive (and often contradictory)

literature on cognitive differences between interpreters and non-interpreter

bilinguals (e.g., Morales et al., 2015; Woumans et al., 2015), the processes

of speech comprehension and production occurring during simultaneous

interpreting have not been studied in much detail. Behavioural studies have

examined the linguistic skills involved in interpreting (Christoffels et al., 2003;

Christoffels et al., 2006), and neuroimaging has started to identify the neural

bases of interpreting (Hervais-Adelman, Moser-Mercer, & Golestani, 2015;

Hervais-Adelman, Moser-Mercer, Michel, et al., 2015). However, no theory

of interpreting exists that describes the time course of concurrent speech

comprehension and production in simultaneous interpreting.

Even though professional interpreters are highly trained at concurrent listen-

ing and speaking, comprehension and production are still somewhat impaired

by their temporal overlap during interpreting. More errors are made during inter-

preting than during simple shadowing, and interpreting a speech leads to signifi-

cantly worse recall than simply listening to that speech (Gerver, 1974b). Addition-

ally, interpreters cannot interpret at very high speech rates. In a seminal study,

Gerver (1969) had six professional interpreters shadow recordings of diplomatic

speeches played at different speeds, while six others interpreted the same record-

ings. For the materials used by Gerver, the maximum input speech rate for fluent

French to English interpreting (with more than 90% of words being translated cor-

rectly) was around 110 words per minute on average, with performance declining

linearly at higher input speech rates to less than 60% correct at 164 words per
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minute. Below the maximum input rate, interpreters can approximately match

the output speech rate to the input speech rate, producing mostly complete and

correct translations. At higher input rates, interpreters start to omit words and

phrases, and produce in short, high speech rate bursts. The maximum interpret-

ing rate lies well below the maximal speech rate interpreters can comprehend or

produce when not interpreting, as evidenced by Gerver’s shadowers, who were

still fluent at 142 words per minute. These differences suggest that the limit on

interpreting rate is not set directly by limits on the processes of speech compre-

hension or production separately, but rather by limits on the speech system as a

whole arising when comprehending and producing speech concurrently.

How this coordination is achieved in a fluent manner, why it breaks down at

high input speech rates, and how the resulting error pattern comes about is not

explained by any of the relatively few models of interpreting that have been put

forward in over half a century of interpreting research. Models of simultaneous

interpreting can be grouped into several categories. One type is the effort model

proposed by Gile et al. (1997), which poses that interpreting consists of four dif-

ferent types of effort: listening, production, memory, and coordination. These

types of effort are assumed to be additive and to simultaneously require capacity.

It is not apparent, however, how this model might be tested empirically. Another

type of model is the process model that describes the organisation of processing

in interpreting. This type of model tends to resemble a complex flowchart of pro-

cessing steps, but none of the existing models makes falsifiable predictions about

measurable indices of interpreting processes such as timing, error rates, or error

types (Gerver, 1975; Mizuno, 2005; Moser, 1978). The only interpreting model

that has been empirically tested is the cognitive load model by Seeber and Kerzel

(2012), which makes predictions about physiological indices of cognitive load (i.e.

pupil diameter) based on hypotheses about the processing demands of differ-

ent types of linguistic input. Seeber and Kerzel found that translating German
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SOV (subject-object-verb) sentences into English SVO (subject-verb-object) sen-

tences produced a marginally higher cognitive load than translating from SVO

into SVO sentences. Their examples of SOV sentences include long-distance de-

pendencies, however, which could explain the increased cognitive load regard-

less of task demands specific to interpreting. Despite this apparent confound,

their model suggests that word order might play a role in interpreting perfor-

mance, but does not explain the specific limits on interpreting speech rate and

the associated error patterns.

A model of simultaneous interpreting of the type that Gerver (1975) suggested,

that is a model that explains all of the linguistic and metalinguistic processes a

professional interpreter relies on, cannot currently be specified in quantitative

terms such as latencies or error rates. This is because we do not have a sufficiently

detailed understanding of all the processes involved. However, a simpler, purely

lexical model that explains only the simultaneous word comprehension and pro-

duction aspect of interpreting can be generated by combining behavioural data

of the type collected by Gerver (1969) with current psycholinguistic models of

word production and comprehension. Such a model would not be a complete

model of interpreting but it could extend experimentally supported psycholin-

guistic models of word production and comprehension and describe the coor-

dination of production and comprehension, which is one of the key elements

of simultaneous interpreting. Showing that such a model predicts error rates in

simultaneous production and comprehension would demonstrate that interpret-

ing is subserved by normal language processing, albeit under abnormal task de-

mands. More generally, the specific adaptations needed to simulate the error

rates reported by Gerver (1969) could provide new insights into the way com-

prehension and production are coordinated when fluid and frequent transition

between the two is required.
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Prior work on spoken word production in a dual-task paradigm has demon-

strated that semantic interference in a production task can cause delays in

response selection for a second, unrelated task performed at the same time,

whereas a phonological effect in the same production task does not always

propagate to the second task. This suggests that central attention is required for

response selection at the lemma level, but not (or less) at the phonological level

(Cook & Meyer, 2008; Ferreira & Pashler, 2002; Piai et al., 2014; Roelofs, 2008;

Roelofs & Piai, 2011). Having to coordinate selections at the lemma level for both

comprehension and production could conceivably create a lexical-selection

bottleneck during interpreting. The present study examined whether a compu-

tational model of interpreting and shadowing that includes such a bottleneck

could account for error rates in relevant behavioural data. This was done by

adding a lexical bottleneck to the model of word production and comprehension

proposed by Indefrey and Levelt (2004).

Of course, generally speaking, syntactic processing must be an important com-

ponent of interpreting, especially where the source text and the correct transla-

tion differ in word order. However, in our texts the English and Dutch word or-

der were mostly the same. Moreover, the Indefrey and Levelt (2004) model does

not describe syntactic processes beyond the assumption that lemma selection af-

fords access to the syntactic properties of a given word. Therefore, we chose, as a

parsimonious starting point for the model, not to include an explicit processing

cost for syntactic processing, but rather to test whether the lexical model suffices

to simulate the relevant behavioural data.

To be able to test the model empirically, we first collected relevant behavioural

data. To this end, we repeated Gerver’s (1969) study comparing interpreting and

shadowing performance at different speech rates, but with a more rigorously con-

trolled design. The languages involved in the present study were English and

Dutch. Our design was a within-participants comparison of shadowing and inter-
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preting performance with source texts presented at a range of speech rates. We

recruited participants without prior interpreting training, to exclude the possi-

ble use of interpreting-specific processing strategies. The behavioural data were

then used to fit our computational model. Note that the present work is con-

cerned with switching between production and comprehension (either within

the same or in different languages) as required in the shadowing and translation

tasks, and not with the (code) switching between L1 and L2 speech production,

which is often considered in studies of bilingualism. Switching between compre-

hension and production in interpreting is a type of switching between L2 and L1

that is not required during shadowing. But because in interpreting L2 is used ex-

clusively for comprehension and L1 for production, there is no need for language-

specific inhibition of response-selection in production, which is often hypothe-

sised to be the cause of bilingual switch costs (e.g., Meuter & Allport, 1999).

2.2 Methods

2.2.1 Participants

The participants were native speakers of Dutch, recruited from the participant

pool at the Max Planck Institute for Psycholinguistics. To identify Dutch-English

bilinguals with sufficient proficiency in English to perform the tasks, 215 partici-

pants were screened using LexTale, an online English vocabulary test, which cor-

relates well with other measures of English proficiency (Lemhöfer & Broersma,

2012). From this group, participants with a LexTale score over 85% (the top 33%

of test takers) were invited to participate in the study. Of the invitees, 20 agreed to

take part in the study (13 female, mean age 22.3 years). Mean self-reported age of

acquisition of English was 10.3 years (SD = 1.1 years, N = 14), approximately the

age at which English education starts in Dutch primary schools. None of the par-
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ticipants had prior experience in shadowing or interpreting; their mean LexTale

score was 91.4% (SD = 5.1%).

2.2.2 Procedure and design

Participants performed two sessions of shadowing and interpreting, one week

apart. Both sessions were recorded but the first session was meant solely to fa-

miliarise participants with the tasks and was not analysed. The second session

consisted of two blocks of roughly 20min: one shadowing block of five spoken

texts presented at different speech rates and one interpreting block of five spo-

ken texts presented at different speech rates. The order of texts, tasks, and speech

rates was counterbalanced across participants so that each text was presented to

two participants at every speech rate and in both tasks, but texts and speech rates

were not repeated within participant.

2.2.3 Materials

Stimuli were ten samples of around 300 words in length, taken from a variety

of books for children between six and ten years. Children’s books were selected

because they feature few rare lexical items and few complex syntactic struc-

tures that would require extensive reformulation during translation. Using a

teleprompter script, the sample texts were recorded by a male native speaker of

English at a controlled rate of 150 words per minute. To produce the desired stim-

ulus speech rates, the recordings were sped up or slowed down to 100, 125, 150,

175, and 200 words per minute using the Audacity audio editor (Version 2.0.6,

Audacity Team, 2017). Because the digital speech rate manipulation produces

audible distortions in the recordings, the stimulus texts were rerecorded by the

same speaker while playing the digitally sped-up or slowed-down recordings

over headphones as a continuous speech rate cue.
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2.2.4 Analysis

Shadowing performance was scored by transcribing participant recordings and

counting the percentage of words correctly reproduced from the source text. In-

terpreting performance could not be scored so straightforwardly; instead, record-

ings were transcribed by native speakers of Dutch and the percentage of words

from the source text that was represented in the transcription was taken as the

score. Scoring was double-checked by a second native speaker of Dutch.

Speech rate, task, and interaction effects on performance were analysed with

a logistic mixed-effects model using the lme4 package (Bates et al., 2015) in R

(Version 3.3.3, R Core Team, 2013). Statistical inference for the coefficients was

computed using the lmerTest package (Kuznetsova et al., 2017).

2.3 Results

Figure 2.1 shows participants performance. As expected, both shadowing and in-

terpreting performance decreased as the source text speech rate increased. How-

ever, the difference in slopes of interpreting (.26% per wpm) and shadowing (.17%

per wpm) performance across source speech rates indicates an interaction effect.

When controlling for random effects of participant and source text with ran-

dom intercepts, there were significant effects of task (β = 0.63,SE = 0.014, p <

.001), source speech rate (β = 0.62,SE = 0.014, p < .001), and the interaction be-

tween task and source speech rate (β = 0.05,SE = 0.014, p < .001). Controlling

for random effects of participant and source text using a more elaborate random

effects structure with random slopes was not possible due to the limited number

of observations in each cell.
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Figure 2.1: Mean percentage of source text reproduced while shadowing and in-
terpreting across source speech rates in the behavioural experiment
and model. Error bars represent standard error for the behavioural
data.
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2.3.1 Interim discussion

Shadowing performance was at ceiling at 100 and 125 words per minute, which

is consistent with the shadowing performance reported by Gerver (1969). Aside

from the ceiling effect, the decrease in performance was roughly linear for both

interpreting and shadowing. While there appears to be an interaction of source

speech rate and task in the data reported by Gerver similar to the interaction in

the present study, the deterioration in interpreting performance with increasing

source speech rate was more severe in Gerver’s data (from 95% correct to less

than 60% correct for a 70% increase in speech rate) than in the present study

(from 87% correct to 59% correct for a 100% increase in speech rate). This dif-

ference may have been caused by the nature of the source materials used by

Gerver, although this should be partially mitigated by the professional-level profi-

ciency of the participants in that study. Another possible cause is the design used

by Gerver: a between-participants design with only six participants performing

each task. Such a design is likely to be underpowered and more susceptible to

noise than the present within-participants design with 20 participants perform-

ing both tasks. Regardless of the quantitative differences between the present

results and those reported by Gerver, the notion that there are different factors

limiting interpreting and shadowing performance at high source speech rates is

supported by the interaction of source speech rate and task in both studies.

What these factors that limit interpreting and shadowing are is not obvious

from the behavioural data. Participants reported feeling that interpreting at high

speech rates required alternately attending to input and producing output, as

in task switching. If one of these tasks takes too long (e.g., a long sequence of

words needs to be produced, but in the meantime new input is coming in) words

are lost, often several at a time. At lower speech rates, participants reported that

interpreting felt more natural or automatic, which either reflects an ability to gen-
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uinely attend to both comprehension and production at the same time or more

fluent task switching that participants are not as aware of.

One difference between the shadowing and interpreting tasks that potentially

modulates the effect of task on performance is the production language. During

interpreting the participants spoke in their native language (Dutch), while dur-

ing shadowing they spoke in their second language (English). Participants were

screened for English proficiency, but most likely production was easier in their

native Dutch. However, any native language advantage would only serve to in-

crease performance in the interpreting task and therefore decrease or mask the

task effect.

2.4 Computational model

The observed interaction between task and speech rate suggests a temporal coor-

dination problem that causes shadowing and interpreting performance to differ-

entially degrade with increasing speech rate. To identify the source of that prob-

lem, we constructed a simple computational model. Based on dual-task studies

of language production (Cook & Meyer, 2008; Ferreira & Pashler, 2002; Piai et

al., 2014; Roelofs, 2008; Roelofs & Piai, 2011), we set out to test the assumption

of a lexical-selection bottleneck. The model represents the combined model of

speech comprehension and production presented by (Indefrey & Levelt, 2004),

implemented as a chain of consecutive processing stages, as illustrated in Figure

2.2. It takes as input a sequence of words and their onset times. To replicate the

behavioural paradigm as closely as possible, the recordings presented to the par-

ticipants were used to generate these input sequences for the model. We used

the WebMAUS automatic speech segmentation service to assign onset times to

each word in an orthographic transcription of the recordings (Kisler et al., 2017).
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Figure 2.2: Structure and parameters of the computational model. The solid ar-
rows are hypothesised to represent a route used in both simultaneous
interpreting and shadowing, while in shadowing many words can also
be reproduced along the route represented by the dashed arrow. Pa-
rameters set using particle swarm optimisation are conceptual buffer
size, lemma switch cost, segmentation-syllabification accumulation
rate, and function word accumulation rate.
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Each word starts at the first processing stage in the model and is then passed

along after being processed for a specific duration. This was implemented com-

putationally by representing each processing stage as a simplified linear ballis-

tic accumulator; the simplification being that the rate of evidence accumulation

was fixed to a rate at which the time to reach threshold matches the durations re-

ported by Indefrey and Levelt (2004) and Indefrey (2011) instead of drawing the

accumulation rates from a normal distribution as originally proposed by Brown

and Heathcote (2008). This simulated processing does not comprise any sort of

linguistic processing because the model operates only on the onset times of the

words. Details of component processes were unimportant as only the latencies of

the processes and their interdependencies mattered (cf. Schweickert, 1980). Pro-

fessional interpreters likely use interpreting-specific strategies to facilitate pro-

cessing, but because we were attempting to model the error rates of untrained

interpreters we did not attempt to model these processing strategies. Modelling

interpreting-specific strategies might also reduce the validity of the model for

describing the coordination of language comprehension and production in con-

texts other than interpreting.

To account for the reduced processing demands of function words compared

with content words, function words were assigned an increased rate of evidence

accumulation. As an initial estimate, the rate of evidence accumulation was set

to double that of content words, but this value was later adjusted in a parameter

optimisation procedure described below. On average, 52.8% of the words in a

stimulus text were classified as function words. For a complete list of the words

classified as function words in the present study see Appendix A in the Supple-

mental Materials.

The duration of conceptual processing was difficult to derive, as Indefrey and

Levelt (2004) based their estimates on picture naming and single word listening,

instead of a task that involves sentences and combines both speech comprehen-
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sion and production. One commonly used experimental paradigm that requires

sequential comprehension and production is single word translation. However,

the reported latencies for single word translation vary from roughly 800 ms when

words were presented orthographically (La Heij et al., 1996), to as much as 1200

ms when words were presented auditorily (De Groot, 1992). As an initial approx-

imation, therefore, we adopted the 175 ms estimate reported by Indefrey and

Levelt, because even though that estimate is derived from picture naming experi-

ments, it leads to an overall single word interpreting latency that roughly matches

the latencies reported by De Groot.

The remaining component process durations were also based on the latencies

reported by Indefrey and Levelt (2004), and the resulting model fit was measured

as root-mean-square deviation (RMSD) from mean participant performance

across texts for each speech rate in the behavioural experiment. The initial

model was a poor fit for the behavioural data (combined RMSD=5.4%). After

observing that the poor fit was caused in part by the model systematically

underperforming in the shadowing task, we added an extra connection from

segmentation to syllabification to improve shadowing performance. The extra

connection reflects the unique affordance in shadowing of starting selection

of an output phoneme directly after identifying an input phoneme because

the output is identical phoneme-for-phoneme to the input (cf. Roelofs, 2004,

2014). The existence of such a low-level connection is supported by the short

latencies found in previous shadowing experiments (e.g., Fowler et al., 2003).

The connection was implemented by allowing additional evidence accumula-

tion for syllabification from the moment segmentation is completed. Setting

the accumulation rate through this additional segmentation-syllabification

connection to an initial value of .5 markedly improved the model fit (combined

RMSD=2.6%).
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To improve the fit of the model performance in the interpreting task, we first

introduced a conceptual buffer into the model to make it more closely resemble

human processing of consecutive words. This addition was based on the obser-

vation that it is not only possible to conceptually combine the meanings of a set

of words and to reorder them before production, but that this is required during

interpreting. In our computational model, we capture the function of the con-

ceptual workspace by assuming a buffer that holds concepts until they can be

passed to lemma selection for production.

Next, we implemented the critical assumption of a lexical-selection bottleneck

(Cook & Meyer, 2008; Piai et al., 2014; Roelofs, 2008). The bottleneck was imple-

mented at the lemma level, which is assumed to be shared between production

and comprehension (e.g., Levelt et al., 1999; Roelofs, 2004, 2014). Lemma selec-

tion for production was blocked while selecting a lemma for comprehension, and

vice versa. In translating, a switch is required between comprehension in one lan-

guage (English) and production in another (Dutch), which results in a switch cost

(see e.g., Monsell, 2003, 2015, for review). This switch cost means that delay of ac-

cess to the lemmas from the production stream can last for multiple words if new

input words come into the comprehension stream close enough together to not

allow time to switch back to lemma selection for production in the meantime. To

determine the optimal switch cost and conceptual buffer size we implemented

a parameter optimisation procedure. Function word accumulation rate factor

and segmentation-syllabification accumulation rate were also entered into the

parameter optimisation procedure.

To optimise our simulation of participant behaviour, we minimised the

model’s RMSD from the mean participant performance across texts for each

speech rate in the behavioural experiment for both tasks by varying its free

parameters using particle swarm optimisation implemented in the Optunity

parameter optimisation library (Claesen et al., 2014). Particle swarm optimisa-
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tion uses a swarm of communicating particles moving through the parameter

space looking for an optimal parameter set. Particle swarm optimisation does

not use a gradient for optimisation and is therefore well suited to the problem of

optimising the parameters of this model (Kennedy & Eberhart, 1995).

From 1920 iterations (96 particles for 20 generations), we selected the param-

eter set that produced the performance closest to that of the participants. Op-

timal parameters were a function word evidence accumulation factor of 2.0, a

segmentation-syllabification accumulation rate of .25, a buffer length of 6 words,

and a lexical selection switch cost of 47 ms (combined RMSD=1.9%). This param-

eter set, and the model’s structure, is reported in Figure 2.2.

Figure 2.1 shows the mean percentage of source text reproduced while shad-

owing and interpreting across source speech rates in the best-fitting model. In

the simulations, the interpreting and shadowing performance progressively de-

graded with increasing speech rate, which corresponds to the empirical data.

This degradation was stronger for interpreting than for shadowing, as empirically

observed. Thus, the computational modelling suggests that to account for the

data, it suffices to assume a lexical-selection bottleneck that precludes concur-

rent selection of lemmas in comprehension and production, and an associated

switch cost.

2.5 Discussion

In the present study, we first replicated and expanded Gerver’s (1969) study of

interpreting and shadowing performance at different speech rates. We then

used these data to test a computational model of interpreting and shadowing.

The model structure and parameters were derived from a meta-analysis of

speech comprehension and production experiments (Indefrey & Levelt, 2004).

