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a b s t r a c t 

Optimization of pressure swing adsorption (PSA) remains a challenging task, as these are periodic dy- 

namic systems governed by nonlinear PDE systems. This study develops an optimization strategy that 

incorporates reduced PSA models and also samples information from a high-fidelity ’truth’ model. The 

reduced model is based on equilibrium theory and can be applied to optimize a large variety of cyclic ad- 

sorption processes. The optimization is performed via a trust-region filter (TRF) method. The TRF method 

uses reduced models to minimize the information required from the high-fidelity adsorption model dur- 

ing mathematical optimization. Moreover, this method guarantees convergence to the optimum of the 

high-fidelity model. This approach is applied to optimize a 4 column pressure swing adsorption process, 

modeled by partial differential algebraic equations, for the separation of a CO 2 /CH 4 mixture. The results 

show that the reduced model significantly reduces the computational time of the method’s trust-region 

step compared to previous studies. 

© 2021 Published by Elsevier Ltd. 
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. Introduction 

Pressure swing adsorption (PSA) is a process commonly applied 

o many gas separation tasks, such as oxygen separation from air 

iang et al. (2003) , flue gas separation Xu et al. (2019) , and bio-

as upgrading Ferella et al. (2017) . Because of the technology’s 

road application in industry many studies exist on the simula- 

ion and optimization of PSA processes to maximize operation ef- 

ciencies Ding et al. (2018) and adsorbent materials. For example 

owling et al. (2012a) used a superstructure approach for simul- 

aneous optimization of design and cycle operation, later extended 

y Wang et al. (2015) . An overview of the most recent advances 

n PSA optimization can be found in Biegler et al. (2004) De- 

pite the corresponding improvement in mathematical modeling 

f the process, optimization of the PSA process is still a challeng- 

ng task. Typical mathematical models for PSA processes describe 

he sharp adsorption fronts, cyclic behavior, and internal recycle 

treams by systems of stiff partial differential equations (PDEs). 
∗ Corresponding author. 

E-mail address: uebbing@mpi-magdeburg-mpg.de (J. Uebbing). 
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patial discretization of these models results in systems of dif- 

erential algebraic equations (DAE), which are time consuming or 

umerically difficult to solve. The problem formulations are often 

ll-conditioned, and internal recycle streams and the cyclic behav- 

or result in dense constraint Jacobians of the nonlinear programs 

NLPs). 

A number of approaches to PSA optimization have been demon- 

trated over the past three decades. One key factor of the opti- 

ization of PSA processes is the determination of the cyclic steady 

tate (CSS), i.e., when the initial and final states of the system 

oincide. Many publications utilize successive substitution (i.e. Pi- 

ard iteration) Ding et al. (2018) . This method iterates by inte- 

rating over the model equations, starting with the final state of 

he previous iteration as the new initial value. This process is re- 

eated until the difference between the initial and final states is 

maller than a predefined threshold. This method has the advan- 

age of being numerically stable, but it exhibits slow convergence 

ehavior. Another approach to finding a solution to a PSA model 

ith respect to the CSS condition, is the addition of algebraic con- 

traints. This approach has been applied to single bed PSA units 

y Jiang et al. (2003) and was later extended to multiple bed PSA 

https://doi.org/10.1016/j.compchemeng.2021.107340
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2021.107340&domain=pdf
mailto:uebbing@mpi-magdeburg-mpg.de
https://doi.org/10.1016/j.compchemeng.2021.107340