Performance of the computational model on a combined interpreting and
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shadowing measure most accurately simulated behavioural data when lemmas

could not be selected concurrently for production and comprehension, creating

a lexical-selection bottleneck with an associated switch cost. This switch cost is

a possible explanation for the emergence of task-switching type speech patterns

at high speech rates, while at low speech rates comprehension and production

seem to be temporally overlapping. The model suggests that temporal overlap

is possible for processes such as phonetic decoding/encoding, phonological

encoding/decoding, segmentation, and syllabification. Only lemma selection

for comprehension and production cannot happen concurrently due to a

lexical-selection bottleneck. At low speech rates, the switch cost can be absorbed

into the pauses between words and the redundant parts of words that come

after the uniqueness point. Therefore it is not perceivable to a listener that

parts of production and comprehension are happening consecutively instead

of concurrently. At higher speech rates the pauses are shortened and can no

longer absorb the switch cost which then becomes a bottleneck, causing the

model (and the participants) to periodically miss input or forget output, making

the task set switching audible in the form of alternating bursts of listening and

speaking.

Modelling the processing stages of speech comprehension and production as

simplified linear ballistic accumulators makes the model as a whole computa-

tionally feasible, but it also necessitates that each consecutive step is discrete.

This may be sufficient to capture the contrast between shadowing and interpret-

ing, but it is important to note that recent more detailed models of single word

production and/or comprehension (e.g., Roelofs, 2014; Ueno et al., 2011; Walker

& Hickok, 2016) feature connectionist components that more plausibly simulate

phenomena such as interaction and competition in the speech system. Imple-

menting a plausible connectionist model and fitting its parameters was not feasi-

ble for this study. Given the large number of parameters present in such a model
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and the relatively few data points it would be fitted to, there is an inordinate risk

of overfitting. The lack of interaction between lower-level processes likely causes

the present computational model to not capture facilitation or interference ef-

fects of cognates and incidental temporal coincidence of phonologically or se-

mantically related words in the production and comprehension streams. It is

unclear whether the net effect of this simplification in the model causes an over-

or underestimation of the error rate. However, while the model does not capture

small facilitation and interference effects, its contribution is that it postulates

a critical path for both simultaneous interpreting and shadowing and demon-

strates the temporal consequences for performance in both tasks. Future devel-

opments of the model could integrate cognate status and other lexical factors to

allow for more specific predictions such as latency at the word level that cannot

be derived from the current model. Computational models like the recent Mul-

tilink model proposed by Dijkstra et al. (2019) present estimates of the effects of

lexical factors such as semantic equivalence of possible translations and cognate

status for single word translation; such estimates could be incorporated into an

interpreting model as well.

As our model is mostly blind to linguistic content (with the exception of the

distinction between function words and content words) and has no knowledge of

syntax, any kind of temporal clustering of errors is simply due to the time course

of the input and the structure of the model. Assuming that the bottleneck is sit-

uated at the lexical level appeared to be sufficient to explain the data. The fact

that the model still replicates the error rates observed in participants who have

syntactic knowledge, and use it to reformulate English sentences into Dutch sen-

tences, is striking. The lack of need for a syntactic component in the model sug-

gests that in the present study syntactic processing did not impose a significant

time cost, possibly be due to the simplicity of the stimulus texts and the close

correspondence in word order between the two languages. Syntactic processing
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is thought to be largely incremental in nature, both in production (Konopka &

Meyer, 2014; Levelt, 1989) and comprehension (Altmann & Mirkovi, 2009; Chris-

tiansen & Chater, 2016), and once the entire message of a phrase is conceptu-

alised, reformulating the type of short, grammatically straightforward sentences

found in children’s books may be so trivial that it does not cause meaningful addi-

tional cognitive load or delay. The occasional differences in word order between

English and Dutch might merely require some extra time during conceptual pro-

cessing, reflected in the small increase in conceptual processing duration needed

for optimal model fit, when compared to the values Indefrey and Levelt (2004) re-

port for conceptual processing during picture naming. For syntactically more

complex texts or structurally more different languages, these model components

and parameter values may be insufficient to model the syntactic costs. Under

certain conditions, such syntactic costs may even constitute another bottleneck.

In the present study, however, the model suffices to demonstrate that one impor-

tant bottleneck is located at the lexical level.

2.5.1 Conclusion

Simultaneous interpreting and shadowing performance progressively degrades

with increasing speech rate. This degradation is stronger for interpreting than

for shadowing. Computational modelling showed that to account for the data,

it sufficed to assume a lexical-selection bottleneck that precludes concurrent se-

lection of lemmas in comprehension and production and causes the associated

switch costs.





3 | Role of narrative context in interpreting and

shadowing: performance on word lists

Abstract

In online interpreting and shadowing of spoken narratives, performance accu-

racy decreases more with increasing speech rate for interpreting than for shad-

owing. In Chapter 2 showed that a lexical bottleneck model correctly simulates

the difference in performance between tasks at different speech rates. However,

the absence of syntactic or semantic processing costs in the model may be ques-

tioned. In the present study, we directly tested the lexical bottleneck hypothesis

by presenting the content words of narratives as randomised word lists to partic-

ipants, and examined their shadowing and interpreting performance. We repli-

cated the stronger deterioration of performance for interpreting than for shad-

owing with increasing speech rate. The deterioration for lists was even stronger

than previously observed for narratives, which suggests that semantic and syn-

tactic processing costs are entirely absent. This suggestion was corroborated by

computer simulations, which revealed that our lexical bottleneck model likely

underestimated the lexical switch cost in our previous study. We conclude that

semantic and syntactic structure yield no costs but help in interpreting and shad-

owing narratives.
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3.1 Introduction

An important finding on online translation of speech from one language into an-

other, called interpreting, is that performance accuracy deteriorates with speech

rate. In a seminal study, Gerver (1969) found a stronger deterioration of perfor-

mance with increasing speech rate for professional interpreters performing an

interpreting task than for interpreters performing a shadowing task (i.e., the lit-

eral repetition of speech). In Chapter 2 we replicated this finding for university

students and simple spoken narratives. Moreover, we advanced a computational

model that correctly simulated the behavioural error rates in both tasks.

The model used a parsimonious approach, starting with processing durations

taken from Indefrey and Levelt (2004) and incrementally adding modifications

to account for word-level interpreting accuracy. We accounted for the difference

in performance accuracy between translating and shadowing at different speech

rates by the inclusion of a lexical bottleneck. The bottleneck concerned a ne-

cessity to switch between lexical selection for comprehension and production

with an associated switch cost of approximately 50 ms. Because the model al-

lowed shadowing to be performed using a direct phonological route, bypassing

the lexical-semantic stages of processing, the bottleneck only affected the inter-

preting task.

Because the lexical bottleneck proved to be sufficient to simulate the difference

in error rates between shadowing and interpreting, there was no need to add a

mechanism to the model to account for syntactic or semantic processing effects.

However, the validity of a model for interpreting without syntactic or semantic

processing costs may be questioned. In our original study (Chapter 2), we hy-

pothesized that the sentence structure in the narratives used was simple enough

to not carry significant syntactic or semantic processing costs. The present study

directly tested this hypothesis by removing the narrative context, both syntactic
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and semantic, and examining the effect this had on shadowing and interpreting

performance. In particular, we removed the function words from our original

spoken texts, and then randomised the order of the content words. Participants

had to perform interpreting and shadowing tasks on these randomized lists of

spoken words. If the deterioration of interpreting performance with increasing

speech rate is partly or wholly due to syntactic or semantic processing costs, con-

trary to what we hypothesized, then we should observe less deterioration of per-

formance with increasing speech rate for the randomized lists of spoken words

than we observed previously for the narratives.

3.2 Methods

3.2.1 Participants

Participants were recruited from the Max Planck Institute for Psycholinguistics

participant pool. They were native speakers of Dutch, screened using LexTale,

an online English vocabulary test, to identify proficient Dutch-English bilinguals.

LexTale scores have been demonstrated to be highly correlated with other mea-

sures of proficiency (Lemhöfer & Broersma, 2012). Participants with a LexTale

score over 85% were invited to participate. In Chapter 2 this was found to be

roughly the 70th percentile of the Max Planck Institute participant database,

which consists mostly of university students. 20 participants were selected to

take part in the study (12 female, mean age 21.4 years). Participants had no prior

experience in shadowing or interpreting. Their mean LexTale score was 89.3%

(SD = 4.7%), and their self-reported mean age of acquisition was 10.3 years

(SD = 1.0 years, N = 16) which approximately coincides with the start of formal

English education in most Dutch schools.
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3.2.2 Procedure and design

The procedure was kept identical to the procedure used in Chapter 2. Partici-

pants were invited to participate in two sessions, one week apart. The first ses-

sion was a familiarisation session in which participants performed both shadow-

ing and interpreting tasks at various speech rates but data from this session were

not analysed. The second session consisted of two blocks of 15 minutes: one

shadowing block of five spoken texts presented at different speech rates and one

interpreting block of five spoken texts presented at different speech rates. The or-

der of texts, tasks, and speech rates was counterbalanced across participants so

that each text was presented to at least two participants at every speech rate and

in both tasks, but texts and speech rates were not repeated within participant.

3.2.3 Materials

For the present study, we reused the materials from Chapter 2, breaking up the

narrative context by isolating the individual words in the stimulus recordings and

then randomising their order. An additional complexity was having to account

for function words, which are often hard to process correctly in isolation and

function more as syntactic glue for content words. The model in Chapter 2 was

found to best account for human error rates when assuming a doubled rate of ac-

cumulation for function words (effectively halving the processing time for func-

tion words). Since function words comprised approximately half of the words in

the original source text, the rate of actual content words per minute was half the

speech rate. Semantic information is carried largely in these content words and

function words are not easily translated in isolation, therefore we removed the

function words, leaving only the content words. The speech rate was then ma-

nipulated to keep the rate of content words per minute (cwpm) consistent with

the materials used in the previous study (i.e., rates of 50-100 content words per
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minute). In addition, repeated words within a text were removed, to ensure there

would be no unintentional facilitation from simple word repetition.

3.2.4 Analysis

Participant recordings were transcribed and scored by counting correctly repro-

duced words. For the interpreting task, a word was scored as correctly repro-

duced if the translated word was judged to be a correct translation of the target

word in the source recording. Since the correct translation of a word taken out of

context can be ambiguous, some leniency was used in scoring the translations of

these ambiguous words. Additionally, obviously misheard words that were other-

wise reproduced correctly were also scored as correct.

A logistic mixed-effects model was used to analyse the effect of speech rate,

task, and speech rate-task interaction on participant error rates. The model was

constructed using the lme4 package (Bates et al., 2015) and statistical inference

computed with the lmerTest package (Kuznetsova et al., 2017) in R (Version 3.3.3,

R Core Team, 2013).

3.3 Results and interim discussion

Figure 3.1 shows participants performance on interpreting and shadowing of ran-

domised lists, as well as in the previous study using narratives. As before, both

shadowing and interpreting error rates were positively related with speech rate

and a speech rate-task interaction effect is visible in the difference in slopes of in-

terpreting and shadowing performance across speech rates. The logistic mixed-

effects model demonstrated significant effects of task (β = 0.68,SE = 0.02, p <

.001), source speech rate (β = −0.73,SE = 0.02, p < .001), and the interaction be-

tween task and source speech rate (β = −0.16,SE = 0.02, p < .001). Random ef-

fects of participant and source text were controlled for with random intercepts.
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Using a more elaborate random effects structure with random slopes was not

possible due to the limited number of observations in each cell.

As visible in Figure 3.1, the slope of interpreting performance is more steeply

negative in the randomized materials in the present study than the narratively

organized materials in the previous study. The same is true, but less clearly so,

for the slope of shadowing performance. Joint statistical analysis of both studies

showed that these differences in performance slopes between studies were sig-

nificant, as evidenced by a content word speech rate by study interaction (β =

−0.044,SE = 0.011, p < .001) in addition to a main effect of study (β=−0.34,SE =

0.011, p < .01).

Using random lists of words, we replicated the observation of Gerver (1969)

and Chapter 2 that performance accuracy decreases more for interpreting than

for shadowing with increasing speech rate. If semantic and syntactic structure

contributes to the deterioration, then the decrease in performance accuracy with

increasing speech rate should be weaker for randomised word lists than for the

previously used narratives. However, contrary to this expectation, the decrease

in performance was stronger for the random lists than the narratives, which sug-

gests that semantic and syntactic processing costs were entirely absent. That is,

we observed that when semantic and syntactic structure is absent, as with the

random lists, performance is worse than when semantic and syntactic structure

is present. Thus, semantic and syntactic processing yields no cost but helps in

interpreting and shadowing.

3.4 Computational model

The observation that interpreting performance is better for narratives than for

random lists suggests that the presence of semantic and syntactic structure yields

no cost in interpreting. Instead, it seems plausible that the presence of semantic
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Figure 3.1: Mean proportion of correctly reproduced words while shadowing and
interpreting narratives and randomly ordered word lists across source
content word speech rates. Narrative shadowing and interpreting per-
formance taken from Chapter 2 for comparison.
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and syntactic structure benefits rather than hampers performance. If the pres-

ence of semantic and syntactic structure is beneficial for performance, then our

lexical bottleneck model may even have underestimated the lexical contribution

to the deterioration of the interpreting performance in our previous study. If so,

the model should have difficulty fitting the interpreting performance on random

lists. We tested this by computer simulations. Following the methodology in

Chapter 2, the recordings presented to the participants were processed with Web-

MAUS automatic speech segmentation to assign onset times to each word in an

orthographic transcription (Kisler et al., 2017). These onset times were then used

as input for the computational model, which simulated error rates for shadowing

and interpreting.

Running the model with the parameter values used in the previous simulations

yielded no decrease in performance accuracy with increasing speech rate for in-

terpreting and shadowing of the lists. For performance to deteriorate, the lexical

bottleneck effect should have been much bigger than assumed based on the pre-

vious study with narratives. In order to obtain the optimal model fit, the particle

swarm optimization procedure (Kennedy & Eberhart, 1995) used in the previous

study was repeated with the data collected in the present study. In order to obtain

the observed deterioration in performance in interpreting lists (shown in Figure

3.2) the switch cost had to be increased to 520 ms (from 50 ms in the previous

study). This suggests that our lexical bottleneck model has underestimated the

lexical contribution to the deterioration of the interpreting performance in our

previous study. This corroborates our conclusion that the decrease in interpret-

ing performance with increasing speech rate is due to a lexical bottleneck rather

than semantic and syntactic processing costs. However, as Figure 3.2 shows,

the model predicts shadowing of lists to be entirely unaffected by speech rate,

whereas the empirical data show that shadowing also deteriorates. Increasing

the lexical switch cost does not affect shadowing because most of the process-
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ing in our simulation of the shadowing task flows though the direct phonological

pathway (the shortcut route). This suggests that this direct route is also subject

to a bottleneck.

Figure 3.2: Mean proportion of correctly reproduced words while shadowing and
interpreting across source speech rates in the behavioural experiment
and model. Shaded areas represent standard error for the behavioural
data.

3.5 Discussion

While the interaction between speech rate and task observed by Chapter 2 is repli-

cated, there are key differences between the results reported in that study and

the results reported above. In particular, the slope of interpreting performance is

more steeply negative in the randomized materials in the present study than the
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narratives in the previous study. The same is true, albeit less clearly, for the slope

of shadowing performance. This indicates that semantic and syntactic process-

ing costs do not contribute to the deterioration of performance with increasing

speech rate, which supports our hypothesis of a lexical bottleneck.

However, the direct comparison between the present and previous study is

somewhat complicated by the distinction between speech rate in words per

minute and content words per minute. As discussed above, in constructing

the materials it was decided to not include function words because they are

not trivial to translate out of context. This left only content words, functionally

doubling the density of semantic information in the materials. To compensate,

speech rate was adjusted by taking the speech rate in content words per minute

from the previous study, which comes out to roughly half the speech rate in

words per minute. In terms of semantic information density this may be roughly

comparable, but it is plausible that pre-lexical speech comprehension processes

are more sensitive to the raw speech rate than the semantic information density-

corrected speech rate. If anything, halving the speech rate from the previous

study to arrive at content words per minute likely underestimates the difficulty of

those materials compared to the materials used in the present study. Therefore,

the difference in slopes between the previous study and the present one that

is visible in Figure 3.1 likely represents a lower bound for the actual difference.

Thus, our conclusion that the decrease in performance was stronger for the

random lists than the narratives is warranted.

Our empirical findings and computer simulations suggest that the difference

in slopes between studies represents a facilitation effect from narrative context,

as opposed to any cost due to semantic or syntactic processing. Our assumption

in Chapter 2 that semantic and syntactic structure building is not a significant

bottleneck in these simple narratives therefore seems justified. If the presence

of semantic and syntactic structure has a facilitatory effect on performance, then
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our lexical bottleneck model may even have underestimated the lexical contribu-

tion to the deterioration of the interpreting performance in our previous study.

There is evidence for such facilitatory feedback into early speech processing

from both syntactic and semantic context information (Tyler et al., 2002; Zwitser-

lood, 1989) and differing amounts of contextual facilitation in the form of feed-

back would not only explain the difference in interpreting performance between

narratives and word lists, but could also help explain the difference in shadowing

performance between the previous and the present study. In the previous study,

shadowing performance was largely preserved at higher speech rates. We posited

that shadowing occurred via a faster, low-level “shortcut” route, bypassing the

lexical bottleneck. This route is possible for shadowing because when literally

repeating a word, an output phoneme can be selected immediately after recog-

nizing the input phoneme (Roelofs, 2004, 2014). When shadowing using this

route, conceptual integration occurs only after production of each lexical item.

Based on this assumption, our computational model predicted extremely low er-

ror rates for shadowing in the present study, which proved to be erroneous. This

may be partly due to comparatively less use of the purely phonological route and

more use of the full conceptual-semantic route in the present study. However,

even if full conceptual integration in shadowing is post-hoc, early conceptual-

semantic information could feed back into lower level comprehension processes

during both shadowing and interpreting tasks. Such feedback would provide a

form of continuous semantic priming. Additionally, via a similar mechanism,

syntactic effects could feed back from the lemma level into lower level compre-

hension processes, priming words based on grammatical features in a narrative

context, but not when shadowing or interpreting word lists. Marslen-Wilson

(1985) found evidence that such context effects are not only present in shadow-

ing, but that they are stronger at the relatively long latencies we observed in the

present study (i.e., the effect is stronger when there is more time for conceptual-
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semantic and syntactic information to feed back down to lower-level processes).

Semantic and syntactic context effects were also observed in a phoneme restora-

tion task, but only if the first syllable of the affected word was left intact, indicat-

ing a direct effect of sentential context on phonological processing.

Assuming a small switch cost, these feedback mechanisms may perhaps

further explain why the computational model from Chapter 2 does not, in its

current form, account for decreased performance in the absence of contextual

(syntactic and/or semantic) facilitation. The model operates in a feedforward

manner, allowing it to simulate contextual facilitation of conceptual integration,

which would allow it to partially model contextual facilitation of interpret-

ing. However, its feedforward architecture does not allow it to simulate the

conceptual-semantic information feeding back and facilitating lower level

processes in a manner that would plausibly cause contextual facilitation during

shadowing.

A model that is capable of this facilitation would entail a substantially higher

number of parameters, due to the need to tune the feedback connections and

contextual facilitation. Fitting such a model to the current dataset of behavioural

error rates is likely to result in an overfitted model; therefore we do not attempt

it here. However, if additional behavioural data were used to account for the con-

textual facilitation parameters, the number of parameters that would need to be

fitted in an expanded model could be reduced. This would address the overfit-

ting problem, but such a model would likely still need an additional bottleneck

to account for the difference in performance decline with increasing speech rate

between shadowing and interpreting observed in the behavioural data. Based on

the available evidence from other experiments, (e.g., Cook & Meyer, 2008; Piai

et al., 2014) the lexical response selection bottleneck we suggested in Chapter 2

remains a likely source of this speech-rate task interaction.



3 Context in interpreting and shadowing 51

3.5.1 Conclusion

In Chapter 2, we proposed that a lexical bottleneck is sufficient to explain the

difference in speech rate-induced errors between shadowing and interpreting

tasks. In the present study, we directly tested our lexical bottleneck hypothesis by

examining interpreting and shadowing performance on randomised word lists.