J. Uebbing, L.T. Biegler, L. Rihko-Struckmann et al. Computers and Chemical Engineering 151 (2021) 107340 

u  

p

c

a

c

t

a

d

b

m

T

N

b

p

a

T

w

A

o

r

B

o

u

n

i

s

I

c

c

a

t

P

c

t

B

e

t

r

e

A

p

e

d

r

p

t

T

a

T

i

P

s  

t

t

a

i

r

s

p

c

T

r

A

i

m

s

c

p

n

a

S

t

a

t

a

Notation 

a s cm 

2 cross sectional area of the adsorption 

bed 

a w 

cm 

2 cross sectional area of the wall 

B f - fraction of product gas feed back for re- 

pressurization 

C mol/cm 

3 concentration of gas in the column 

CSS tol - error tolerance of the cyclic steady state 

calculation 

c g cal/mol K heat capacity of the gas phase 

c s cal/mol K heat capacity of the adsorbent 

c w 

cal/mol K heat capacity of the wall 

h w 

cal/cm 

2 s K heat transfer coefficient from adsorbent 

to wall 

K i 0 1 /bar multiside Langmuir adsorption parame- 

ter of component i 

k i 1 /s adsorption mass transfer coefficient of 

component i 

L cm bed length 

p bar pressure 

p AS bar adsorption pressure 

p DE bar desorption pressure 

p end bar pressure control 

q i mol/g amount adsorbed of component i 

q ∗
i 

mol/g amount adsorbed at adsorption equilib- 

rium of component i 

q max,i mol/g multiside Langmuir adsorption parame- 

ter of component i 

R cm 

3 bar/molK gas constant 

R i , R o cm inner and outer bed diameter 

T K temperature 

T amb K ambient temperature 

T w 

K wall temperature 

t f s total cycle time 

t s time 

U w 

cal/cm 

2 s K heat transfer coefficient from wall to 

environment 

u cm/s interstitial velocity 

x PSA differential states of the discretized PSA 

system 

y i - gas phase mole fraction of component i 

z cm axial coordinate in the adsorption bed 

α 1 /s rate of pressure drop or rise 

αi - multiside Langmuir adsorption parame- 

ter of component i 

�H i cal /mol heat of adsorption of component i 

ε - bed void fraction 

ρs g/cm 

3 density of the adsorbent 

ρw 

g/cm 

3 density of the wall 

nits Jiang et al. (2004) . More recently, Tsay et al. (2018) also ap-

lied this approach to periodic moving bed chromatography. The 

onvergence of this method is much faster, and it converges glob- 

lly Biegler et al. (2004) . Simultaneously solving the fully dis- 

retized PDEs and the CSS condition has been successfully applied 

o set-ups with two columns. To give a few examples: Smith IV 

nd Westerberg (1991) proposed an MINLP approach with a fully 

iscretized PDE to optimize the operation cycle and the num- 

er of beds. The SQP method was successfully applied to opti- 

ize fully discretized PSA models by Biegler et al. (2004) and 

ao et al. (2019) . Vetukuri et al. (2010) proposed a quasi- 

ewton method, which approximates the dense constraint Jaco- 

ian of the NLP, and could show a significant reduction in com- 
2 
utational costs. Dowling et al. (2012b) formulated the PSA as 

n optimal control problem to determine optimal cycle times. 

his approach was further improved by Wang et al. (2015) , 

ho used flux limiter schemes for reducing computational costs. 

garwal et al. (2009) developed a reduced model via proper 

rthogonal decomposition (POD), which was used by a trust- 

egion filter (TRF) method for PSA optimization Agarwal and 

iegler (2013) . The TRF method uses a reduced model to assist the 

ptimization of the PDE constrained problem by reducing the eval- 

ations of the PDE model. In Agarwal and Biegler (2013) it was 

oted that the computational effort of the TRF method can still be 

mproved by choosing a tailored reduced model in the trust-region 

tep. 

Another challenge arises with the complexity of the PSA cycle. 

n the literature many optimization examples for 2-column PSA cy- 

les can be found, as well as simulation studies for more complex 

ycles. To the authors knowledge, only Jiang et al. (2004) optimized 

n adsorption cycle with more than two adsorption columns. We 

herefore discuss the optimization of a more complex 4-column 

SA cycle with a 9-step operating cycle, including 4 internal re- 

ycle streams, as opposed to the two column set-ups common in 

he literature. 