We replicated the stronger decrease of interpreting than shadowing performance

with increasing speech rate. The decrease for the lists was even stronger than pre-

viously observed for narratives, which suggests that semantic and syntactic struc-

ture costs are absent. This suggestion was partially supported by computer simu-

lations, which suggest that our lexical bottleneck model even underestimated the

lexical contribution to the deterioration of the interpreting performance in our

previous study. However, the observed deterioration in shadowing accuracy can-

not be explained using only a lexical bottleneck. Contextual facilitation effects

would explain the discrepancy, but processes producing these effects could not

be modelled in the present study. We conclude that a lexical bottleneck remains

plausible, and that to fully explain the deterioration of interpreting and shadow-

ing performance with increasing speech rate in both narratives and randomized

word lists, semantic and syntactic context must facilitate processing, rather than

inducing a processing cost.





4 | Lexical and contextual factors facilitate concur-

rent speech comprehension and production in si-

multaneous interpreting and shadowing1

Abstract

The time course of speech processing in simultaneous interpreting and shadow-

ing of narratives points to a lexical bottleneck, as shown in computer simulations

in Chapter 2. Our simulation model accounts for the competing needs of compre-

hension and production for lexical processing by assuming a bottleneck switch-

ing mechanism with an associated switch cost. However, the model was found to

not generalize well from stories to randomized word lists (Chapter 3). We hypoth-

esized that the model failed to generalize because it did not include facilitation

from narrative context. Here, we investigate the nature and magnitude of con-

textual facilitation effects for narratives as opposed to randomized word lists in

speech shadowing and simultaneous interpreting. We analyzed the speech laten-

cies using Bayesian regression with sparsity-inducing priors to select relevant pri-

ors from a variety of lexical and contextual factors including phonological length,

cognateness, frequency effects, transitional probabilities at the word and lemma

level, syntactic complexity, and similarity to semantic context. The regression

coefficients reveal differences between interpreting and shadowing that indicate

differences in planning scope and semantic processing. Comparison of latencies

in narratives and randomized word lists indicates that contextual cues strongly

facilitate concurrent speech comprehension and production.

1Adapted from Van Paridon, J., Alday, P. M., Roelofs, A., & Meyer, A. S. (in prep.). Lexical and
contextual factors facilitate concurrent speech comprehension and production in simultaneous
interpreting and shadowing.
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4.1 Introduction

Errors in simultaneous interpreting and shadowing of spoken narratives vary as

a function of speech rate (Gerver, 1969). In computer simulations, we demon-

strated that the varying accuracy of interpreting and shadowing performance

can be explained by assuming a lexical bottleneck (Chapter 2). Simultaneous

interpreting requires lexical processing for both comprehension and production,

which we accounted for in the model by switching lexical processing between

comprehension and production, with a small switch cost incurred every time a

switch is made. This model was able to closely fit error rates in the interpreting

and shadowing of narrative text, using a processing hierarchy and parameters

based on a review of the psycholinguistic literature (Indefrey & Levelt, 2004). In

Chapter 3, however, we found that the model did not generalize to error rates

in interpreting and shadowing randomized word lists. We hypothesized that the

model was unable to correctly fit to error rates on randomized word lists because

these lists do not provide the facilitatory context (be it semantic, syntactic, or

both) that the narratives used in Chapter 2 provide. Since our mechanistic model

operates only on the timing of the spoken input and not on linguistic content of

said input, it did not explicitly account for such contextual facilitation effects in

Chapter 2, and therefore the fitted parameter values do not generalize to the data

collected in Chapter 3, where the contextual facilitation is absent.

Rather than revisiting the mechanistic model and implementing an ad hoc

contextual facilitation fix, we focus in the present study on examining the locus

and magnitude of the hypothesized contextual facilitation effect. By contrasting

semantic and syntactic context effects, we aim to uncover at which processing

stages contextual facilitation occurs during interpreting and shadowing, and how

this facilitation affects the difficulty of each task. This information will allow us

to make a principled adaptation to future mechanistic modeling, accounting for
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contextual facilitation and potentially improving the fit to error rates in the data

collected in Chapter 3.

4.1.1 Modeling of speech shadowing and simultaneous inter-

preting

Earlier models of interpreting have mostly been process models (see e.g., Moser,

1978) or models relating various component skills to interpreting (see e.g.,

Christoffels et al., 2003). But while these models are useful in understanding

how concurrent comprehension and production of speech are coordinated

during simultaneous interpreting, they largely do not make specific quantitative

predictions about language processing and task performance in simultaneous

interpreting and speech shadowing. A notable exception is the work of Seeber

and Kerzel (2012) relating differences in word order between source and target

language to pupillometry data (as a proxy for cognitive effort or working memory

load) but the predictions they tested were fairly narrow, pertaining only to word

order differences between closely related languages.

In Chapter 2 we proposed a computational model of speech shadowing and

simultaneous interpreting error rates based on speech comprehension and pro-

duction processing times originally compiled in a review of the word comprehen-

sion and production literature by Indefrey and Levelt (2004). While the proposed

model could fit the observed error rates well, it has several limitations. Most im-

portantly, it only predicts error rates at the group mean level and it is blind to the

linguistic (semantic and structural) content of the speech. This makes judging

the theoretical validity of the process model difficult. The processes seem to be

modeled correctly in terms of order and relative duration, but they are based on

studies of single word and noun-phrase production. Are we therefore overlook-

ing effects of processing linguistic content, particularly at the scope of sentences,

rather than single words?
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In contrast to Chapters 2 and 3, in which we use a mechanistically inspired

model, in the present study we aim to descriptively model the same tasks at the

level of input-output speech latency, in order to elucidate the linguistic factors,

both at the purely lexical level and at the contextual level, that affect speech shad-

owing and simultaneous interpreting performance. We expect lexical facilitation

effects to occur in both the narrative and randomized word list conditions, while

contextual effects should only occur in the narrative condition. Furthermore, the

different processing hierarchies we propose for shadowing and interpreting in

Chapter 2 lead us to expect that semantic and syntactic effects in shadowing, if

they occur at all, should be smaller than in interpreting. This is because seman-

tic and syntactic processing are not critical to performing the shadowing task

(but potentially do occur post production of a word and could therefore still have

some effect on the recognition and production of subsequent words). By uncov-

ering the locus of contextual facilitation effects, we can better understand where

our computational model falls short, and perhaps amend it.

4.1.2 Factors potentially affecting interpreting and shadowing

latencies

It seems clear that many factors affect speech latencies in simultaneous inter-

preting and speech shadowing, but tightly controlled experimental paradigms

generally afford testing only one or two factors at a time. A rich, naturalistic

dataset on the other hand allows for the simultaneous modeling of various fa-

cilitatory and delaying effects at both the lexical level and the contextual level

(see e.g., Alday, 2019; Alday et al., 2017, for application of this concept in elec-

trophysiology of language). In the present study, we examine the effects of cog-

nateness (orthographic and phonological), word length (syllabic and phonemic),

word frequency, word-level transitional probabilities (forward and backward, for

bigrams and trigrams), transitional probabilities from lemma to part-of-speech
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(grammatical category), similarity to semantic context (across different context

windows of varying lengths), and syntactic dependencies (left and right children).

Next, we briefly describe these variables and our motivation for including them.

Cognateness

Dutch and English are closely related Germanic languages and consequently

there are many cognates: Many English words have the same etymology as their

Dutch translations, resulting in significant similarity in both phonology and

orthography. Cognateness has been shown to facilitate production in bilinguals

(Costa et al., 2000) and ERP studies of the time course of cognate production

trace this effect to the phonological processing stage (Christoffels et al., 2007).

However, Strijkers et al. (2010) also observe cognateness effects at an earlier stage,

in lexical access, which they attribute to co-activation of lexical representations

in both languages (effectively raising the frequency of activation for a lexical

item above the frequency observed in a single language). They hypothesize this

co-activation is mediated by indirect links between lexical items through shared

phonological segments (see Costa et al., 2005, for review). The elevated effective

word frequency hypothesis is speculative, but regardless of whether one accepts

it, it is plausible that any facilitatory effect of cognateness must arise through

(indirect) links at the level of phonological representations. This suggests there

are two possible mechanisms by which cognateness is likely to facilitate simul-

taneous interpreting in the present study: Through facilitated word recognition

and production (perhaps because of the raised effective frequency) and through

indirect links between phonological representations, bypassing the need for

conceptual-semantic mediation in translating.

Quantifying cognateness, however, is not straightforward. The Levenshtein

(edit) distance between phonetic transcriptions (in IPA) of the phonological

words is often larger than the perceived difference between words, because
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of systematic (and therefore largely transparent) shifts in phoneme-grapheme

correspondences between English and Dutch that occurred as these languages

diverged over time. Orthographic Levenshtein distance can therefore para-

doxically be a better (although still noisy) measure of perceived cognateness.

Levenshtein distances are correlated with word length, however we account

for this by normalizing the Levenshtein distance for word length (or, to be

more specific, the mean of the lengths of both the English and Dutch words).

We include both phonetic and orthographic length-normalized Levenshtein

distance as predictors in the present study.

Word length

Length is a lexical factor we might expect to have a delaying effect, for two

reasons: In comprehension, the uniqueness point of longer words is generally

later than that of short words, meaning that recognition of long words is likely

to take longer than recognition of short words. Surprisingly, evidence that the

uniqueness point of a word affects speech latency in a continuous speech task

is mixed, with two studies on speech shadowing finding that uniqueness point

affects speech latency only at slow presentation rates, if at all (Radeau & Morais,

1990; Radeau et al., 2000). In production, uttering a longer word requires more

planning and preparation, but whether this affects onset latency depends on

whether planning and preparation occur wholly before the onset of production.

Evidence for effects of word length in speech production is mixed, and whether

length effects are observed seems, in practice, to be dependent on task demands

such as response deadlines (Meyer et al., 2003).

We can measure word length in number of phonemes and number of sylla-

bles. There is some evidence that articulatory preparation occurs at the syllable

level, making number of syllables particularly relevant as an index of planning

difficulty, but again, this is only relevant if participants in the present study plan
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multiple syllables before they start articulating (Levelt & Wheeldon, 1994; Meyer,

1990). Unfortunately, since most phonemes map onto a single grapheme (or at

most two, with rare exceptions), and syllables tend to have a somewhat consis-

tent number of phonemes, these two measures are highly collinear and their ef-

fects are therefore impossible to disentangle in our data.

The aforementioned similarity between English and Dutch has implications

for disentangling lexical comprehension and production effects as well: the high

number of cognates means that for many words, length and frequency in En-

glish tends to be very similar to length and frequency in Dutch. This leads to a

somewhat vexing situation where, although simultaneous interpreting theoreti-

cally means that perceived lexical items are different from produced lexical items,

the specifics of our selected language pair (selected for the relatively good avail-

ability of proficient bilinguals) make it difficult to distinguish between a compre-

hension or production locus for frequency and length effects.

Word frequency, ngram frequency, and transitional probability

That word frequency facilitates speech perception has been generally accepted

for well over half a century (see e.g., Rosenzweig & Postman, 1958). In speech

production, word frequency has a similar facilitatory effect, generally thought to

occur at the level of phonological encoding (Jescheniak et al., 2003; Meyer et al.,

1998). We therefore expect words that occur more frequently to be both recog-

nized and produced more easily. More recently, such facilitatory effects have also

been observed at the phrasal level in both production (Shao et al., 2019) and com-

prehension (Arnon & Snider, 2010). Further complicating these findings, there is

some evidence from eye movements to suggest that what readers are truly sensi-

tive to is not frequency, but rather transitional probability (McDonald & Shillcock,

2003). Transitional probability in this context means the probability that a word

will occur given the preceding context (forward transitional probability, or FTP)
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or that a certain context has preceded a given word (backward transitional prob-

ability, or BTP). Like frequencies, these quantities are log-transformed for use as

predictors (note that in the reading and natural language processing literature, it

is common to take the negative logarithm of transitional probability, either pre-

dicted or observed, and call it surprisal, see e.g., Frank, 2013).

As discussed in Chapter 5, the common practice of taking the logarithm of the

transitional probabilities results in a notable equivalence. Dividing the bigram

probability by the word probability (or 1-back word probability) is equivalent to

a subtraction on the log scale. This essentially means that if we include bigram

frequency, BTP, and word probability as predictors, we create a multicollinearity

problem. Including the full set of frequency and probability measures is simply

not possible, because it renders the model unidentifiable. Note that these same

concerns apply to trigrams.

In order to obtain estimates of word, bigram, and trigram frequencies in

conversational English and Dutch, we used the frequencies compiled in Chapter

6, tabulated from OpenSubtitles, a large archive of (pseudo-conversational)

transcribed film and television subtitles. Using these word, bigram, and trigram

frequencies, we can compute relevant conditional probabilities. In addition

to transitional probabilities for word n-grams, we also compiled lemma to

part-of-speech transitional probabilities: the probability that a lemma or lemma

bigram is followed by a particular class of word. These probabilities can be

understood to reflect potential pre-activation of a word class (through lemmas)

facilitating lexical selection.

Because of the aforementioned perfect collinearity issue described, we only in-

clude the logarithm of bigram and trigram FTP and BTP (i.e., bigram and trigram

surprisal). These have the most natural interpretation in the context of speech

tasks: If I have previously observed these words, which word comes now? And, if

I am observing this word now, which words are likely to have preceded it? Con-
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versely, using whole bigram and trigram frequencies ignores the compositional

nature of language.

Semantic context

Semantic similarity of a word to the context preceding it can facilitate compre-

hension and production. This can be observed in single-word semantic priming

studies, but in the present study a longer preceding context can be modeled, al-

lowing us to juxtapose the relative effects of distal and proximal semantic context.

We operationalize semantic context using subs2vec (Chapter 6), a word2vec-style

co-occurrence model implemented using the fastText algorithm (Bojanowski et

al., 2017). Word vectors produced by this co-occurrence model can be averaged

to construct semantic context models of any phrase length. Simple semantic

context models of this type have previously been used in EEG studies to show

that similarity to preceding semantic context facilitates word recognition in a top-

down fashion (Broderick et al., 2018; Broderick et al., 2019). Such top-down facil-

itation, if we can also observe it behaviorally (i.e., in our dataset of speech laten-

cies) is in line with our hypothesis that narrative text processing is subject to con-

textual facilitation effects, while processing of word lists is not (Chapter 3). The

combination of semantic context models and EEG has also been used to differ-

entiate semantic context effects from simple word predictability, demonstrating

that these measures produce distinct facilitatory effects (Frank & Willems, 2017).

More generally, the semantic information encoded in simple semantic context

similarity models has been found to be sufficiently predictive of brain activity

patterns generated by comprehension of narrative text that perceived sentences

can be decoded from fMRI data with some success (Pereira et al., 2018).

In the present study, we compute cosine similarity between the word vector

for the current word and the context vector, a measure which does not explicitly

represent priming, spreading (pre-)activation, prediction, or ease of conceptual
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integration, but rather the amount of semantic information from the preceding

context that could potentially cause facilitation or delay through various different

mechanisms.

Cosine distance to preceding context is related to, but distinct from ngram fre-

quencies and transitional probabilities in that it is a more specific (though by no

means perfect) measure of semantics. Frequencies and transitional probabilities

encode both phrasal structure and semantics to a certain degree. For instance,

the will probably be followed by a noun, and drive to will often be followed by a

city or other type of place. Backward transitional probability, in particular, has

been proposed as an index of conceptual integration, but cosine distance actu-

ally quantifies the conceptual gap that has to be closed to integrate a word into

the preceding context, without encoding the specific word order in the way that

transitional probabilities do.

Syntactic complexity and predictability

Words have syntactic relationships with the words surrounding them, in some

cases having dependencies to their left or right that need to be taken into ac-

count to interpret a given word correctly. The requirement to keep track of these

dependencies in order to comprehend a sentence and produce a correct transla-

tion means that some sort of representation needs to be held in working memory.

The increased working memory load associated with a tracking a high number

of right-branching dependencies could cause delays in planning for production.

Additionally, in simultaneous interpreting, differences in word order between the

source and target language have been shown to increase cognitive load, as mea-

sured by pupil dilation (Seeber & Kerzel, 2012). For the simple sentences used

in the present study, however, both the source (English) and target (Dutch) lan-

guages predominantly have the same (subject-verb-object) word order, which

should minimize the effect that word order has on speech latencies. We parsed
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the source narratives using the dependency parser implemented in SpaCy (Hon-

nibal & Johnson, 2015) to obtain the number of left- and right-branching depen-

dencies for every word for use as predictors in our model (but for an alternative

approach to quantifying dependencies in interpreting, see Liang et al., 2017).

4.2 Method

This study concerns input-output speech latencies and accuracy annotated on

participant recordings originally collected in Chapters 2 and 3, which both mod-

eled error rates, rather than speech latencies. The data collection procedure used

in these prior studies will be reproduced here for completeness.

4.2.1 Participants

Forty-one highly proficient Dutch-English bilinguals (native speakers of Dutch)

were recruited from the Max Planck Institute for Psycholinguistics participant

database. These participants represent the 70th percentile of an initial cohort

of 215 which was screened for English proficiency using the LexTale vocabulary

text (Lemhöfer & Broersma, 2012). For more details on participants see Chapters

2 and 3.

4.2.2 Procedure and design

Participants were asked to shadow five texts and interpret five texts, with short

breaks in between. Order of shadowing and interpreting blocks was counterbal-

anced across participants. Half the participants were presented with narrative

texts, the other half with randomized word lists. The speech rate at which texts

were presented was varied in five steps from 50 to 100 content words per minute.

In the narrative condition, this results in a real speech rate of 100 to 200 words per

minute. In the randomized word list condition function words were removed, re-
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sulting in the real speech rate matching the content word speech rate of 50 to

100 words per minute. The order of presented speech rates was counterbalanced

across texts and participants.

4.2.3 Materials

Both the narrative and the randomized word lists were based on samples from

books targeted at children aged six to ten years old. We used ten samples of

approximately 300 words as the narrative texts, and randomized the word order

after removing function words to create vocabulary-matched randomized word

lists from those same samples. Narrative samples were recorded at a fixed speech

rate by a native speaker of English using a custom teleprompter script, random-

ized samples were cut from these recordings. We collected and, where necessary,

computed relevant predictors for the materials. Correlations between these pre-

dictors are reported in Figures 4.1 and 4.2.

4.2.4 Annotating participant recordings

Participant recordings were first transcribed to get an orthographic representa-

tion of participants utterances. We then forced-aligned the participant record-

ings to the transcripts using WebMAUS (Kisler et al., 2017) to find the onset and

offset of each individual word in the transcripts. With the English source text

and participant utterances aligned, lapses and incorrect responses were rejected

word-by-word. This annotation procedure produced more than 50,000 input-

output speech latencies to be used as a dependent variable in our analyses.

4.2.5 Modeling input-output latencies

To investigate the effect on the input-output latency in the interpreting and shad-

owing tasks of the various predictors we have constructed, we construct regres-
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sion models. In constructing these models, we have to make a number of as-

sumptions and decisions, of which some, but not all, are generally accepted prac-

tice in psycholinguistics. Most consequential are our choice of parameter se-

lection method (sparsifying priors) and dependent variable transformation (log-

transform), which we will therefore briefly motivate.

Encouraging coefficient sparsity

We have a large number of predictors, some of which are exploratory (i.e., we do

not have a good a priori hypothesis for the magnitude of their effect) and many

of which are collinear to some degree (meaning we could not attribute variance

in latencies uniquely to one predictor in a regression). We want to encourage

sparsity, shrinking the coefficients (and consequently, our effect size estimates)

for irrelevant predictors to zero. In a Bayesian regression framework, sparsity

can be encouraged by selecting appropriate priors. The most convenient spar-

sity prior is the Laplace prior, which is functionally equivalent to the frequentist

practice of setting an L1-penalty on the total magnitude of the regression coeffi-

cients, better known as Least Absolute Shrinkage and Selection Operator (LASSO,

see Tibshirani, 1996). However, Laplace priors only encourage sparsity by having

relatively more of their probability mass close to zero than Normal priors (equiv-

alent to ridge regression/L2-penalty, or mild shrinkage) do; because the Monte

Carlo methods used for Bayesian statistics are only exact in their asymptotic be-

havior and the shrinkage is smooth, they generally do not yield an exact numer-

ical zero for the posterior mean.. In practice, Laplace priors behave more like

extra strong shrinkage priors: over-regularizing relevant coefficients while not

shrinking irrelevant coefficients to exactly zero, neither of which are desirable

properties. Various improvements over the Laplace prior have been suggested,

of which the Finnish Horseshoe (Piironen & Vehtari, 2017c) most exhibits the

behavior we seek. The original Horseshoe prior (Carvalho et al., 2010) has the
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unusual property of having infinite density at zero, but still having flat tails, re-

sulting in coefficients either shrinking to zero, or exhibiting no shrinkage at all.