Here we apply the TRF method as proposed in Agarwal and 

iegler (2013) . We implement a different reduced model based on 

quilibrium theory Knaebel and Hill (1985) for the application of 

he TRF method to minimize the computational time of the trust- 

egion step. Despite the increased complexity of the PSA cycle, the 

quilibrium model has fewer variables than the POD approach in 

garwal and Biegler (2013) . 

The PSA cycle is depicted in Fig. 1 , including adsorption (AS), 

ressure equalization with decreasing pressure (DEQ), pressure 

qualization with increasing pressure (PEQ), depressurization (DP), 

esorption (DE) and pressurization (PR). The cycle includes four 

ecycle material streams: two pressure equalization streams, one 

urge stream, and one stream to repressurize the column prior to 

he adsorption step. The pressure is constant during AS and DE. 

he product gas methane is produced at high pressure during the 

dsorption step and is partially returned to the column during PR. 

he off-gas is produced at low pressure during DP II and DE. Gas 

s exchanged during the pressure equalization steps, from DEQ I to 

EQ I and from DEQ II to PEQ II. Furthermore, gas from the depres- 

urization DP I is used to purge the column at DE and a fraction of

he AS product gas repressurizes the column at PR. We determine 

he final product gas concentration at cyclic steady state (CSS). As 

n example, we model the separation of methane and carbon diox- 

de, as commonly applied for biogas upgrading. The goal is the pu- 

ification of the light component methane from the mixture via ad- 

orbents such as carbon molecular sieves with a focus on product 

urity, recovery and process efficiency. As a second example, we 

onsider the separation of a ternary mixture, including hydrogen. 

his application may arise with the production of synthetic natu- 

al gas from hydrogen and carbon dioxide Uebbing et al. (2020) . 

s hydrogen is almost inert on the adsorbent, hydrogen remains 

n the product methane. Only carbon dioxide is separated from the 

ixture as an impurity. 

We note that these applications are examples to model the 

eparation process. The method and the proposed reduced model 

an be applied to any other adsorption separation task by ap- 

lying different model parameters and boundary conditions. The 

ext section presents the detailed PDAE model for the PSA system 

long with the reduced model based on equilibrium assumptions. 

ection 3 introduces the trust-region filter algorithm and its adap- 

ation to high-fidelity optimization with reduced models. Results 

re presented in Section 4 for two optimization case studies for 

he PSA system. Section 5 concludes the paper with a summary 

nd directions for future work. 
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Fig. 1. PSA column configuration. The pressure swing adsorption unit consists of four adsorption columns, as numbered in the first row, which periodically perform different steps 

of the adsorption cycle over time t ∈ [0 , t f ] . The nine steps are adsorption (AS), pressure equalization with decreasing pressure (DEQ I & II), pressure equalization with increasing 

pressure (PEQ I & II), depressurization (DP I & II), desorption (DE) and pressurization (PR). The direction of the flow through the column is indicated by the arrows. 
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. Modeling 

In this section we introduce the high-fidelity and reduced PSA 

odels: In Section 2.1 we describe the PSA model, which we aim 

o optimize in this work. The high-fidelity PSA model is described 

y a set of partial differential algebraic equations (PDAEs) with 

hanging boundary conditions, according to the cycle configura- 

ion in Fig. 1 . Optimization of this PDAE model is computationally 

nd numerically quite challenging. Much simpler representations 

or PSA models have been derived in the past. One example is the 

quilibrium model by Knaebel et al. Knaebel and Hill (1985) , which 

e introduce in Section 2.2 . The equilibrium theory allows for re- 

ormulation of the PDAEs to algebraic equations, which are much 

asier to evaluate and optimize. 