Some shrinkage of non-zero parameters is actually desirable in case of a weakly

identifiable likelihood, so that non-zero parameters do not take on arbitrarily

large values (Piironen & Vehtari, 2017c). The improved Finnish Horseshoe can

be conceptualized as a combination of several priors: a Horseshoe prior on each

parameter encouraging small estimates to shrink to zero, a mild shrinkage prior

(roughly equivalent to a Student T prior) encouraging shrinkage of non-zero pa-

rameters, and a global prior reflecting our expectation for the overall number of

non-zero parameters (Piironen & Vehtari, 2017b).

As a more general point, in high-dimensional models such as the ones we are

reporting here, selecting parameters through model selection (whether through

Bayes Factors or indices like WAIC and PSIS-LOOIC) is computationally expen-

sive (if not intractable) while selecting parameters through sparsity has the ad-

vantage of being computationally tractable and, if using Finnish Horseshoe pri-

ors, functionally equivalent to performing Bayesian model averaging over all pos-

sible nested models (Piironen & Vehtari, 2017a).

Log-linear input-output latency

As visible in Figures 3 and 4, our dependent variable, speech latency, is highly

skewed. While the modal speech latency is less than two seconds in every task,

there is a long tail of higher speech latencies. We take the logarithm of speech la-

tency as dependent variable in our modeling, shown in Figure 5, for two reasons,

one statistical and one conceptual. From a statistical point of view, linear models

carry the implicit assumption that model error (i.e., residuals) is normally dis-

tributed. Log-transforming a skewed normal distribution so that it becomes nor-

mal generally improves the normality of the model error as well. Furthermore,
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log-transforming the input-output latency carries the implicit assumption that

effects are multiplicative, rather than additive:

log(a ∗b) = log(a)+ log(b) (4.1)

Conceptually, the multiplicative assumption makes more sense than the addi-

tive assumption: In the additive case, if multiple strongly facilitative factors apply

to a particular word, a model could potentially predict an unreasonably small or

even a negative input-output latency. In the multiplicative case, however, effects

are relative. This fits with the intuition that a small change in a short latency is

more consequential than an equally small change in a long latency. We are effec-

tively saying that for every single standard deviation increase in word length, we

might expect a 5% increase in input-output speech latency, as opposed to a 100

millisecond increase in latency. Consequently, even for a word to which multiple

facilitating factors apply, this cannot result in a negative predicted latency. Raw

latencies are reported in Figures 4.3 and 4.4, and standardized log-latencies in

Figure 4.5.

Regession model sampling

The Bayesian multilevel linear regression models were implemented in PyMC3,

the probabilistic programming package for Python (Salvatier et al., 2016). Models

were estimated by Markov Chain Monte Carlo (MCMC) sampling, using the No-

U-Turn Sampler (NUTS) (NUTS, see Hoffman & Gelman, 2014). Markov Chain

starting points were obtained with Automatic Differentiation Variational Infer-

ence (ADVI, see Kucukelbir et al., 2017). Ten chains were run for 4000 tuning

samples, followed by 1000 samples per chain for a total of 10,000 posterior sam-

ples.
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Figure 4.3: Raw speech latencies in milliseconds when shadowing or interpreting
narratives.
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Figure 4.4: Raw speech latencies in milliseconds when shadowing or interpreting
randomized word lists.
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Figure 4.5: Standardized log-latency of speech latencies, dependent variable for
the analyses reported here.
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4.3 Results

4.3.1 Response latencies

Before examining the results of the regression analysis, it is worth exploring what

the basic distribution of response latencies in each condition reveals about what

size chunks participants are holding in working memory while performing the

task. In the narrative condition (see Figure 4.3), the median response latency

when interpreting is around 2400 ms, regardless of speech rate. This corresponds

with 4 words at the low end of speech rate (100 wpm) and 8 words at the high

end. When shadowing, however, the median response latency is around 1200 ms,

corresponding with 2 words at the slowest speech rate, and 4 words at the highest

speech rate.

In the randomized word list condition (see Figure 4.4), median interpreting

latency is around 1200 ms, except at the lowest speech rate, 50 wpm, where it is

roughly 1500 ms. This corresponds to 1.3 words at the lowest speech rate, and

2 words at the highest speech rate. Median shadowing latency in this condition

is around 700 ms, except at the lowest speech rate, where it is roughly 850 ms.

This corresponds with 0.7 words at the lowest speech rate, and 1.2 words at the

highest speech rate.

While there are clear differences in latency between conditions, there is notably

little variation in latency distribution across speech rates within each condition.

This seems generally inconsistent with a strategy of capturing a given amount of

words before shadowing or interpreting them.

Regression model sampling diagnostics

Figure 4.6 shows the coefficient estimates and their credible intervals from sparse

Bayesian regression. Estimating a single, pooled model for all four conditions
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proved difficult. The combination of difficult posterior geometry due to the spar-

sifying priors and a large number of predictors plus interactions and second or-

der interaction makes a pooled model hard to sample from. In the coefficient

plots the four condition are contrasted by color, but note that the narrative data

and randomized word list data come from separate groups of participants, while

the interpreting versus shadowing contrasts are essentially within-participants.

The sparsity priors combined with the contrast coding used for the narrative ver-

sus word list and shadowing versus interpreting conditions result in a model that

effectively assumes that most effects will be zero, but also that most effects will

be the same across conditions. Where effects differ between conditions, it func-

tionally means there was additional evidence to support a first- or second-order

interaction effect over and above the main effect of the predictor.

There were some divergences during sampling, on average 20 per chain for

each model. Finnish Horseshoe priors, while having desirable properties with

respect to sparsity and shrinkage, are notably difficult to sample from. Betan-

court (2018) notes that better exploration of the funnel can be achieved by tuning

NUTS parameters (increasing acceptance probability and maximum tree depth).

After increasing the acceptance probability from 0.8 to 0.99, and the maximum

tree depth from 10 to 15, the number of divergences decreased by an order of

magnitude. This, in combination with visual exploration of posterior pair plots,

leads us to conclude that divergences during sampling are due to difficulty ex-

ploring the high-dimensional funnel around posterior modes which shrink to

zero, and not some other, more problematic pathology. This makes it unlikely

that our inference is biased to any meaningful extent by these divergences.

4.3.2 Differences between conditions

Uncertainty in estimates is generally somewhat larger for the randomized word

list condition than for the narrative condition. Some of this difference is likely
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Figure 4.6: 80% Credible intervals of coefficient estimates from sparse Bayesian
regression.
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due to smaller number of observations in the latter condition, because the texts

were shorter (due to the removal of function words) and participants made more

errors, resulting in fewer usable speech latencies. The remainder of this differ-

ence was possibly caused by the smaller value ranges in some predictors, as a

result of the lack of narrative structure (e.g., values in the BTP predictor were uni-

formly low in the randomized word list condition, because random sequences of

content words have low transitional probability).

4.3.3 Speech rate and word position effects

The model contains two non-linguistic predictors: Speech rate and word posi-

tion in text. We expected increased speech rate to result in faster production,

not because of any facilitatory effect, but because the more rapid presentation

of novel input necessitated faster reproduction. Curiously, while the expected

effect occurred in the randomized word list condition, it was absent in the nar-

rative interpreting condition, and even reversed in the narrative shadowing con-

dition. Participants may have used latency strategically, keeping a number of

words in working memory before reproducing them in order to allow for word or-

der differences between languages and reformulation of sentences. However, if

participants were strategically taking in a certain number of words, we would ex-

pect markedly lower latencies at higher speech rates, particularly for interpreting,

which we do not observe. Instead, the latency seems to be task-dependent, with

response latency on the randomized word lists seemingly reflecting a tradeoff be-

tween meeting a response deadline (the onset of the next word) that varies with

speech rate, and accurate reproduction. In contrast, the (lack of a) relationship

between response latencies and speech rates on the narratives likely reflects pro-

cessing constraints of some kind; an optimal amount of input to keep in working

memory or a perceptual buffer before shadowing or interpreting it.
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Word position in text had a similarly differential effect between the random-

ized word list and narrative conditions, but all of the effects were in the expected

(slowing) direction, possibly reflecting an accumulation of fatigue occurring over

the course of each text. This effect was stronger in the randomized condition

than in the narrative condition, which might seem unexpected given the lower

real speech rate in the randomized word list condition, but it is consistent with

the observation that error rates were higher for the randomized word lists than

for narratives (Chapter 3).

4.3.4 Lexical effects

Uncertainty in the estimate effect size for cognateness is large in the shadowing

conditions, because cognateness was invariant in the shadowing task (edit dis-

tances are all zero because the input and output phonological words are iden-

tical), but it has the expected facilitatory effect in the interpreting task, albeit

split between the orthographic and phonological measures of cognateness in

proportions that vary between narrative interpreting and randomized word list

interpreting. These measures are only moderately correlated and they seem to

capture different aspects of cognate status, however the differing effect sizes are

possibly due to weak identifiability of the variance that they do share (i.e., there is

variance in speech latencies that is explained by both cognateness predictors, but

the model cannot decide which predictors to apportion this common explained

variance to).

Word length in syllables has the expected slowing effect in all four conditions.

Additionally, word length in phonemes has a slowing effect in the randomized

word list interpreting condition, but appears to have a negligible effect on the

other three conditions. Collectively there appears to be a general effect of word

length, with number of syllables just being a more stable measure of length than

number of phonemes.
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Word frequency has a considerably larger effect on interpreting than in shad-

owing, likely because the facilitatory effect of word frequency compounds when

translating. More frequent words are recognized and retrieved faster, both in the

source and the target language. High frequency source words tend to be paired

with high frequency target words, both because frequency is strongly intertwined

with word meaning, and because English and Dutch are closely related languages.

This effect is larger in the randomized word list conditions than in the narrative

conditions, which we attribute to there being more non-zero contextual effects

in the narrative conditions. Several of these contextual effects are moderately

correlated with word frequency; it is plausible that shared explained variance is

partially absorbed into these contextual effects, making the word frequency ef-

fect look smaller in the narrative conditions.

1-back word frequency appears to only affect word list speech latencies, pos-

sibly because the additive effect of the ease of reproducing the previous word is

more easily discerned in discontinuous, word-for-word production than in pro-

duction that is planned at the level of phrases or sentences (as in the narrative

conditions).

4.3.5 Transitional probability effects

Forward transitional probability presents a complicated picture. Counter-

intuitively, the coefficient estimates for several of the FTP measures in the

narrative interpreting condition are positive, indicating slower responses for

high FTP words. When excluding all other lexical frequency and probability

effects and regression only FTP on speech latencies, the FTP parameter flips and

becomes negative as expected. The positive parameter in the full model can

therefore be understood as a consequence of the mathematical equivalences

described in Chapter 5. Similarly, backward transitional probability effects



4 Lexical and contextual factors 79

likely shrank to zero because there is a highly correlated predictor that is more

predictive of the observed data.

4.3.6 Semantic context effects

Semantic similarity to 1-back and 2-back words suggests an increasing facilita-

tory effect with time: The 1-back word has only a small facilitatory effect, and

only in the narrative conditions. For the 2-back word though, there is a larger

facilitatory effect, and it is visible in all conditions. That this effect increases with

time suggests some sort of spreading activation mechanism that requires time be-

fore it is able to exert top-down facilitation (akin to SOA-dependent facilitation

in a more controlled priming experiment).

Semantic similarity to preceding context had a facilitatory effect in both nar-

rative interpreting and narrative shadowing for the larger 6-word sliding context

window, while the 4-word and 8-word context windows effects are shrunk to zero.

These predictors are strongly correlated, but the model selected the 6-word con-

text window and it appears the residual variance does not support additional ef-

fects from the other two context windows. In the randomized word list condition,

none of the context windows produced a semantic facilitation effect discernably

different from zero, indicating that participants did not experience facilitation

from semantic context in these word lists.

4.3.7 Syntactic context effects

In the narrative interpreting condition, the number of left syntactic children has

a very small, but non-zero facilitatory effect, while the number of right syntactic

children has a clear slowing effect. These effects are shrunk to zero in the shad-

owing condition. The parse trees created by the SpaCy dependency parser for the

randomized word lists are non-interpretable, because there is no actual syntax in
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the word lists. The effect of the number of left and right children is therefore zero

in the randomized word list conditions, as expected.

4.3.8 Interim discussion

From a statistical perspective, it is worth considering that there are many ways to

perform variable selection for regression models, but many suffer from the prob-

lem that due to collinearity and covariance, systems of predictors do not behave

simply as the sum of those predictors. The benefit of using a sparsity-inducing

method, rather than variable or model selection using p-values or likelihood ra-

tios is that we can consider all predictors that could plausibly affect our observed

data as a single system, and rely on the inference procedure to determine which

predictors are actually irrelevant (Piironen & Vehtari, 2017a).

One drawback to this method is that it encourages a decision between collinear

predictors that is potentially artificial: We know that word length and word fre-

quency are highly correlated, but the sparsity priors will result in common ex-

plained variance in the observed data being apportioned to one of the two predic-

tors, leaving the estimated coefficient deceptively small. In some cases this might

be desirable, if for instance one predictor is causally dependent on another, we

might want the latter to soak up most of the common explained variance (but de-

pending on measurement noise, the opposite might happen). In other cases, two

predictors might be related in a manner that is not easily identified or separated,

for instance in the case of similarity to semantic context and forward transitional

probability; these measures are weakly to moderately correlated, but it is diffi-

cult to decide which of these two measures should have “primacy” in language

processing.

To compute a measure of “explanatory potential” of a predictor, we can per-

form a Principal Components Regression (PCR). We orthogonalize the complete

matrix of predictors using Principal Components Analysis (PCA) and then per-
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form the same sparse regression that we performed with the original predictor

matrix. The resulting posterior estimates of the coefficients will not suffer from

issues with apportioning variance because by orthogonalizing we have removed

collinearities. We can then multiply the posterior samples with the PCA factor

loadings to compute the potential coefficients for the original predictors, rather

than the observed coefficients. Each potential coefficient estimate is a linear

combination of the principal components coefficient estimates. An important

caveat here is that due to the transformations used in the procedure, the po-

tential coefficients are not proper regression coefficients in the sense that if the

potential coefficients cannot be used in a regression model to make actual pre-

dictions. Rather, they reflect the potential that a predictor has to contribute to

explaining observed variance.

4.3.9 Principal components regression results

Figure 4.7 shows the potential coefficient-estimates and their credible intervals

from principal components regression. Most coefficient estimates are remark-

ably similar, which is perhaps unsurprising given that the sparsifying priors cause

the original model to apportion explained variance to predictors that have a large

unique contribution, similar to the principal components we compute in the first

step of the principal components regression. The most obvious difference be-

tween the two models is the shifted intervals around some of the frequency and

transitional probability effects. As in the original model, the lexical frequency

effects are in the expected (facilitatory) direction, while the transitional proba-

bility effects are counter-intuitively in the opposite direction. The shifted uncer-

tainty here reflects that there are large common variance components that are

exchangeable, while many smaller variance components are shrunk to zero, with

some degree of uncertainty around that value. In the original sparse regression,

there is only one source of uncertainty around the zero, and a prior specifically
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shrinking the estimates towards that value. In the PCR model, there are a number

of small, sparsified components that contribute to a reconstructed potential co-

efficient estimate, which appears to shift the intervals somewhat, further under-

lining the weak identifiability of collinear frequency and transitional probability

effects.

Figure 4.7: 80% Credible intervals of potential coefficient-estimates from princi-
pal components regression.
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4.4 Discussion

Our lexical bottleneck model of speech processing in simultaneous interpreting

and shadowing (Chapter 2) was found to not generalize well to speech without

narrative structure, namely randomized word lists (Chapter 3). We hypothesized

that the model fails to generalize because it does not include facilitation from

narrative context. To assess this hypothesis, we investigated the nature and mag-

nitude of contextual facilitation effects for narratives as opposed to randomized

word lists in speech shadowing and simultaneous interpreting. We analyzed the

speech latencies using Bayesian regression with sparsity-inducing priors to select

relevant priors from a variety of lexical and contextual factors. The regression co-

efficients revealed differences between interpreting and shadowing in narratives

and randomized word lists that indicate differences in planning scope and se-

mantic processing. In the remainder of this section, we discuss our findings and

their implications.

In the narrative shadowing condition, many of the lexical and contextual ef-

fects were weaker than in the narrative interpreting condition. This is not at-

tributable to any underlying statistical phenomena; we therefore interpret this

as reflecting real differences in linguistic processing between these two tasks.

Similarly, both shadowing and interpreting in the randomized word list condi-

tion exhibit lexical effects such as word length effects, but essentially no contex-

tual effects. While the effect of context has both facilitatory and slowing aspects

in our regression model, the higher error rates in the randomized word list condi-

tion suggest that removing narrative context overall has a negative effect (Chapter

3).

The absence of lexical frequency and word length effects in the narrative shad-

owing condition suggests that, when under considerable time pressure, partici-

pants do make use of a shallow, direct route from phonological input to phono-



84 4 Lexical and contextual factors

logical output, bypassing the locus of these frequency effects. Similarly, the lack

of syntactic effects in this condition suggests that syntactic processing does not

occur in time to affect latency of production. That a facilitatory effect of seman-

tic context still occurs (and for the same context window as in the interpreting

condition) suggests that pre-activation at the semantic level does still occur. In

contrast to the lexical effects, pre-activation from semantic context can build up

over a longer time course and therefore facilitate even in the shadowing task. This

is consistent with some participants self-reported conscious experience of per-

forming the shadowing task: production follows perception, but precedes com-

prehension.

The length of the context window for which facilitation occurs suggests after

6 words pre-activation is too diffuse to be facilitatory, but that a shorter context

window is not optimal either. That a shorter, more focal context window is sub-

optimal is somewhat surprising. It is unlikely that the semantic context effect

reflects any kind of phrasal structure effect because the semantic vectors for the

context window are simply averaged (cf. Pereira et al., 2018). It therefore does ap-

pear that the optimality of the 6-word context is a function of the nature of pro-

cessing occurring at the semantic level during both interpreting and shadowing.

The size of this context window is not, however, directly related to the latencies

we observed, since the latencies in the narrative shadowing task ranged from 2 to

4 words (across the range of speech rates) but the model coefficients suggest an

approximately 6-word context window for both shadowing and interpreting.

At the shorter 1-back and 2-word sliding context windows, there appears to be

increasing facilitation in the narrative interpreting condition as time progresses

past the presentation of a given word. The estimated effect sizes for these effects

are very small, and we should therefore be careful to over-interpret the effects,

but varying effects at different time scales have been reported in semantic prim-
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ing studies using the continuous naming paradigm (see e.g., Rose & Rahman,

2017; Scaltritti et al., 2017, for discussion).

Because of the mathematical relationship between transitional probabilities

and word frequencies, the counterintuitive slowing effect of FTP can be inter-

preted as a correction on facilitatory word frequency effects (cf. Chapter 5). How-

ever, it is unclear whether this also applies to the lemma to part-of-speech FTP,

since the relationship between lemma to part-of-speech FTP is not fundamen-

tally linked to word frequency the way regular FTP is. The exact nature of the

slowing effect of lemma to part-of-speech FTP is an interesting avenue for fur-

ther exploration.

The syntactic effects in narrative interpreting amount to facilitated production

when a word closes syntactic dependencies that remained open, and a slowing

when a word creates new syntactic dependencies. This is consistent with words

being syntactically relatively more or less predictable from the preceding context.

That neither of these effects occurs in narrative shadowing suggests that syntactic

processing does not occur in time for it to affect the more direct processing route

and relatively shorter latencies in the shadowing task. Alternately, it is possible

that because the input-output latency is longer in interpreting, both in absolute

(millisecond) terms and in terms of the number of words held in working mem-

ory, additional working memory load from tracking right dependencies builds

up in interpreting, slowing down processing. This interpretation would appear

to be at odds with the relatively long context being tracked at the semantic level,

however it is possible that semantics and syntax are processed at different scopes

(i.e., different context lengths).