.1. PSA modeling via PDAEs 

The PSA is described by a system of partial differential and al- 

ebraic equations assuming ideal gas behavior, no axial pressure 

radient, no accumulation in the shockwaves, non-isothermal ad- 

orption behavior, adsorption according to the linear driving force 

odel (LDF), as used by Park et al. (20 0 0) , and Langmuir-type

quilibrium isotherms Canevesi et al. (2018) . The mass balances 

o not include diffusion terms to avoid smearing of the steep ad- 

orption fronts. We denote u the interstitial velocity, p pressure, T 

emperature, T w 

wall temperature, q i the amount adsorbed of com- 

onent i ∈ { CH 4 , CO 2 , H 2 } , and q ∗
i 

the amount adsorbed at adsorp-

ion equilibrium. Furthermore, let us define f s = 

1 −ε
ε ρs , where ε

enotes the bed void fraction and ρs the density of the adsorbent. 

 detailed list of the notation of the PDAE model can be found at 

he end of this work. The partial mass balances of the components 

 ∈ { CH 4 , CO 2 } are given by 

∂y i 
∂t 

+ u 

∂y i 
∂z 

+ f s 
RT 

p 

( 

∂q i 
∂t 

− y i 
∑ 

j 

∂q j 

∂t 

) 

= 0 . (1) 
u

3 
he sum of mole fractions ∑ 

 ∈{ CH 4 , CO 2 , H 2 } 
y i = 1 (2) 

etermines the partial pressure of hydrogen. The energy balances 

3) and (4) model the heat transfer between the adsorbent and the 

as, as well as the gas and the column wall. 

c g C + c s f s ) 
∂T 

∂t 
+ c g uC 

∂T 

∂z 
−

∑ 

i 

(−�H i ) f s 
∂q i 
∂t 

+ 

2 h w 

εR i 

(T − T w 

) = 0 

(3) 

 w 

ρw 

a w 

∂T w 

∂t 
− 2 π(h w 

R i (T − T w 

) − U w 

R o (T w 

− T amb )) = 0 (4) 

he adsorption equilibrium for component i ∈ { CH 4 , CO 2 } is given 

s a multi-component extension of the multi-side Langmuir 

sotherm. 

 

∗
i = q max,i K i py i 

( 

1 −
∑ 

j∈{ CH 4 , CO 2 } 

q ∗
j 

q max, j 

) αi 

(5) 

 i = K i 0 exp (−�H i /RT ) (6) 

∂q i 
∂t 

= k i (q ∗i − q i ) (7) 

arameters for the adsorption of methane and carbon dioxide of 

he adsorbent CMS-KP 407, are taken from Canevesi et al. (2018) . 

ydrogen is assumed to behave as a non-adsorbing gas compo- 

ent. The pressure in the column changes according to 

∂ p 

∂t 
= α(p end − p) . (8) 

ere α ≥ 0 determines the speed at which the pressure of the col- 

mn changes. A large value for α denotes fast pressurization or 
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Table 1 

PSA boundary conditions and pressure change The boundary condi- 

tions determine the velocity, concentration, and temperature of gas flow- 

ing into the column. If u = 0 holds at the end of a column, Neumann 

boundary conditions of the form 

∂y 
∂t 

= 0 hold for the mole fractions y i 
and gas temperature T . The pressure in the column changes towards the 

value of p end according to (8) . 