The paradigms used in the present study were chosen because they allow us

to elicit fairly consistent speech production across participants. Though in in-

terpreting the specific sentence structure chosen by individual participants can

vary, the high degree of similarity between English and Dutch and the task goal
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of preserving the semantic content of the sentence results in participants pro-

ducing similar sentences. This similarity in sentences produced by participants

is crucial for making the statistical analyses reported in this study feasible, but

unfortunately, it does come at the cost of making the linguistic content of the

concurrent comprehension and production tasks highly similar (or even identi-

cal, in the case of shadowing) and therefore hard to disentangle. As an example,

take similarity to semantic context: While we can compute this measure both for

the input and output speech signals, those would be almost perfectly correlated,

even in interpreting (due to the similarity between the two languages and the

requirement to preserve the semantics of the input speech). The same applies

to lexical factors such as word frequency or length, which are highly correlated

between English and Dutch (and to each other, which further compounds the

problem). In the present study we therefore do not attempt to model the effects

of lexical and contextual factors on comprehension and production separately,

instead opting to model them at the input speech level, knowing that the near-

perfect correlation with the same factors for the output speech means we are in

effect jointly modeling the effects of these factors on both comprehension and

production.

In summary, these results show that while both interpreting and shadowing

latencies are sensitive to lexical factors such as word length, contextual factors

appear to affect shadowing and interpreting differentially. The absence of syn-

tactic effects in shadowing reflects contextual processing in interpreting rather

than in shadowing, and partly validates the modeling assumptions with regard

to interpreting and shadowing routes made in Chapter 2. The low-level shadow-

ing route hypothesized in that study allows words to be reproduced via connec-

tions at the phonological level, before they undergo full conceptual integration,

meaning that comprehension in the full sense of the word can occur post-hoc

(that is, after initiating articulatory planning or actual articulation) when shad-
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owing. That semantic context nevertheless affects shadowing and interpreting

equally indicates that semantic facilitation occurs during early processing, likely

through top-down activation from semantic processing feeding into lower-level

lexical or phonological processing. Most importantly, the differences between

the narrative and randomized word list conditions make it clear that when mod-

eling tasks such as shadowing or interpreting at the phrase or narrative level, it is

crucial to account for continuous facilitation.





5 | A note on co-occurrence, transitional probability,

and causal inference1

Abstract

Much has been written about the role of prediction in cognition in general, and

language processing in particular, with some authors even positing that predic-

tion is the central goal of cognition. Attributing a specific goal to cognition is

speculative, but common theories of cognition posit that prediction plays a role

in both perception and action. However, in studies on language processing, mea-

sures of predictability such as surprisal/forward transitional probability are no

more, or even less effective in describing behavioral and neural phenomena than

measures of post- or retrodictability such as backward transitional probability.

We address this paradox by looking at the relationship between these different

information theoretic measures and proposing a mechanistic account of how

they are used in cognition. We posit that backward transitional probabilities sup-

port causal inferences about the occurrence of word sequences. Using Bayes’

Theorem, we demonstrate that predictions (formalized as forward transitional

probabilities) can be used in conjunction with the marginal probabilities of the

current state/word and the upcoming state/word to compute these causal infer-

ences. This conceptualization of causal inference in language processing both

accounts for the role of prediction, and the surprising effectiveness of backwards

transitional probability as a predictor of human behavior and its neural corre-

lates.

1Adapted from Van Paridon, J. & Alday, P. M. (in prep.). A note on co-occurrence, transitional
probability, and causal inference.
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5.0.1 On n-gram frequency and conditional probability

For at least half a century, it has been recognized high frequency2 words are eas-

ier to produce (Jescheniak & Levelt, 1994; Oldfield & Wingfield, 1965) and to

recognize, both in speech (Broadbent, 1967; Cleland et al., 2006; Dahan et al.,

2001) and in print (Cleland et al., 2006; Kuperman, 2013; Rayner, 1998). However,

when modeling language processing (be it speech perception, reading, etc.), we

are often interested in processing beyond the single word level. Processing at

the level of multi-word phrases (word n-grams) is more complex to model than

single-word processing. This is partly due to the (linear) increase in lexical factors

when modeling multi-word phrases, but more importantly, our understanding of

phrase processing is not as well developed as our understanding of single-word

processing.

One easily accessible statistic relevant to phrase processing is word n-gram

frequency, which has indeed been demonstrated to affect both language com-

prehension (Arnon & Snider, 2010) and language production (Janssen & Barber,

2012; Shao et al., 2019). These n-gram effects occur in addition to, and are

distinct from, the effect of single-word frequency (Jacobs et al., 2016; Shao et al.,

2019). It has been suggested that these n-grams are stored as single units (lexical

bundles, see e.g., Jacobs et al., 2016; Tremblay et al., 2011). However, given the

combinatorial explosion of word n-grams that occurs for any value of n greater

than 1, it is clear that storing n-grams (in some sort of expanded mental lexicon)

is infeasible for all but the highest frequency n-grams (Baayen et al., 2013),

making whole n-gram storage inconsistent with the observation that n-gram

frequency effects affect both high and low frequency n-grams (Arnon & Snider,

2010).

2We use the term frequency with regards to word occurrence in this article, which generally de-
notes a rate of occurrence (e.g., number of word occurrences per 1 million words, a scale from
0 to 1 million). Note however that for the purpose of comparing relative rates of occurrence, fre-
quency is completely interchangeable with absolute counts (a scale from 0 to whatever the size
of the corpus) and probabilities (a scale from 0 to 1).
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We therefore reject the notion that apparent n-gram frequency effects are

caused by the storage of whole n-grams and their frequencies, except for phrases

with frequencies high enough to classify them as idioms (or compounds, cf.

Jacobs & Dell, 2014), rather than phrases with purely compositional meaning.

A more feasible mechanism than storing whole n-grams is to make use of

conditional probabilities: The probability of a word occurring, given the occur-

rence of the preceding word. These conditional probabilities can be computed

bidirectionally and are generally called transitional probabilities in the context

of language (but note that these concepts are fundamentally equivalent). In

studies of reading, the forward transitional probability is generally referred

to as predictability, which has been found to have a robust effects on various

reading-related measures (e.g., first fixation duration, Balota et al., 1985; and

inspection probability, Kliegl et al., 2004; for an alternative implementation of

predictability see McDonald and Shillcock, 2003). Transitional probabilities

can also be reframed as surprisal (− logPconditional), an information theoretic

measure that is often used in the field of Natural Language Processing. If we

conceptualize the mental lexicon as a network of nodes and edges, transitional

probabilities could feasibly be encoded in the edge weights, whereas storing

whole n-grams requires an exponential increase in the number of nodes (cf.

Baayen et al., 2013).
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Hard to tell the difference: Equivalences

In the following sections, we transform all relevant quantities to a logarithmic

scale (which is common practice) for reasons of computational convenience and

cognitive plausibility3.

Forward transitional probability (FTP) is a function of bigram and word1 fre-

quency:

logP (w |wprev) = log
P (wprev, w)

P (wprev)
= logP (wprev, w)− logP (wprev) (5.1)

Backward transitional probability (BTP) is a function of bigram and word2 fre-

quency:

logP (wprev|w) = log
P (wprev, w)

P (w)
= logP (wprev, w)− logP (w) (5.2)

When we compile bigram occurrences from a large corpus of transcribed pseu-

doconversational speech (for corpus details see Chapter 6), we find a strong neg-

ative correlation between first- and second-word frequency (see Figure 5.1), as

well as FTP and BTP (see Figure 5.2). Consequently, when first- and second-word

frequency or FTP and BTP are both included in a linear model, the magnitude

and direction of their effects will interact and therefore not be easily interpretable

(if interpretable at all).

3Evidence suggests that word frequencies are experienced (both consciously and subconsciously)
on a logarithmic scale. Contrast angry and enraged, for instance: angry is a fairly frequent word
and enraged is fairly infrequent (in fact, in our dataset, angry is 56 times more frequent than en-
raged), however the effect of this difference in frequency on the difference in e.g., reading times
or lexical decision times will not be proportional to the frequency, but to the logarithm of the
difference in frequency. Similarly, when asked for explicit ratings in the difference in word fre-
quency between different words, people are likely to give answers proportional to the logarithm
of the frequency. This is in line with other power laws in cognition and perception and the rea-
son why common measurement scales such as decibels for sound intensity are logarithmic in
the physical unit, but linear in perception. Note also that the base of the logarithm is generally
irrelevant, because every logarithm is a multiple of every other logarithm: When rescaling pre-
dictors to their standard deviation (common practice for linear regression in cognitive science),
the rescaled predictor will be invariant with respect to the base of the logarithm because the
standard deviation of a log-transformed predictor is proportional to the base of the logarithm.
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Figure 5.1: Joint distribution of first and last word frequencies for bigrams.
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Figure 5.2: Joint distribution of forward and backward transitional probabilities
for bigrams.
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Unfortunately, things only get more confusable (and confusing) from here. Us-

ing Bayes’ Theorem4 we can compute FTP from BTP (and vice versa):

logP (w |wprev) = log
P (wprev|w) ·P (w)

P (wprev)
= logP (wprev|w)+ logP (w)− logP (wprev)

(5.3)

Ergo, information-theoretic surprisal, which is equivalent to negative log FTP

can be computed from word frequencies and BTP5:

− logP (w |wprev) = logP (wprev)− logP (wprev|w)− logP (w) (5.6)

Similar results can be derived for other information theoretic measures.

The surprising effect of surprisal: Multicollinearity in linear models of behav-

ior

The practical consequence of the equivalences outlined above is that when multi-

ple measures of frequency and co-occurrence are used simultaneously as predic-

tors in a linear model, this tends to result in collinearity between linear combina-

tions of predictors. If this multicollinearity is perfect, it is impossible to perform

the linear algebra necessary to fit the regression models. Most statistics packages

will issue a warning regarding this multicollinearity and which predictors it con-

4Bayes’ Theorem as used here is simply the law of conditional probabilities. Its use here is not
specific to Bayesian statistics.

5Similarly, pointwise mutual information (PMI) can be computed from frequencies:

log
P (wprev, w)

P (wprev) ·P (w)
= logP (wprev, w)− logP (w)− logP (wprev) (5.4)

And considering Equations 5.1 and 5.2, that means we can compute PMI from transitional prob-
ability (symmetrically):

log
P (wprev, w)

P (wprev) ·P (w)
= logP (w |wprev)− logP (w) = logP (wprev|w)− logP (wprev) (5.5)

Many information-theoretical measures can be trivially computed from frequencies and transi-
tional probabilities in this fashion.
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cerns. However, even in cases where there is not perfect multicollinearity, the use

of two or more co-occurrence measures can lead to unexpected consequences.

A hypothetical example: To predict reading times of a word of interest, w , we

use w frequency and FTP from wprev to w as predictors (the former as a mea-

sure for the ease of retrieving the current word, the latter as a measure for the

predictability of the upcoming word). Counterintuitively, we find that low FTP is

associated with faster reading. Does this mean that surprising words are some-

how also more predictable? That seems contradictory. However, let’s consider a

simple linear model of reaction time with word frequency and FTP as predictors.

For simplicity, we leave out the error term:

logRT =β0 +β1 · logP (w)+β2 · logP (w |wprev)

Now, using Equation 5.3, we note that:

logP (w |wprev) = logP (wprev|w)+ logP (w)− logP (wprev)

And we substitute this back into the model:

logRT =β0 +β1 · logP (w)+β2 ·
(
logP (wprev|w)+ logP (w)− logP (wprev)

)

From this, it becomes clear that the apparent negative effect for FTP on actually

reflects an effect of BTP minus wprev frequency.

logRT =β0 + (β1 +β2) · logP (w)+β2 ·
(
logP (wprev|w)− logP (wprev)

)

Because the effect of word frequencies is so large and stable, wprev frequency

will tend to dominate BTP and the coefficient β2 will be negative. At the same
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time, because β2 is negative, β1 will be inflated making the effect of w frequency

seem larger than it is.

5.0.2 On making theoretically motivated choices

That certain combinations of frequency and transitional probability measures

are mathematically exchangeable might seem convenient because it allows us

to choose a set of predictors that is convenient for us to work with. This be-

comes problematic however if we try to claim that cognitive processes operate

on the specific selection of quantities that we (arbitrarily) chose to model. Strong

correlations and multicollinearity make it near impossible for naive statistical

methods to distinguish between theoretical accounts that posit the importance

of one probability measure (be it transitional probability, unigram or bigram fre-

quency, etc.) over others (see e.g., Levy, 2008, for a footnote on how FTP/BTP

correlation complicates predictor selection). Fundamentally, the psychological

or neurobiological implementation of processes sensitive to frequency and tran-

sitional probability matters, but we are not able to draw conclusions from these

measures alone. Instead, we need to look to fundamental structural reasons why

one representation would be more compatible with other structures and mecha-

nisms, such as temporal structure, causality, and basic insights regarding neural

connectivity (much the same way that arguments about frequency versus time

domain representation in M/EEG are resolved by proposing fundamental mech-

anisms and not by computing the Fourier transform).

Rethinking predictive coding: Retrodiction as inference

Rather than putting prediction central in cognition, we posit that cognition func-

tions by making probabilistic causal inferences. If we start from the assumption

that at its core, cognition subserves a perception-action loop, a particularly use-

ful cognitive mechanism would be to compute inferences about the state of the
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external world and the things that led to the current state (i.e., causality), as this

is can guide both (imperfect) perception and subsequent action planning. Infer-

ences about the current state of the world and the chain of states leading to the

current state are encoded as backward transitional probabilities. The backward

transitional probability directly answers the question “how probable is it, that

the currently observed state was preceded by a given state?”. This probabilistic

notion of causality is the same type used in Granger causality: it does not imply

causality in the philosophical or physical sense, but it does imply stochastic se-

quential dependence (Granger, 1969). This inference is computed via Bayes’ The-

orem, as above (Equation 5.3). In particular, we use information about marginal

probabilities (of the current state (marginal likelihood) and the next state (prior))

combined with the conditional probability of the next state based on the cur-

rent state (likelihood, here FTP) to compute probabilistic causality. Note that

prediction occurs here as an intermediate step in determining causality: the like-

lihood, i.e., FTP, is a critical piece in computing causality. Note that this account

also explains the relative success of measures such as cloze probability. In this

framework, cloze probability corresponds to the maximum likelihood. In a typi-

cal experiment, where word frequencies have been carefully controlled, we thus

have a manipulation of the likelihood under nearly constant priors. Because the

maximum likelihood under constant priors is proportional to the maximum a

posteriori value (MAP), i.e., the peak of the posterior, the standard cloze manip-

ulation corresponds to a manipulation of the BTP. At the same time, we do not

have perfect control over the prior (word frequency) in experiments, and so the

maximum likelihood does not directly correspond to the MAP.

Bayesian brains with some probabilities?

Although we have presented our account as a direct computation of probabil-

ities, this is not a necessity. Indeed, our account is compatible with sampling
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perspectives with or without direct knowledge of probabilities (cf. Sanborn &

Chater, 2016) and with variational accounts (Friston, 2005; Friston et al., 2012).

It is consistent with the “reversal” of the flow of prediction and error in promi-

nent accounts such as Friston’s (2005) theory of cortical responses. In this theory,

prediction flows upward through the cortical hierarchy, while error propagates

downward. In our account, prediction is used to compute the probability of a

given cause, which corresponds to the goodness of fit, or equivalently error, asso-

ciated with that cause.

5.0.3 Conclusion

The rise of information theory in the brain and behavioral sciences has presented

researchers with a plethora of potential quantitative measures. We posit that the

(arbitrary) choice of measure cannot be driven by purely statistical concerns, be-

cause commonly used measures are linear combinations of each other and thus

statistically indistinguishable. This complex interrelation gives rise to apparent

paradoxes, such as an illusory facilitation in processing surprising words when

controlling for absolute frequency. However, these paradoxes should not be over-

interpreted, as they are spurious, introduced by a particular decomposition. In-

stead, we should focus on computational accounts, such as the one proposed

here. By assuming that inferences about causality are instrumental in both per-

ception and action, two of the core operations of cognition, we arrive at an ac-

count of prediction as a side effect, rather than a “goal” of cognition. This ac-

count allows us to make theoretically motivated choices between information

theoretic measures as predictors for language processing and human behavior

more generally.





6 | subs2vec: Word embeddings from subtitles in 55

languages1

Abstract

This paper introduces a novel collection of word embeddings, numerical rep-

resentations of lexical semantics, in 55 languages, trained on a large corpus of

pseudo-conversational speech transcriptions from television shows and movies.

The embeddings were trained on the OpenSubtitles corpus using the fastText im-

plementation of the skipgram algorithm. Performance comparable with (and in

some cases exceeding) embeddings trained on non-conversational (Wikipedia)

text is reported on standard benchmark evaluation datasets. A novel evaluation

method of particular relevance to psycholinguists is also introduced: prediction

of experimental lexical norms in multiple languages. The models, as well as code

for reproducing the models and all analyses reported in this paper (implemented

as a user-friendly Python package), are freely available at: https://github.com/

jvparidon/subs2vec.

1Adapted from Van Paridon, J. & Thompson, B. (2020). subs2vec: Word embeddings from subti-
tles in 55 languages. Behavior Research Methods. doi:10.3758/s13428-020-01406-3.
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6.1 Introduction

Recent progress in applied machine learning has resulted in new methods for ef-

ficient induction of high-quality numerical representations of lexical semantics

– word vectors – directly from text. These models implicitly learn a vector space

representation of lexical relationships from co-occurrence statistics embodied

in large volumes of naturally occurring text. Vector representations of semantics

are of value to the language sciences in numerous ways: as hypotheses about the

structure of human semantic representations (e.g., Chen et al., 2017); as tools to

help researchers interpret behavioral (e.g., Pereira et al., 2016) and neurophysio-

logical data (e.g., Pereira et al., 2018), and to predict human lexical judgements

of e.g., word similarity, analogy, and concreteness (see Methods for more detail);

and as models that help researchers gain quantitative traction on large-scale lin-

guistic phenomena, such as semantic typology (e.g., Thompson et al., 2018), se-

mantic change (e.g., Hamilton et al., 2016), or linguistic representations of social

biases (e.g., Garg et al., 2018), to give just a few examples.

Progress in these areas is rapid, but nonetheless constrained by the availability

of high quality training corpora and evaluation metrics in multiple languages. To

meet this need for large, multilingual training corpora, word embeddings are of-

ten trained on Wikipedia, sometimes supplemented with other text scraped from

web pages. This has produced steady improvements in embedding quality across

the many languages in which Wikipedia is available (see e.g., Al-Rfou et al., 2013;

Bojanowski et al., 2017; Grave et al., 2018)2; large written corpora meant as repos-

itories of knowledge. This has the benefit that even obscure words and semantic

relationships are often relatively well-attested.

However, from a psychological perspective, these corpora may not represent

the kind of linguistic experience from which people learn a language, raising con-

2More examples can be found in this Python package that collects recent word embeddings:
https://github.com/plasticityai/magnitude
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cerns about psychological validity. The linguistic experience over the lifetime of

the average person typically does not include extensive reading of encyclopedias.

While word embedding algorithms do not necessarily reflect human learning of

lexical semantics in a mechanistic sense, the semantic representations induced

by any effective (human or machine) learning process should ultimately reflect

the latent semantic structure of the corpus it was learned from.

In many research contexts, a more appropriate training corpus would be one

based on conversational data of the sort that represents the majority of daily lin-

guistic experience. However, since transcribing conversational speech is labor-

intensive, corpora of real conversation transcripts are generally too small to yield

high quality word embeddings. Therefore, instead of actual conversation tran-

scripts, we used television and film subtitles since these are available in large

quantities.

That subtitles are a more valid representation of linguistic experience, and thus

a better source of distributional statistics, was first suggested by New et al. (2007)

who used a subtitle corpus to estimate word frequencies. Such subtitle-derived

word frequencies have since been demonstrated to have better predictive validity

for human behavior (e.g., lexical decision times) than word frequencies derived

from various other sources (e.g., the Google Books corpus and others; Brysbaert

et al., 2011; Brysbaert & New, 2009; Keuleers et al., 2010). The SUBTLEX word fre-

quencies use the same OpenSubtitles corpus used in the present study. Mandera

et al. (2017) have previously used this subtitle corpus to train word embeddings

in English and Dutch, arguing that the reasons for using subtitle corpora also ap-

ply to distributional semantics.