PSA step p change p end boundary conditions t s 

AS constant p AS u (z = L ) = u f eed , 

y i (z = L ) = y i, f eed , 1/4 

T (z = L ) = T f eed 

DEQ I decreasing p PEQI u (z = L ) = 0 1/20 

DP I decreasing p DPI u (z = L ) = 0 3/20 

DEQ II decreasing p PEQII u (z = L ) = 0 1/20 

DP II decreasing p DE u (z = 0) = 0 1/20 

DE constant p DE u (z = 0) = u purge , 

y i (z = 0) = y i,purge , 3/20 

T (z = 0) = T purge 

PEQ II increasing p PEQII u (z = L ) = 0 , 

u (z = 0) = u PEQII , 1/20 

y i (z = 0) = y i,PEQII , 

T (z = 0) = T PEQII 

PEQ I increasing p PEQI u (z = L ) = 0 , 

u (z = 0) = u PEQI , 1/20 

y i (z = 0) = y i,PEQI , 

T (z = 0) = T PEQI 

PR increasing p AS u (z = L ) = u BF , 

y i (z = L ) = y i,PR , 1/5 

T (z = L ) = T PR 

s

p

|
w  

m

S

2

r

t

o

i

a

i

W

K

F

p  

s

q

d

a

C  

t

(  

a

ε

epressurization, while a small α denotes slow pressurization or 

epressurization. The total mass balance 

∂C 

∂t 
+ 

∂uC 

∂z 
+ f s 

∑ 

i 

∂q i 
∂t 

= 0 

n combination with the ideal gas law C = p/ (RT ) gives 

∂ p 

∂t 
+ p 

∂u 

∂z 
− p 

T 

(
∂T 

∂t 
+ u 

∂T 

∂z 

)
− RT f s 

∑ 

i 

∂q i 
∂t 

= 0 . 

e use (3), (7) , and (8) to eliminate the derivatives in time and

et (
p end 

p 
− 1 

)
+ 

∂u 

∂z 
− 1 

T 
T rhs − Q = 0 (9) 

o determine the interstitial velocity u, where 

 rhs = 

1 

c g C + c s f s 

(
c s f s 

∂T 

∂z 
+ 

2 h w 

εR i 

(T w 

− T ) 

)
Q = 

∑ 

i 

(
1 

T 

(−�H i ) 

c g C + c s f s 
+ 

f s 

C 

)
k i (q ∗i − q i ) . 

The PDAE system is discretized in space via a finite volume 

ethod to get a system of differential algebraic equations (DAEs). 

e consider the cyclic operation with 4 columns and 9 steps 

ebbing et al. (2019) , shown in Fig. 1 , including pressure equal- 

zation steps between the columns. 

During the different steps of the adsorption cycle different 

oundary conditions apply. The boundary conditions show the 

onnections of the four internal recycle streams. The gas concen- 

rations during the desorption step y i,purge are calculated from the 

verage product gas of DP I. The interstitial velocity u purge is cal- 

ulated such that the complete product of the step DP I is fed 

ack to the column during the DE step. In the same way, the feed

oncentrations and velocities of the pressurizing PEQ I and PEQ II 

teps are connected to the respective depressurizing steps. Here, 

he parameter α is free to avoid over-determination of the system 

ariables. For the other PSA cycle steps the value of α is fixed; 

o α = 0 . 01 during the DP I step, to α = 0 . 5 for the DP II step

nd α = 0 . 1 otherwise. This results in the rate of pressure change

dapting to the gas flow into the column. The composition of the 

as fed to the column during the pressurization step PR is equal to 

he product gas of the adsorption step AS, i.e. a part of the prod-

ct gas is used to re-pressurize the column. For the pressure pa- 

ameters p AS > p PEQI > p DPI > p PEQII > p DE holds. The intermediate 

ressures are determined as linear functions of the ad- and des- 

rption pressure. The time of the respective PSA step is determined 

s t s · t f , where t f denotes the total cycle time. Table 1 shows the

oundary conditions of the DAE system at the time of the PSA step. 

he pressure changes according to p end (t) which is constant during 

ach step of the PSA cycle. The value assigned to p end in each PSA 

tep is shown in Table 1 . Fig. 2 shows an example of the pressure

n the adsorption column over time. 

Semi-discretization of the PDAE model results in a DAE system 

ith differential states x PSA = [ y � 
CO 2 

, y � 
CH 4 

, q � 
CO 2 

, q � 
CH 4 

, T � , T � W 

, p] � de-

ermined by the discretized PDEs (1), (7), (3), (4) , and (8) . The al-

ebraic states y PSA = [ y � 
H 2 

, q ∗
CO 2 

� , q ∗
CH 4 

� , u � , αPEQI , αPEQII ] 
� are given

y (2), (5), (9) , and the additional boundary conditions in Table 1 .

ote here that x PSA and y PSA do not correspond to the variables x 

nd y of the TRF method introduced in Section 3 . 