While film and television speech could be considered only pseudo-conversational

in that it is often scripted and does not contain many disfluencies and other

markers of natural speech, the semantic content of TV and movie subtitles better

reflects the semantic content of natural speech than the commonly used corpora
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of Wikipedia articles or newspaper articles. Additionally, the current volume

of television viewing makes it likely that for many people, television viewing

represents a plurality or even the majority of their daily linguistic experience.

For example, one study of 107 preschoolers found they watched an average of

almost three hours of television per day, and were exposed to an additional four

hours of background television per day (Nathanson et al., 2014).

Ultimately, regardless of whether subtitle-based embeddings outperform em-

beddings from other corpora on the standard evaluation benchmarks, there is a

deeply principled reason to to pursue conversational embeddings: The semantic

representations learnable from spoken language are of independent interest to re-

searchers studying the relationship between language and semantic knowledge

(see e.g., Lewis et al., 2019; Ostarek et al., 2019).

In this paper we present new, freely available, subtitle-based pretrained word

embeddings in 55 languages. These embeddings were trained using the fast-

Text implementation of the skipgram algorithm on language-specific subsets of

the OpenSubtitles corpus. We trained these embeddings with two objectives in

mind: to make available a set of embeddings trained on transcribed pseudo-

conversational language, rather than written language; and to do so in as many

languages as possible to facilitate research in less-studied languages. In addition

to previously published evaluation datasets, we created and compiled additional

resources in an attempt to improve our ability to evaluate embeddings in lan-

guages beyond English.

6.2 Method

6.2.1 Training corpus

To train the word vectors, we used a corpus based on the complete subtitle

archive of OpenSubtitles.org, a website that provides free access to subtitles
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contributed by its users. The OpenSubtitles corpus has been used in prior work

to derive word vectors for a more limited set of languages (only English and

Dutch; Mandera et al., 2017). Mandera and colleagues compared skipgram and

CBOW algorithms as implemented in word2vec (Mikolov, Chen, et al., 2013) and

concluded that when parameterized correctly, these methods outperform older,

count-based distributional models. In addition to the methodological findings,

Mandera and colleagues also demonstrated the general validity of using the

OpenSubtitles corpus to train word embeddings that are predictive of behavioral

measures. This is consistent with the finding that the word frequencies (another

distributional measure) in the OpenSubtitles corpus correlate better with human

behavioral measures than frequencies from other corpora (Brysbaert et al., 2011;

Brysbaert & New, 2009; Keuleers et al., 2010).

The OpenSubtitles archive contains subtitles in many languages, but not all

languages have equal numbers of subtitles available. This is partly due to differ-

ences in size between communities in which a language is used and partly due

to differences in the prevalence of subtitled media in a community (e.g., English

language shows broadcast on Dutch television would often be subtitled, whereas

the same shows may often be dubbed in French for French television). While

training word vectors on a very small corpus will likely result in impoverished

(inaccurate) word representations, it is difficult to quantify the quality of these

vectors, because standardized metrics of word vector quality exist for only a few

(mostly Western European) languages. We are publishing word vectors for every

language we have a training corpus for, regardless of corpus size, alongside ex-

plicit mention of corpus size. These corpus sizes should not be taken as a direct

measure of quality, but word vectors trained on a small corpus should be treated

with caution.
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6.2.2 Preprocessing

We stripped the subtitle and Wikipedia corpora of non-linguistic content such as

time-stamps and XML tags. Paragraphs of text were broken into separate lines

for each sentence and all punctuation was removed. All languages included in

this study are space-delimited, therefore further parsing or tokenization was not

performed. The complete training and analysis pipeline is unicode-based, hence

non-ASCII characters and diacritical marks were preserved.

After preprocessing, we deduplicated the corpora in order to systematically re-

move over-represented, duplicate material from the corpus. While Mandera et al.

(2017) deduplicated by algorithmically identifying and removing duplicate and

near-duplicate subtitle documents, we performed deduplication by identifying

and removing duplicate lines across the whole corpus for each language as advo-

cated by Mikolov et al. (2017). This method was used for both the subtitle and

Wikipedia corpora. Line-wise deduplication preserves different translations of

the same sentence across different versions of subtitles for the same movie, thus

preserving informative variation in the training corpus while still removing unin-

formative duplicates of highly frequent lines such as “Thank you!”.

Finally, bigrams with a high mutual information criterion were transformed

into single tokens with an underscore (e.g., “New York” becomes “New_York”)

in five iterations using the Word2Phrase tool with a decreasing mutual informa-

tion threshold and a probability of 50% per token on each iteration (Mikolov,

Sutskever, et al., 2013).

6.2.3 fastText skipgram

The word embeddings were trained using fastText, a collection of algorithms

for training word embeddings via context prediction. FastText comes with

two algorithms, CBOW and skipgram (see Bojanowski et al., 2017, for review).
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Table 6.1: fastText skipgram parameter settings used in the present study.

Parameter Value Description

minCount 5 Min. number of word occurrences
minn 3 Min. length of subword ngram
maxn 6 Max. length of subword ngram
t .0001 Sampling threshold
lr .05 Learning rate
lrUpdateRate 100 Rate of updating the learning rate
dim 300 Dimensions
ws 5 Size of the context window
epoch 10 Number of epochs
neg 10 Number of negatives sampled in the loss function

A recent advancement in the CBOW algorithm, using position-dependent

weight vectors, appears to yield better embeddings than currently possible with

skipgram (Mikolov et al., 2017). No working implementation of CBOW with

position-dependent context weight vectors has yet been published. Therefore,

our models were trained using the current publicly available state of the art

by applying the improvements in fastText parametrization described in Grave

et al. (2018) to the default parametrization of fastText skipgram described in

Bojanowski et al. (2017); the resulting parameter settings are reported in Table

6.1.

6.2.4 Evaluation of embeddings

A consensus has emerged around evaluating word vectors on two tasks: predict-

ing human semantic similarity ratings and solving word analogies. In the analo-

gies domain the set of analogies published by Mikolov, Sutskever, et al. (2013) has

emerged as a standard and has been translated into French, Polish, and Hindi by

Grave et al. (2018) and additionally into German, Italian, and Portuguese (Berardi

et al., 2015; Köper et al., 2015; Querido et al., 2017). Semantic similarity ratings

are available for many languages and domains (nouns, verbs, common words,

rare words) but the most useful for evaluating relative success of word vectors
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in different languages are similarity sets that have been translated into multiple

languages: RG65 in English (Rubenstein & Goodenough, 1965), Dutch (Postma &

Vossen, 2014), German (Gurevych, 2005) and French (Joubarne & Inkpen, 2011),

MC30 (a subset of RG65) in English (Miller & Charles, 1991), Dutch (Postma &

Vossen, 2014), and Arabic, Romanian, and Spanish (Hassan & Mihalcea, 2009),

YP130 in English (Yang & Powers, 2006) and German (Meyer & Gurevych, 2012),

SimLex999 in English (Hill et al., 2014) and Portuguese (Querido et al., 2017),

Stanford Rare Words in English (Luong et al., 2013) and Portuguese (Querido

et al., 2017), and WordSim353 in English (Finkelstein et al., 2001), Portuguese

(Querido et al., 2017), and Arabic, Romanian, and Spanish (Hassan & Mihalcea,

2009).

Additional similarity datasets we could only obtain in just a single language are

MEN3000 (Bruni et al., 2012), MTurk287 (Radinsky et al., 2011), MTurk771 (Ha-

lawi et al., 2012), REL122 (Szumlanski et al., 2013), SimVerb3500 (Gerz et al., 2016)

and Verb143 (Baker et al., 2014) in English, Schm280 (a subset of WS353; Schmidt

et al., 2011) and ZG222 in German (Zesch & Gurevych, 2006), FinnSim300 in

Finnish (Venekoski & Vankka, 2017), and HJ398 in Russian (Panchenko et al.,

2016).

Solving analogies

To add to the publicly available translations of the so-called Google analogies

introduced by Mikolov, Chen, et al. (2013), we translated these analogies from

English into Dutch, Greek, and Hebrew. Each translation was performed by a na-

tive speaker of the target language with native-level English proficiency. Certain

categories of syntactic analogies are trivial when translated (e.g., adjective and

adverb are identical wordforms in Dutch). These categories were omitted. In the

semantic analogies, we omitted analogies related to geographic knowledge (e.g.,

country and currency, city and state) because many of the words in these analo-
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gies are not attested in the OpenSubtitles corpus. Solving of the analogies was

performed using the cosine multiplicative method for word vector arithmetic de-

scribed by Levy and Goldberg (2014) (see Eq. 6.1).

argmax
b∗∈V

= cos(b∗,b)cos(b∗, a∗)
cos(b∗, a)+ε

(6.1)

For analogies of the form a is to a∗ as b is to b∗. With small but non-zero ε to pre-

vent division by zero. Equation reproduced here from Levy and Goldberg (2014).

Predicting lexical norms

To support experimental work, psycholinguists have collected large sets of lexical

norms. Brysbaert, Warriner, et al. (2014), for instance, collected lexical norms of

concreteness for 40,000 English words, positioning each on a 5-point scale from

highly abstract to highly concrete. Lexical norms have been collected for English

words in a range of semantic dimensions. Significant attention has been paid to

valence, arousal, dominance (13K words, Warriner et al., 2013), and age of acqui-

sition (30K words, Kuperman et al., 2012). Other norm sets characterize highly

salient dimensions such as tabooness (Janschewitz, 2008). In a similar, but more

structured study, Binder et al. (2016) collected ratings for 62 basic conceptual di-

mensions (e.g., time, harm, surprise, loud, head, smell), effectively constructing

62-dimensional psychological word embeddings that have been shown to corre-

late well with brain activity.

Norms have been collected in other languages too. Although our survey is

undoubtedly incomplete, we collated published norm sets for various other,

less studied languages (see Tables 6.2 and 6.3 for an overview). These data can

be used to evaluate the validity of computationally induced word embeddings

in multiple languages. Prior work has demonstrated that well-attested lexical

norms (i.e., Valence, Arousal, Dominance, and Concreteness in English) can be

predicted with reasonable accuracy using a simple linear transformation of word
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embeddings (Hollis & Westbury, 2016). Using this approach, the lexical norms

can be understood as gold-standard unidimensional embeddings with respect

to human-interpretable semantic dimensions. In general this relationship has

been exploited to use word embeddings to predict lexical norms for words that

no norms are available for (e.g., Bestgen, 2008; Bestgen & Vincze, 2012; Dos San-

tos et al., 2017; Feng et al., 2011; Hollis et al., 2017; Recchia & Louwerse, 2015a,

2015b; Turney & Littman, 2002, 2003; Vankrunkelsven et al., 2015; Westbury et al.,

2013), although this procedure should be used with caution, as it can introduce

artefacts in a predicted lexical norm, especially for norms that are only weakly

predictable from word embeddings (see Mandera et al., 2015, for an extensive

discussion of this issue).

Conversely, the same relationship can be used as an evaluation metric for word

embeddings by seeing how well new vectors predict lexical norms. Patterns of

variation in prediction can also be illuminating: are there semantic norms that

are predicted well by vectors trained on one corpus but not another, for exam-

ple? We examined this question by using L2-penalized regression to predict lex-

ical norms from raw word vectors. Using regularized regression reduces the risk

of overfitting for models like the ones used to predict lexical norms here, with

a large number of predictors (the 300 dimensions of the word vectors) and rel-

atively few observations. Ideally, the regularization parameter is tuned to the

amount of observations for each lexical norm, with stronger regularization for

smaller datasets. However, in the interest of comparability and reproducibility,

we kept the regularization strength constant. We fit independent regressions to

each lexical norm, using five-fold cross validation repeated ten times (with ran-

dom splits each time). We report the mean correlation between the observed

norms and the predictions generated by the regression model, adjusted (penal-

ized) for any words missing from our embeddings. Because of the utility of lexical

norm prediction and extension (predicting lexical norms for unattested words),
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we have included a lexical norm prediction/extension module and usage instruc-

tions in the subs2vec Python package.

6.3 Results

Results presented in this section juxtapose three models generated by the au-

thors using the same parametrization of the fastText skipgram algorithm: A wiki

model trained on a corpus of Wikipedia articles, a subs model trained on the

OpenSubtitles corpus, and a wiki+subs model trained on a combination of both

corpora. A priori, we expected the models trained on the largest corpus in each

language (wiki+subs) to exhibit the best performance. Performance measures are

penalized for missing word vectors. For example: If for only 80% of the problems

in an evaluation task word vectors were actually available in the subs vectors, but

those problems were solved with 100% accuracy, the reported score would be

only 80%, rather than 100%. If the wiki vectors on that same task included 100%

of the word vectors, but only 90% accuracy was attained, the adjusted scores (80%

vs 90%) would reflect that the Wikipedia vectors performed better. (Unpenalized

scores are included in Appendix 6.C, for comparison.)

6.3.1 Semantic dissimilarities

Spearman’s rank correlation between predicted similarity (cosine distance be-

tween word vectors) and human-rated similarity is presented in Figure 6.1. Per-

formance is largely similar, even for datasets like the Stanford Rare Words dataset

where the Wikipedia corpus, by virtue of being an encyclopedia, tends to have

more and better training samples for these rare words.
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Figure 6.1: Rank correlations between human ratings of semantic similarity and
word vector cosine similarity. Correlations are adjusted by penalizing
for missing word vectors.
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6.3.2 Semantic and syntactic analogies

Adjusted proportion of correctly solved analogies is presented in Figure 6.2.

Note that while word vectors trained on a Wikipedia corpus strongly outperform

the subtitle vectors on the semantic analogies sets, this is mostly due to a quirk

of the composition of the semantic analogies: Geographic relationships of the

type country-capital, city-state, or country-currency make up 93% of the com-

monly used semantic analogies. This focus on geographic information suits the

Wikipedia-trained vectors, because being an encyclopedia, capturing this type of

information is the explicit goal of Wikipedia. However, some of the more obscure

analogies in this set (e.g., “Macedonia” is to “denar” as “Armenia” is to “dram”)

seem unlikely to be solvable for the average person (i.e., they do not appear to

reflect common world knowledge). In this sense the lower scores obtained with

the embeddings trained on the subtitle corpus are perhaps a better reflection of

the linguistic experience accumulated by the average person. To better reflect

general semantic knowledge, rather than highly specific geographic knowledge,

we have removed the geographic analogies in the sets of analogies that were

translated into new languages for the present study.

6.3.3 Lexical norms

Figures 6.3, 6.4, 6.5, and 6.6 show the adjusted correlation between observed

lexical norms and the norms predicted by the word embedding models. Predic-

tive accuracy for models trained on Wikipedia and OpenSubtitles is largely simi-

lar, with a notable exception for tabooness and offensiveness, where the models

trained on subtitle data perform markedly better. Offensive and taboo words are

likely not represented in their usual context on Wikipedia, resulting in word vec-

tors that do not represent the way these words are generally experienced. The

subtitle vectors, while not trained on actual conversational data, capture the con-
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Figure 6.2: Proportion of correctly solved analogies in the semantic and syntactic
domain using word vectors. Semantic datasets contained 93% geo-
graphic analogies, no geo datasets are those same datasets, excluding
the geographic analogies. Scores are adjusted by penalizing for miss-
ing word vectors.
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text in which taboo and offensive words are used much better. Models trained on

a combined Wikipedia and OpenSubtitles corpus generally perform marginally

better than either corpus taken separately, as predicted.

Figures 6.7 and 6.8 show the adjusted correlation between the Binder et al.

(2016) conceptual norms and the norms predicted by the word embedding mod-

els. For the majority of the conceptual norms, the predictive accuracy of all three

sets of word embeddings is highly similar, with little to no improvement gained

from adding the OpenSubtitles and Wikipedia corpora together versus training

only on either one of them. The generally high predictive value of the word em-

beddings for these conceptual-semantic dimensions – only for the dimensions

dark and slow is the adjusted correlation for any of the sets of word embeddings

lower than .6 – indicates that the word embeddings are cognitively plausible, in

the sense that they characterize a semantic space that is largely consistent with

human ratings of semantic dimensions. The bottom two dimensions in Figure

6.8 are not conceptual-semantic dimensions gathered from participant ratings,

but word frequency measures. The decimal logarithm (log10) of word frequency

is shown to be more predictable from the data, consistent with the generally ac-

cepted practice of log-transforming word frequencies when using them as pre-

dictors of behavior.

6.3.4 Effects of pseudo-conversational versus non-conversational

training data on embeddings quality

The Wikipedia and OpenSubtitles corpora for the various languages included in

our dataset differ in size (training corpus sizes for each language are reported on-

line at https://github.com/jvparidon/subs2vec, where the word vectors are avail-

able for download). Because the size of the training corpus has been demon-

strated to affect the quality of word embeddings (see Mandera et al., 2017, for

example), it is crucial to correct for corpus size when drawing conclusions about
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Figure 6.3: Correlations between lexical norms and our predictions for those
norms based on cross-validated ridge regression using word vectors.
Correlations are adjusted by penalizing for missing word vectors. 1/4
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Figure 6.4: Correlations between lexical norms and our predictions for those
norms based on cross-validated ridge regression using word vectors.
Correlations are adjusted by penalizing for missing word vectors. 2/4
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Figure 6.5: Correlations between lexical norms and our predictions for those
norms based on cross-validated ridge regression using word vectors.
Correlations are adjusted by penalizing for missing word vectors. 3/4
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Figure 6.6: Correlations between lexical norms and our predictions for those
norms based on cross-validated ridge regression using word vectors.
Correlations are adjusted by penalizing for missing word vectors. 4/4
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Figure 6.7: Correlations between Binder conceptual norms and our predictions
for those norms based on cross-validated ridge regression using word
vectors. Correlations are adjusted by penalizing for missing word vec-
tors. 1/2
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Figure 6.8: Correlations between Binder conceptual norms and our predictions
for those norms based on cross-validated ridge regression using word
vectors. Correlations are adjusted by penalizing for missing word vec-
tors. 2/2
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the relative merits of subtitles versus Wikipedia as training corpora. In Figure

6.9, training corpus word count-adjusted mean scores per language for each task

(semantic similarities, solving analogies, and lexical norm prediction) are shown

for subtitle word embeddings versus Wikipedia word embeddings. Scores were

adjusted by dividing them by the log-transformed word count of their respective

training corpus.

Points above the diagonal line in the figure represent relatively better perfor-

mance for pseudo-conversational data, whereas points below the line represent

better performance for non-conversational data. For the similarities and norms

tasks the majority of points fall above the diagonal. For the analogies about half

the points fall below the diagonal, but these points specifically represent the lan-

guages for which the semantic analogies dataset contain the aforementioned

bias towards obscure geographic knowledge, whereas for all of the languages

(Dutch, Greek, and Hebrew) for which we constructed a more psychologically

plausible semantic dataset (the no geo datasets) the points fall above the diago-

nal. Overall, points fall fairly close to the diagonal, indicating that differences in

performance between the subtitle and Wikipedia embeddings are relatively mi-

nor.

To test the effect of the different training corpora on embedding quality statis-

tically we conducted a Bayesian multilevel Beta regression, with training corpus

size, training corpus type, evaluation task, and the interaction of training cor-

pus type and evaluation task as fixed effects and language and specific evalua-

tion dataset as random intercepts. Priors on all reported coefficients were set to

N (0,1), a mild shrinkage prior. We implemented this model in PyMC3, and sam-

pled from it using the No-U-Turn Sampler (Hoffman & Gelman, 2014; Salvatier

et al., 2016). We ran 4 chains for 2500 warmup samples each, followed by 2500

true posterior samples each (for a total of 10,000 posterior samples). Sampler di-

agnostics were all within acceptable limits (no divergences, r̂ below 1.01 and at
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Figure 6.9: Mean evaluation scores per language and task, after correcting for
training corpus size, for subtitle word embeddings versus Wikipedia
word embeddings. Points above the diagonal line reflect relatively bet-
ter performance for subtitle vectors than Wikipedia vectors.
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least 1000 effective samples for all parameters. Further details on the inferential

model, such as a directed acyclic graph of the model and trace summaries, are

reported in Appendix 6.A.

This regression analysis demonstrates that after correcting for size of training

corpus, subtitle embeddings are virtually indistinguishable from Wikipedia em-

beddings (or combined subtitle and Wikipedia embeddings) in terms of overall

embedding quality (see Figure 6.10 for coefficient estimates). As is to be expected,

the aforementioned advantage of a training corpus containing Wikipedia for solv-

ing geographic analogies is visible in the interaction estimates as well.

6.4 Discussion

Our aim in this study was to make available a collection of word embeddings

trained on pseudo-conversational language in as many languages as possible

using the same algorithm. We introduced vector embeddings in 55 languages,

trained using the fastText implementation of the skipgram algorithm on the

OpenSubtitles dataset. We selected the fastText algorithm because 1) it repre-

sents the state of the art in word embedding algorithms at the time of writing;

and 2) there is an efficient, easy to use, and open-source implementation of

the algorithm. In order to evaluate the performance of these vectors, we also

trained vector embeddings on Wikipedia, and on a combination of Wikipedia

and subtitles, using the same algorithm. We evaluated all of these embed-

dings on standard benchmark tasks. In response to the limitations of these

standard evaluation tasks (Faruqui et al., 2016), we curated a dataset of mul-

tilingual lexical norms and evaluated all vector embeddings on their ability

to accurately predict these ratings. We have made all of these materials, in-

cluding utilities to easily obtain preprocessed versions of the original training

datasets (and derived word, bigram, and trigram frequencies), available online
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Figure 6.10: Posterior estimates from Beta regression model of OpenSubtitles and
Wikipedia embeddings performance on our evaluation tasks. Beta
regression uses a logit link function, therefore coefficients can be in-
terpreted similarly to coefficients in other logit-link regressions (e.g.,
logistic regression). Model uses effects coding for the contrast; for
example, subs vs. mean indicates the performance of subtitle-based
embeddings relative to the mean performance of all three sets of em-
beddings.
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at https://github.com/jvparidon/subs2vec. These materials include the full

binary representations of the embeddings we trained in addition to plain-text

vector representations. The binaries can be used to compute embeddings for

out-of-sample vocabulary, allowing other researchers to explore the embeddings

beyond the analyses reported here.

6.4.1 Performance and evaluation

Contrary to our expectations, conversational embeddings did not generally

outperform alternative embeddings at predicting human lexical judgments (this

contrasts with previously published predictions as well, see e.g., Mandera et al.,

2017, p. 75). Our evaluation of embeddings trained on pseudo-conversational

speech transcriptions (OpenSubtitles) showed that they exhibit performance

rates similar to those exhibited by embeddings trained on a highly structured,

knowledge-rich dataset (Wikipedia). This attests to the structured lexical rela-

tionships implicit in conversational language. However, we also suspect that

more nuanced evaluation methods would reveal more substantive differences

between the representations induced from these corpora. Vectors trained

on pseudo-conversational text consistently outperformed vectors trained on

encyclopedic text in predicting lexical judgments relating to offensiveness or

tabooness, but underperformed the alternative in solving knowledge-based

semantic analogies in the geographic domain (e.g., relationships between

countries and capital cities). Neither of these evaluation tasks were explicitly

chosen by us because they were intended to be diagnostic of one particular kind

of linguistic experience, but it is notable that tabooness and offensiveness of

common insults for instance are common knowledge, whereas the relationship

between small countries and their respective currencies is not something the

average person would know, and therefore a poor test of cognitive plausibility.
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The development of evaluation tasks that are independently predicted to be

solvable after exposure to conversational language merits further study.

Unfortunately, we were not able to compile evaluation metrics for every one of

the 55 languages in which we provide embeddings. We did locate suitable evalu-

ation datasets for 19 languages (and in many of these cases we provide multiple

different evaluation datasets per language). That leaves embeddings in 36 lan-

guages for which we could not locate suitable evaluation datasets. This does not

preclude the use of these embeddings, but we recommend researchers use them

with appropriate caution, specifically by taking into account the size of the cor-

pus that embeddings were trained on (see Appendix 6.B).

Overall, we found that embeddings trained on a combination of Wikipedia and

OpenSubtitles generally outperformed embeddings trained on either of those

corpora individually, even after accounting for corpus size. We hypothesize this is

because the subtitle and Wikipedia embeddings represent separate, but overlap-

ping semantic spaces, which can be jointly characterized by embeddings trained

on a combined corpus. Taking into account the effect of corpus size, we recom-

mend researchers use the embeddings trained on the largest and most diverse

corpus available (subtitles plus Wikipedia, in the present study), unless they have

hypotheses specific to embeddings trained on a conversational corpus.

6.4.2 Extending language coverage through complementary

multilingual corpora

Our primary aim for the present study was to produce embeddings in multiple

languages trained on a dataset that is more naturalistic than the widely avail-

able alternatives in multiple languages (embeddings trained on Wikipedia and

other text scraped from the internet). However, it also contributes to the availabil-

ity and quality of word vectors for underrepresented and less studied languages.

Specifically, in some of these languages, the corresponding corpus of Wikipedia
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articles is small or of low quality, while the OpenSubtitles corpus is substantially

larger (e.g., Bulgarian, 4x larger; Bosnian, 7x larger; Greek, 5x larger; Croatian, 6x

larger; Romanian, 7x larger; Serbian, 5x larger; Turkish, 4x larger). As a result, our

study helps to increase the number of languages for which high quality embed-

dings are available, regardless of whether the pseudo-conversational nature of

the training corpus is germane to the specific purpose for which the embeddings

may be used.

6.4.3 Translation vs. original language

An important caveat in using the OpenSubtitles corpus in the present context is

that many of the subtitles are translations, meaning the subtitles are not straight

transcriptions, but a translation from speech in the original language a movie or

television series was released in to text in another language. Moreover, while it

is highly likely that translators try to produce subtitles that are correct and coher-

ent in the target language, we have no reliable way of ascertaining the proficiency

of the (often anonymous) translator in either source or language. In the present

context it was not feasible to examine which parts of the subtitle corpus are trans-

lations and which represent straight transcriptions of audio in the original lan-

guage and therefore we could not test whether training on translated subtitles

has an adverse effect on word embedding quality. This issue is not unsolvable

in principle, because the original language of the movies and television series

for which each set of subtitles was written can be established using secondary,

publicly available datasets. Future work investigating distributional differences

between transcribed and translated dialogue seems warranted.

A related ambiguity is whether subtitles should be viewed as representing ex-

perience of written or spoken language. On the one hand, subtitles are read

by many people. However, as transcriptions of speech, subtitles convey a more

direct representation of spoken language experience than is conveyed by other
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written corpora such as Wikipedia. This second interpretation was an important

part of our motivation, but the interpretation of subtitles as written language is

also important.

6.4.4 Advances in fastText algorithms

The most recent implementation of the fastText algorithm includes CBOW with

position-dependent weighting of the context vectors, which seems to represent

another step forward in terms of the validity of the word embeddings it generates

(Mikolov et al., 2017). As of the time of writing, this implementation has not been

released to the public (although a rudimentary description of the algorithm has

been published, alongside a number of word vector datasets in various languages

created using the new version of the algorithm). Because all the code used in the

present study is publicly available, if and when an implementation of the new

algorithm is released to the public, the present study and dataset can easily be

reproduced using this improved method for computing word vectors.

Algorithmic developments in the field of distributional semantics move

quickly. Nonetheless, in this paper we have produced (for a large set of lan-

guages, using state of the art methods) word embeddings trained on a large

corpus of language that reflects real-world linguistic experience. In addition to

insights about language and cognition that can be gleaned from these embed-

dings directly, they are a valuable resource for improving statistical models of

other psychological and linguistic phenomena.

6.4.5 Open practices statement

All of the datasets and code presented in this paper, as well as the datasets and

code necessary to reproduce the analyses, are freely available online at https://

github.com/jvparidon/subs2vec.
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The subs2vec Python package also provides tools can be used to compute

semantic dissimilarities, solve analogies, and predict lexical norms for novel

datasets.

Appendix 6.A Inferential model details
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Appendix 6.B Training corpus details

Table 6.6: Descriptive statistics for training corpora.

language corpus word count mean words per line

Afrikaans OpenSubtitles 324K 6.61
Wikipedia 17M 17.01
Wikipedia + OpenSubtitles 17M 16.53

Albanian OpenSubtitles 12M 6.65
Wikipedia 18M 16.90
Wikipedia + OpenSubtitles 30M 10.47

Arabic OpenSubtitles 188M 5.64
Wikipedia 120M 18.32
Wikipedia + OpenSubtitles 308M 7.72

Armenian OpenSubtitles 24K 6.06
Wikipedia 38M 21.66
Wikipedia + OpenSubtitles 39M 21.62

Basque OpenSubtitles 3M 4.97
Wikipedia 20M 11.39
Wikipedia + OpenSubtitles 24M 9.60

Bengali OpenSubtitles 2M 5.39
Wikipedia 19M 27.64
Wikipedia + OpenSubtitles 21M 19.16

Bosnian OpenSubtitles 92M 6.34
Wikipedia 13M 13.15
Wikipedia + OpenSubtitles 105M 6.78

Breton OpenSubtitles 111K 5.97
Wikipedia 8M 15.72
Wikipedia + OpenSubtitles 8M 15.36

Bulgarian OpenSubtitles 247M 6.87
Wikipedia 53M 15.82
Wikipedia + OpenSubtitles 300M 7.64

Catalan OpenSubtitles 3M 6.95
Wikipedia 176M 20.75
Wikipedia + OpenSubtitles 179M 20.06

Croatian OpenSubtitles 242M 6.44
Wikipedia 43M 12.25
Wikipedia + OpenSubtitles 285M 6.94
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Czech OpenSubtitles 249M 6.43
Wikipedia 100M 13.44
Wikipedia + OpenSubtitles 349M 7.57

Danish OpenSubtitles 87M 6.96
Wikipedia 56M 14.72
Wikipedia + OpenSubtitles 143M 8.77

Dutch OpenSubtitles 265M 7.39
Wikipedia 249M 14.40
Wikipedia + OpenSubtitles 514M 9.67

English OpenSubtitles 751M 8.22
Wikipedia 2B 17.57
Wikipedia + OpenSubtitles 3B 13.90

Esperanto OpenSubtitles 382K 5.44
Wikipedia 38M 14.64
Wikipedia + OpenSubtitles 38M 14.39

Estonian OpenSubtitles 60M 5.99
Wikipedia 29M 10.38
Wikipedia + OpenSubtitles 90M 6.94

Farsi OpenSubtitles 45M 6.39
Wikipedia 87M 17.36
Wikipedia + OpenSubtitles 132M 10.92

Finnish OpenSubtitles 117M 5.10
Wikipedia 74M 10.80
Wikipedia + OpenSubtitles 191M 6.40

French OpenSubtitles 336M 8.31
Wikipedia 724M 19.54
Wikipedia + OpenSubtitles 1B 13.69

Galician OpenSubtitles 2M 6.58
Wikipedia 40M 18.56
Wikipedia + OpenSubtitles 42M 17.30

Georgian OpenSubtitles 1M 5.21
Wikipedia 15M 11.04
Wikipedia + OpenSubtitles 16M 10.26

German OpenSubtitles 139M 7.01
Wikipedia 976M 14.06
Wikipedia + OpenSubtitles 1B 12.49

Greek OpenSubtitles 271M 6.90
Wikipedia 58M 18.26
Wikipedia + OpenSubtitles 329M 7.76

Hebrew OpenSubtitles 170M 6.22
Wikipedia 133M 13.92
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Wikipedia + OpenSubtitles 303M 8.22

Hindi OpenSubtitles 660K 6.77
Wikipedia 31M 33.89
Wikipedia + OpenSubtitles 32M 31.28

Hungarian OpenSubtitles 228M 6.04
Wikipedia 121M 12.37
Wikipedia + OpenSubtitles 349M 7.34

Icelandic OpenSubtitles 7M 6.08
Wikipedia 7M 13.17
Wikipedia + OpenSubtitles 15M 8.26

Indonesian OpenSubtitles 65M 6.18
Wikipedia 69M 14.09
Wikipedia + OpenSubtitles 134M 8.70

Italian OpenSubtitles 278M 7.43
Wikipedia 476M 18.87
Wikipedia + OpenSubtitles 754M 12.05

Kazakh OpenSubtitles 13K 3.90
Wikipedia 18M 10.39
Wikipedia + OpenSubtitles 18M 10.38

Korean OpenSubtitles 7M 4.30
Wikipedia 63M 11.97
Wikipedia + OpenSubtitles 70M 10.19

Latvian OpenSubtitles 2M 5.10
Wikipedia 14M 10.91
Wikipedia + OpenSubtitles 16M 9.46

Lithuanian OpenSubtitles 6M 4.89
Wikipedia 23M 11.10
Wikipedia + OpenSubtitles 29M 8.74

Macedonian OpenSubtitles 20M 6.33
Wikipedia 27M 16.82
Wikipedia + OpenSubtitles 47M 9.82

Malay OpenSubtitles 12M 5.88
Wikipedia 29M 14.50
Wikipedia + OpenSubtitles 41M 10.11

Malayalam OpenSubtitles 2M 4.08
Wikipedia 10M 9.18
Wikipedia + OpenSubtitles 12M 7.92

Norwegian OpenSubtitles 46M 6.69
Wikipedia 91M 14.53
Wikipedia + OpenSubtitles 136M 10.44
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Polish OpenSubtitles 250M 6.15
Wikipedia 232M 12.63
Wikipedia + OpenSubtitles 483M 8.17

Portuguese OpenSubtitles 258M 7.40
Wikipedia 238M 18.60
Wikipedia + OpenSubtitles 496M 10.41

Romanian OpenSubtitles 435M 7.70
Wikipedia 65M 16.16
Wikipedia + OpenSubtitles 500M 8.27

Russian OpenSubtitles 152M 6.43
Wikipedia 391M 13.96
Wikipedia + OpenSubtitles 543M 10.51

Serbian OpenSubtitles 344M 6.57
Wikipedia 70M 12.97
Wikipedia + OpenSubtitles 413M 7.16

Sinhala OpenSubtitles 3M 5.34
Wikipedia 6M 14.52
Wikipedia + OpenSubtitles 9M 8.89

Slovak OpenSubtitles 47M 6.23
Wikipedia 29M 12.85
Wikipedia + OpenSubtitles 76M 7.73

Slovenian OpenSubtitles 107M 6.15
Wikipedia 32M 13.45
Wikipedia + OpenSubtitles 138M 7.02

Spanish OpenSubtitles 514M 7.46
Wikipedia 586M 20.36
Wikipedia + OpenSubtitles 1B 11.25

Swedish OpenSubtitles 101M 6.87
Wikipedia 143M 11.93
Wikipedia + OpenSubtitles 245M 9.15

Tagalog OpenSubtitles 88K 6.02
Wikipedia 7M 17.16
Wikipedia + OpenSubtitles 7M 16.74

Tamil OpenSubtitles 123K 4.36
Wikipedia 17M 10.09
Wikipedia + OpenSubtitles 17M 10.00

Telugu OpenSubtitles 103K 4.50
Wikipedia 15M 10.34
Wikipedia + OpenSubtitles 15M 10.25

Turkish OpenSubtitles 240M 5.56
Wikipedia 55M 12.52
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Wikipedia + OpenSubtitles 295M 6.20

Ukrainian OpenSubtitles 5M 5.51
Wikipedia 163M 13.34
Wikipedia + OpenSubtitles 168M 12.80

Urdu OpenSubtitles 196K 7.02
Wikipedia 16M 28.88
Wikipedia + OpenSubtitles 16M 27.83

Vietnamese OpenSubtitles 27M 8.23
Wikipedia 115M 20.51
Wikipedia + OpenSubtitles 143M 15.94
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Appendix 6.C Unpenalized evaluation scores

Figure 6.12: Unpenalized rank correlations between human ratings of semantic
similarity and word vector cosine similarity.
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Figure 6.13: Unpenalized proportion of correctly solved analogies in the seman-
tic and syntactic domain using word vectors. Semantic datasets con-
tained 93% geographic analogies, no geo datasets are those same
datasets, excluding the geographic analogies.
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Figure 6.14: Unpenalized correlations between lexical norms and our predictions
for those norms based on cross-validated ridge regression using
word vectors. 1/4
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Figure 6.15: Unpenalized correlations between lexical norms and our predictions
for those norms based on cross-validated ridge regression using
word vectors. 2/4
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Figure 6.16: Unpenalized correlations between lexical norms and our predictions
for those norms based on cross-validated ridge regression using
word vectors. 3/4
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Figure 6.17: Unpenalized correlations between lexical norms and our predictions
for those norms based on cross-validated ridge regression using
word vectors. 4/4
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Figure 6.18: Unpenalized correlations between Binder conceptual norms and our
predictions for those norms based on cross-validated ridge regres-
sion using word vectors. 1/2
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Figure 6.19: Unpenalized correlations between Binder conceptual norms and our
predictions for those norms based on cross-validated ridge regres-
sion using word vectors. 2/2



7 | Summary and discussion

As noted in Chapter 1, in one of the very first experimental studies of concurrent

speech comprehension and production, Broadbent (1952) posited that in order

to perform concurrent comprehension and production (as in simultaneous in-

terpreting) comprehension and production processes need to be independent

enough not to interfere with each other, yet a large body of psycholinguistic liter-

ature tells us comprehension and production rely on shared resources and mech-

anisms. In this dissertation, I set out to provide an account of temporal coordina-

tion of comprehension and production processes in simultaneous interpreting

and speech shadowing that integrates prior literature on speech production and

comprehension with data gathered in behavioral studies of simultaneous inter-

preting. This account was to be computationally implemented so as to provide

falsifiable quantitative predictions, giving it explanatory power beyond the exist-

ing box-and-arrow process models of comprehension and production in simul-

taneous interpreting.

7.1 Chapter summaries

In Chapter 2 I described the proposed model of interpreting and shadowing: a

process model based on the process hierarchy and process durations from Inde-

frey and Levelt’s (2004) meta-analysis of word production and comprehension

studies. This model was computationally implemented as a series of simplified

linear ballistic accumulators (Brown & Heathcote, 2008), essentially turning each
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box in the box-and-arrow model from Indefrey and Levelt (2004) into a fixed-

duration stage that a word has to pass through before it can continue to the next

stage. I conducted a behavioral experiment using untrained participants, ask-

ing them to shadow and interpret simple prerecorded narratives at speech rates

ranging from 100 words per minute to 200 words per minute, and compared the

observed error rates to those predicted by the computational model. Only when

I introduced modifications to the model in the form of an additional, low-level

shadowing route and a switch cost for switching access to lexical selection be-

tween comprehension and production, could I obtain a good fit between the

computational model’s predictions to the observed error rates.

Both of these modifications are compatible with prior findings in the literature:

Evidence for a low-level route for shadowing can be found in Marslen-Wilson’s

(1973, 1975, 1985) seminal work on close speech shadowing, although he also em-

phasized that even at very low input-output latencies, participants can still recall

some content and sometimes make simple repairs to errors in the input speech

signal, implying that at least some of the signal reaches processing stages beyond

the low-level shadowing route I propose in the computational model. Switch

costs are well-documented in response selection paradigms in general (see e.g.,

Monsell, 2015, for review) and in language selection in bilinguals in particular

(see e.g., Meuter & Allport, 1999). However, what is novel in this model is the no-

tion that switch cost does not apply to selecting L1 or L2, but rather switching

access to the mental lexicon between comprehension and production processes,

regardless of language.

A major simplification in the computational model proposed in Chapter 2 is

the absence of contextual facilitation, whether syntactic or semantic. It may

seem obvious that in simultaneous interpreting, as in other language tasks, com-

prehension and production of words that are predictable from context could be

facilitated, but since the locus and particularly the magnitude of such facilita-
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tory effects cannot be easily derived from the literature, I elected to omit them

in the interest of parsimony and see if I could nevertheless obtain a good fit to

the observed data. However, while I was able to fit the model’s predictions to the

observed error rates, this was not direct evidence that my simplifications were

warranted.