The system is difficult to solve directly via full discretization to 

n NLP. The sharp adsorption fronts result in stiff differential equa- 

ions and internal recycle streams during the pressure equalization 

teps complicate the solving process further. Therefore, we calcu- 

ate the CSS via the stable method of successive substitution. The 
4 
uccessive substitution terminates when the CSS error is below a 

redefined threshold 

| x PSA 
0 − x PSA (t f ) || ≤ CSS tol 

here x PSA 
0 

denotes the states of the PSA model at t = 0 . Imple-

entation of a direct method to reach the CSS, as mentioned in 

ection 1 , can further improve the proposed method. 

.2. PSA modeling via equilibrium theory 

The PSA model introduced by Knaebel and Hill (1985) is able to 

epresent the dynamic behavior within the PSA columns without 

he need for partial differential equations. Additional assumptions 

n the PSA, namely isothermal behavior, amount of gas adsorbed 

s always at adsorption equilibrium, linear adsorption isotherms 

nd a binary gas mixture, facilitate the PDAE model. The result 

s a model, for which it is possible to find analytical solutions. 

e give a brief overview over the model equations and refer to 

naebel and Hill (1985) for the detailed derivation. 

The different steps of the PSA operation cycle shown in 

ig. 1 can be classified into two types: PSA steps with changing 

ressure (DEQ I, DP I, DEQ II, DP II, PEQ II, PEQ I, PR) and PSA

teps with constant pressure (AS, DE). Let 

 A = k A C A = k A 
p A 
RT 

enote the linear adsorption isotherm, where q A is the adsorbed 

mount of component A . Furthermore, let A and B (i.e., CO 2 and 

H 4 ) be the heavy and light components, respectively, z ∈ [0 , 1] is

he dimensionless position in the adsorption bed, and βA = 1 / (1 + 

1 − ε) k A /ε) , β = 

βA 
βB 

≤ 1 . We also consider the partial mass bal-

nce in terms of partial pressure of A and the total mass balance (
∂ p A 
∂t 

+ 

∂up A 
∂z 

)
+ RT (1 − ε) 

∂q A 
∂t 

= 0 

ε

(
∂ p 

∂t 
+ 

∂up 

∂z 

)
+ RT (1 − ε) 

∂q 

∂t 
= 0 . 
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Fig. 2. Pressure change in an adsorption column The figure shows the pressure in column 1 over time for an exemplary simulation of the PDAE model. The pressure is constant 

during adsorption (AS) and desorption (DE) step and changes in the intermediate steps. 
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sing the assumption of linear adsorption, we reformulate these 

ass balances to get 

∂y A 
∂t 

+ 

βA u 

1 + (β − 1) y A 

∂y A 
∂z 

= 

(β − 1)(1 − y A ) y A 
1 + (β + 1) y A 

1 

p 

d p 

d t 
(10) 

1 

βB 

∂ p 

∂t 
+ (β − 1) 

∂upy A 
∂z 

+ 

∂up 

∂z 
= 0 . (11) 

pplying the method of characteristics to Eq. (10) gives 

d z 

d t 
= 

βA u 

1 + (β − 1) y A 
(12) 

d y A 
d p 

= 

(β − 1)(1 − y A ) y A 
(1 + (β − 1) y A ) p 

. (13) 

he model includes the position of shockwaves and waves within 

he adsorption column. Shockwaves appear, if a gas mixture moves 

owards a gas mixture of higher concentration of light component. 

f a gas mixture moves towards a gas mixture of lower concentra- 

ion of light component, a wave occurs. A shockwave occurs during 

he steps AS, DEQ I, DP I, and DEQ II, a wave appears during the

teps DE, PEQ II, PEQ I, and PR. In these cases, the reference points,

o determine the state of the column, are chosen from the same 

ide of the shockwave or wave. Under the assumption that there is 

o accumulation at the shockwave, 

 s = 

d z 

d t 

∣∣∣∣
s 

= βA 

u T y T − u L y L 
y T − y L 

(14) 

olds for the interstitial velocity of the shockwave u s . The subscript 

 denotes a value directly in front (lead) of the shockwave and T 

enotes a value directly after (trail). 