In Chapter 3 I therefore subjected my simplification assumptions to a stronger

test, by removing the narrative context from the stimuli I used in Chapter 2 and

presenting participants with randomized word lists to shadow and interpret. If

syntactic and semantic context truly had a negligible influence in Chapter 2, the

computational model’s predictions should have fit behavioral data from word

lists just as well as they fit behavioral data from narratives. Instead, I found that

the computational model’s predictions substantially deviated from the observed

error rates unless I made unrealistic assumptions (such as a switch cost in excess

of 500 milliseconds for simultaneous interpreting) indicating that the model, as

presented in Chapters 2 and 3, does not properly account for facilitation from

narrative context. Rather than immediately revisiting the computational model

and implementing an ad hoc contextual facilitation “fix”, I opted to first examine

the loci and magnitude of the unaccounted for contextual facilitation effects. In

future work, this information will allow for the making of principled adaptations

to the computational model, accounting for contextual facilitation and improv-

ing the fit to error rates in the studies reported in this dissertation.

In Chapter 4, examining contextual facilitation, I contrasted semantic, syntac-

tic, and strictly wordform (n-gram based) predictors with the aim of describing

at which processing stages contextual facilitation occurs during interpreting and

shadowing, and how this affects the difficulty of each task. The resulting linear

regression model posed several methodological challenges, both in terms of its

technical complexity and in the risk of overfitting caused by the large number of

predictors. To mitigate the overfitting problem, I used a relatively novel Bayesian
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method where a sparse set of predictors is selected implicitly by setting sparsity-

inducing priors on the regression coefficients. The use of this sparse Bayesian re-

gression technique to model data from a psycholinguistic experiment is a novel

contribution, but one that has wide-ranging applicability in the field as it strives

for increased ecological validity and more naturalistic paradigms, relaxing cer-

tain aspects of experimental control and growing the number of potential predic-

tors in each study.

Ultimately, Chapter 4 demonstrated that contextual facilitation does play a

clear role in both simultaneous interpreting and in speech shadowing, albeit to

a lesser extent in the latter. Fully exploring the consequences of these findings

was not possible in the time alotted for this dissertation project, but future iter-

ations of the computational model presented in Chapter 2 should integrate the

findings from Chapter 4 in order to more faithfully model the cognitive processes

that are essential to interpreting and shadowing, and potentially improve the fit

of the model’s predictions and the data collected in Chapter 3.

Chapters 5 and 6 did not deal with simultaneous interpreting and speech shad-

owing directly, instead they describe more general work done in service of the

study reported in Chapter 4. Consequently, Chapters 5 and 6 are more method-

ological in nature and more broadly relevant for psycholinguistics in general.

Chapter 5 describes mathematical equivalences between linear combinations of

lexical frequency and transitional probability measures, as well as correlations

between some of these measures in a large corpus of transcribed speech. I set

out to document these issues after finding that they caused multicollinearity

in the statistical model reported in Chapter 4, hampering interpretation of the

regression coefficients. Any study reporting a linear model with lexical frequency

and transitional probability or surprisal measures is susceptible to the problems

outlined in Chapter 5, yet psycholinguists publishing these studies generally
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make no mention of them when interpreting their results, suggesting they are

largely unaware of the extent of the problem.

Finally, in Chapter 6 I present a novel set of word embeddings, a class of dis-

tributional semantics models, trained on a corpus of transcribed (pseudocon-

versational) speech. These models are commonly trained on written text from

a particular register (e.g., a newspaper corpus or the entirety of Wikipedia, as

in Grave et al., 2018) which makes their validity for modeling speech data ques-

tionable. I systematically evaluated the difference between word embeddings

trained on Wikipedia and transcribed speech, ultimately finding smaller differ-

ences than expected, but highlighting the benefits of using diverse training cor-

pora when training distributional semantics models. Chapter 6 furthermore in-

troduces novel evaluation metrics for word embeddings, facilitating systematic

benchmarking of future efforts in distributional semantics for psycholinguistics.

All code and data can be downloaded and reproduced conveniently using a pub-

licly available Python software package, making this a significant novel resource

for psycholinguists interested in quantifying semantics, especially in speech (e.g.,

when statistically modeling semantic priming data). The datasets compiled in

Chapter 6 were essential to quantifying the degree of semantic facilitation in the

model reported in Chapter 4.

7.2 Speaking and listening in simultaneous interpret-

ing and speech shadowing

The first half of this dissertation represents an attempt to explain the aspect of

simultaneous interpreting that I find most striking: It seems like it should not be

possible to speak and listen at the same time, and yet professional interpreters

seem to do it quite fluently. Formulating and producing speech requires the

use of lemma and conceptual-semantic networks, and yet at the time that these
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networks should be activated in simultaneous interpreting, more speech stim-

uli need to be processed on the comprehension side, which presumably also re-

quires the use of lemma and conceptual-semantic networks. In this dissertation

I have shown that error rates from a simultaneous interpreting and speech shad-

owing experiment are broadly consistent with a model where access to lemma

selection and retrieval is switched between comprehension and production pro-

cesses, incurring a small switch cost on every switch. This gives the appearance

of concurrent speaking and listening at slow speech rates, since there is some

buffering on the sensory and articulation ends, and the natural pauses in speech

can absorb some of the switch costs. At high speech rates, however, the switch

costs can no longer be absorbed and lapses in comprehension and production

become apparent, giving the impression of alternating speaking and listening.

In reality, speaking and listening are neither fully concurrent nor fully alternat-

ing: low-level processes that do not draw on networks shared between speaking

and listening can occur concurrently, while higher-level processes that draw on

networks shared between speaking and listening must alternate. This model ob-

viates the need for separate input and output lexicons, as posited in Christoffels

and De Groot (2004), which as discussed in Chapter 1 is not very plausible, since

it is unclear how novel words would enter into the production lexicon from the

comprehension lexicon.

The model also has implications for speaking and listening in conversation:

If while listening, we are unable to fully plan and formulate what we are going

to say when it is our turn to speak, this suggests that rapid turn-taking in con-

versation entails less than optimal listening (as well as less than optimal speech

planning, potentially) and perhaps no real, attentive listening at all. If we are to

respond quickly to an utterance once our interlocutor stops speaking, one strat-

egy is to stop attending to their speech once we have understood their message,

yet well before they stop speaking, so we can plan our utterance while our in-
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terlocutor’s speech goes unattended. There is some experimental evidence that

people indeed plan their speech in this manner, while relying on other cues to

determine when their interlocutor is done speaking and they can initiate their

own turn (Barthel et al., 2017).

Concurrency and switch cost aside, speech comprehension and production in

simultaneous interpreting are not so different from normal speaking and listen-

ing, as evidenced by my findings in Chapter 4. I find semantic priming, cognate

priming, word length and frequency effects, and effects from syntactic process-

ing load, all broadly consistent with effects observed in normal speaking and lis-

tening. Speech shadowing does not exhibit the semantic priming and syntac-

tic processing effects, only the word-level facilitation effects, consistent with the

idea that shadowing is conducted primarily along a lower-level route than simul-

taneous interpreting and is in that sense much less like normal speaking or lis-

tening. Marslen-Wilson (1985) reported that shadowers with a lower shadowing

latency were less able to detect semantic mismatches in attended speech, con-

vergent evidence that close shadowing largely bypasses conceptual-semantic un-

derstanding in favor of a lower-level route from comprehension to production.

It should be noted however that we cannot easily compare the effect sizes ob-

tained in Chapter 4 to those observed in the psycholinguistic literature, because

most studies examining these effects have been more neatly controlled experi-

ments using either single-word production paradigms or various comprehension

paradigms that do not include a production component. However, that I was able

to observe these effects in continuous speech (and under the high cognitive load

associated with shadowing and interpreting) suggests that they are fairly robust

to variations in experimental paradigms and task demands.
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7.3 Studying speech comprehension and speech pro-

duction concurrently

In general, in the behavioral domain speech comprehension and speech produc-

tion have traditionally been studied separately, and in the case of speech produc-

tion, predominantly at the level of single words. Both in terms of experimental

design and statistical methods it is easier to conduct experiments at the single

word level, and because there are only lexical factors to consider, it is often con-

ceptually clearer. This approach has yielded a good picture of the time course

of both single word comprehension and production (see e.g., Indefrey & Levelt,

2004; Indefrey, 2011). However, the time course of speech comprehension and

production processes for larger linguistic structures is less settled.

While there are theories of speech production that make predictions at a larger

scope than the lexical (or noun-phrase) scope, the difficulty of reliably eliciting

planning and production of sentences or narratives (as opposed to simple sen-

tence reading, for instance) makes it difficult to test these theories. The twin tasks

of speech shadowing and simultaneous interpreting present us with a paradigm

to elicit concurrent speech comprehension and production processes. We can

derive an online measure of difficulty of the task in the form of speech production

error rates (requiring translation, in the case of interpreting) and input-output

speech latencies. Online measures of speech comprehension and production

difficulty are generally based on psychophysiological or neural correlates (eye

movements, EEG, MEG, and sometimes pupillometry) so having a direct behav-

ioral measure presents an unusual opportunity for investigating concurrence in

speech comprehension and production.
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7.4 Comparing the model to its predecessors

In terms of complexity, the model proposed in Chapter 2 falls somewhere be-

tween the process models from the 1970s (e.g., Gerver, 1975; Moser, 1978), which

were simply too richly detailed to ever implement computationally or to other-

wise glean quantitative predictions from, and a few more recent process models

which aim to explain aspects of interpreting such as attentional control (Dong &

Li, 2019) and prediction (Amos & Pickering, 2020) and which are less overdetailed,

but so general in their claims as to be virtually unfalsifiable.

In spirit, the model proposed in this dissertation most closely resembles a pro-

cess model as presented by Christoffels and De Groot (2004), except implement-

ing it computationally allows for testing agains behavioral data. More specifically,

in this dissertation the implemented process model was tested against interpret-

ing and shadowing error rates, but naturally the speech latencies that were (quite

laboriously) annotated later on the same data for the purpose of conducting the

study reported Chapter 4 present an additional opportunity to test the model. I

have yet to adapt the computational implementation of the model to test its pre-

dictions against these speech latencies, but this represents an interesting avenue

for future exploration. A reimplementation of the process model could also be

designed to account for the contextual facilitation effects identified in Chapter

4, although how to model contextual facilitation in a manner both parsimonious

and psycholinguistically plausible is not immediately obvious (i.e., as discussed

previously, simply adding a “contextual facilitation” module would not be satis-

factory).
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7.5 Wrongness and abstraction in computational

and descriptive models

George Box’s aphorism that "all models are wrong, but some are useful" often

comes up in discussions about computational modeling, especially when a

model fails to capture an edge case, or modeling results are found not to gener-

alize as one had hoped (as in Chapter 3 of this dissertation, for instance). While

a model being potentially useful even when demonstrably wrong to some extent

is a comforting thought, it is worth noting that Box generally expressed more

open-ended versions of this sentiment in his writings, e.g., "Remember that all

models are wrong; the practical question is how wrong do they have to be to not

be useful." (Box & Draper, 1987, p. 74). This version makes it clearer that utility in

the face of wrongness is not a given and "wrong" here does not refer to deliberate

wrongheadedness, but to the necessity for models to contain abstractions, and

as a result not to capture every aspect of the phenomenon they are meant to

represent; "A map is not the territory it represents, but, if correct, it has a similar

structure to the territory, which accounts for its usefulness." (Korzybski, 1933, p.

58).

There is a tendency in cognitive modeling attempt to increase a model’s ex-

planatory power by making it more comprehensive, capturing more edge cases,

more nuances, more behaviors. This approach is seductive, but it seldomly works

well, and ultimately models where the "map has become the territory" are invari-

ably too complex to actually explain the phenomena they model in a manner that

improves understanding (see e.g., recent advances in language modeling with

GPT-3, a model that exhibits astounding performance on various language tasks,

but contains 175 billion parameters).

Finally, Box’s aphorism is recited almost as a mantra by some computational

modelers, but is often forgotten in the context of descriptive models, for which
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the implicit assumption is often that whatever is not explicitly modeled does not

materially affect the phenomenon that is being modeled. When modeling a be-

havior as complex as language, descriptive models tend to oversimplify where

computational models might overcomplicate. In Chapter 4 of this dissertation

I hope to have gotten closer to the territory than descriptive models of language

comprehension and production generally do, by modeling a wide array of predic-

tors and their effects on interpreting and shadowing latencies.

7.6 Conclusion

Ultimately, while the model proposed in Chapter 2 does not generalize well to in-

terpreting in the absence of narrative context, the key assumption introduced in

the model—that speech comprehension and production processes can be largely

independent but at a minimum need to alternate access to selection processes

in the mental lexicon so as not to catastrophically interfere—is consistent with

both patterns of behavior and error in interpreting narratives and the broader

psycholinguistic literature. It is clear from Chapter 3 that accounting for facilita-

tion from narrative context is crucial in order to achieve further progress in the

computational modeling of complex language tasks such as simultaneous inter-

preting and speech shadowing; Chapter 4 demonstrates several types of contex-

tual facilitation as they occur in interpreting and shadowing and their relative

magnitude, potential starting values for amending the computational model in-

troduced in Chapter 2.

A more general contribution of this dissertation (and perhaps more widely ap-

plicable) is the first demonstration, in Chapter 4, of how to apply Bayesian sparse

regression techniques to a complex, naturalistic language task that poses a prob-

lem for conventional linear regression techniques. While a number of technical

and computational problems will require further work, the potential of this tech-
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nique to address foundational methodological issues in psycholinguistics is clear.

Combined with the semantic resources introduced in Chapter 6 and the mathe-

matical considerations presented in Chapter 5, the latter half of this dissertation

offers a roadmap for improved descriptive modeling of complex language tasks.
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Nederlandse samenvatting

Op grote congressen en videobeelden van EU- en VN-vergaderingen zie je ze

wel eens: simultaantolken. In plaats van eerst te luisteren en dan te vertalen

(zoals andere tolken doen), vertalen ze simultaan, terwijl ze luisteren. Dit is geen

gemakkelijke taak, in de eerste plaats omdat het niet makkelijk is iemand an-

ders te verstaan terwijl je zelf spreekt, maar ook omdat het vereist dat je je aan-

dacht verdeelt over twee taken (spreken en luisteren) in twee verschillende talen.

Omdat simultaantolken zo moeilijk is, is het een interessante taak voor taalpsy-

chologen. Als we kunnen achterhalen welke spreek- en luisterprocessen tijdens

het tolken bemoeilijkt worden omdat ze tegelijk uitgevoerd moeten worden—en

welke processen niet lijden onder het tolken—dan kan dat nieuwe inzichten ver-

schaffen in hoe deze spreek- en luisterprocessen onder normale omstandighe-

den werken.

In Hoofdstuk 2 en 3 stel ik, met het oog op het beter begrijpen van deze spreek-

en luisterprocessen, een tolkmodel voor dat gebaseerd is op taalpsychologische

kennis uit eerder onderzoek. Het model voorspelt wanneer een tolk (gemiddeld

genomen) fouten maakt, op basis van het spreektempo van de tekst die getolkt

moet worden. Een centrale aanname in het model is dat het te complex is om

woorden te begrijpen in de ene taal en tegelijkertijd de juiste woorden te be-

denken in de andere taal en dat de hersenen deze processen daarom afwisselen.

Dit model test ik vervolgens op opnames van proefpersonen die een eenvoudige

tolktaak uitvoeren. In Hoofdstuk 2 tolken de proefpersonen eenvoudige, korte

verhaaltjes uit kinderboeken. Na afstellen van de parameters van het model blijkt

dat het de gemiddelde foutpercentages van proefpersonen correct kan naboot-

sen, mits we aannemen dat het een kort moment (ongeveer 50 milliseconden)

duurt om te schakelen tussen het begrijpen van woorden in de ene taal en het

bedenken van de juiste woorden in de andere taal. In Hoofdstuk 3 onderzoek ik

of dit ook geldt voor het tolken van lijstjes van losse woorden, wat proefpersonen

als moeilijker ervaren omdat ze geen gebruik kunnen maken van semantische

en syntactische context om woorden beter te begrijpen of vertalen. Het model

blijkt voor zulke lijstjes niet te werken, wat verrassend is omdat het model alleen
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naar spreeksnelheid kijkt en de afwezigheid van context dus geen invloed zou

moeten hebben. Anders bezien is het misschien juist verrassend dat het model

goed lijkt te werken voor de verhaaltjes uit Hoofdstuk 2, ondanks dat het geen

rekening houdt met de semantische en syntactische context die de verhaaltjes

verschaffen.

Hoe goed en snel een woord getolkt kan worden is dus deels afhankelijk van

de context, maar welke factoren dragen daar precies aan bij? In hoeverre is

het huidige woord voorspelbaar op basis van het voorgaande woord? Is het

semantisch en syntactisch inpasbaar in de context? Het model uit Hoofdstuk

2 en 3 geeft op deze vragen helaas geen antwoord. In Hoofdstuk 4 maak ik

daarom gebruik van recent ontwikkelde statistische methodes die het mogelijk

maken om de invloed van complexe factoren als semantiek en syntax op de

spreeksnelheid van proefpersonen die tolken te modelleren. De resultaten van

deze statistische analyse laten zien dat veel van de factoren die van invloed zijn

op normaal spreken en luisteren ook invloed hebben op tolken, maar dat de

mate waarin zij van invloed zijn afhangt van de specifieke taak die proefperso-

nen uitvoeren. Het maken van een computermodel zoals in Hoofdstuk 2 en 3,

dat de spreek- en luisterprocessen tijdens tolken simuleert, kan dus eigenlijk

niet zonder ook complexe semantische en syntactische factoren te modelleren.

Het kerndeel van de dissertatie komt hiermee ten einde, maar in de resterende

twee hoofdstukken presenteer ik werk dat fungeerde als bouwstenen voor het

onderzoek in de eerdere hoofdstukken.

Om bijvoorbeeld, zoals ik doe in Hoofdstuk 4, het effect van context op de

spreeksnelheid van tolken inzichtelijk te maken, moet ik die context eerst nu-

meriek kunnen weergeven. In Hoofdstuk 6 gebruik ik een techniek uit het Ma-

chine Learning-veld om numerieke voorstellingen van de semantiek van losse

woorden te verkrijgen. Het basisprincipe is eenvoudig: Een zelflerend (neural

network) model leest ondertitels en probeert op basis van ieder woord de om-

liggende woorden te voorspellen. Als het model fout gokt dan leert het en stelt

het zijn interne numerieke voorstellingen voor de voorspelde woorden bij. Door

dit proces vele malen te herhalen voor een enorm archief van ondertitels leert

het steeds beter te voorspellen welke woorden in een bepaalde context kunnen

voorkomen. De interne numerieke voorstellingen die het model leert kunnen we

na afloop van het leerproces uit het model halen en zelf gebruiken om te voor-

spellen welke woorden semantische gelijkenis vertonen.

We kunnen ook met een nóg eenvoudiger methode de voorspelbaarheid van

een woord op basis van de voorgaande context vaststellen: Door simpelweg
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te tellen hoe vaak een woord op die voorgaande context volgt in een enorm

corpus van voorbeeldzinnen (we kunnen hiervoor wederom het archief van

ondertitels gebruiken). Met deze methode kunnen we de kans dat een woord

volgt op de voorgaande context berekenen, maar gebruikelijker in taalkundig

onderzoek is om het logaritme van de kans te gebruiken. Deze index wordt

ook wel de surprisal (verrassing) genoemd. Deze waarde kan ook andersom

berekend worden: Hoe verrassend is de voorgaande context, wanneer we het

huidige woord als uitgangspunt nemen? Beide waarden worden regelmatig

gebruikt in taalkundig onderzoek, maar in Hoofdstuk 5 beschrijf ik hoe dit een

probleem kan vormen voor het interpreteren van onderzoeksresultaten. Er

bestaan wiskundige verbanden tussen de verschillende manieren om verrass-

ingswaarden te berekenen voor losse woorden en stukken tekst. Door deze

verbanden kan een statistisch model dat al deze factoren probeert te vergelijken

paradoxaal niet goed onderscheid maken tussen de verschillende factoren, een

verschijnsel dat we multicollineariteit noemen. Er zijn verschillende methoden

om met multicollineariteit om te gaan, maar aan deze methoden kleven ook

weer nadelen. Ik concludeer dat het vaak beter is om zorgvuldig te overwegen

of er a priori factoren geselecteerd kunnen worden die op theoretische gronden

relevant zijn en andere factoren buiten beschouwing te laten.
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