If the pressure in the adsorption bed changes, u = 0 holds at 

ne of the ends of the adsorption bed. We assume without loss of 

enerality that u = 0 at z = 0 . Then integration of (11) gives 

 = 

−z 

βB (1 + (β − 1) y A ) p 

d p 

d t 
(15) 

nd from (13) and (15) we get 

y A 
y A, 0 

= 

(
1 − y A 

1 − y A, 0 

)β(
p 

p 0 

)β−1 

z 

z 0 
= 

(
y A 

y A, 0 

) β
(1 −β) (1 − y A, 0 

1 − y A 

) 1 
(1 −β) 

(
1 + (β − 1) y A 

1 + (β − 1) y A, 0 

)
, 

here the subscript 0 denotes a reference value on the same char- 

cteristic. From (14) follows 

 s = 

−βz 

(1 + (β − 1) y T )(1 + (β − 1) y L ) p 

d p 

d t 
. 
B

5 
y considering u and u s as functions over pressure, we get a sys- 

em of algebraic equations to describe the PSA steps with changing 

ressure. 

If the pressure is constant, i.e., ∂ p 
∂t 

= 0 , integration of Eq. (11) re-

ults in 

u 

u 0 

= 

1 + (β − 1) y 0 
1 + (β − 1) y 

. 

rom (13) follows that the concentration along the characteristic is 

onstant 

 A = y A, 0 

nd according to (14) 

 s = βA 

u L y L − u T y T 
y L − y T 

olds for the shockwave. 

To determine the initial conditions of the PSA column in the 

ext PSA step, we consider linear approximations of the previous 

tate, still preserving the position of shockwaves. If a shockwave is 

n the column during a change in PSA steps, the states above and 

elow the shockwave are approximated separately. The CSS condi- 

ion is added to the model as an algebraic constraint. 

Fig. 3 shows an example of the behavior of the characteristics 

or the different boundary conditions of the PSA cycle. 

In Fig. 3 A the characteristics represent the AS step (and the 

hockwave), with feed gas entering the column from the top and 

roduct gas leaving the bottom at constant pressure. Fig. 3 B and C 

how different depressurization steps (and a shockwave) with gas 

eaving one end of the column. In Fig. 3 B the top of the column

s closed, gas leaves at the bottom, representing the steps DEQ I, 

P I, and DEQ II. Fig. 3 C shows the reversed case of step DP II,

uring which gas is leaving the column at the top. The DE step 

s represented by Fig. 3 D (along with a wave). During the DE step 

urge gas enters the column from the bottom and off-gas leaves 

he column at the top at constant pressure. Repressurization of the 

olumn is done via gas entering the column from the bottom, as 

s shown in Fig. 3 E. Fig. 3 E corresponds to the steps PEQ I, PEQ II,

nd PR. 

. Trust-region filter method 

In this section we introduce the TRF method for optimization of 

onlinear optimization problems as developed by Eason (2018) . We 

rst present the main idea, before highlighting the additional parts 

f the algorithm. Finally, we summarize the assumptions needed 

or convergence of the TRF method. For a detailed proof of the con- 

ergence of the TRF method we refer to ( Eason, 2018; Eason and 

iegler, 2019 ). 
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Fig. 3. Characteristics and shockwaves for different boundary conditions of the column. The plots show the dimensionless position of characteristics in the column as dashed 

lines. The position of waves and shockwaves is depicted as solid lines. 
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.1. Main idea of the TRF method 

The TRF method finds the optimal solution of a nonlinear prob- 

em of the form 

min 

x =[ v ,w,y ] ∈ R n 
f (x ) 

s.t. g(x ) ≤ 0 

h (x ) = 0 

d(w ) = y 

(16) 

We denote constraints g and h as glass box constraints, as they 

re easy to evaluate and differentiate. The constraints d, on the 

ther hand, are very time-consuming and numerically difficult to 

valuate. The TRF method reduces the number of calls to d(w ) : 

 

n w −→ R 

n y during the optimization, by replacing d with a local 

urrogate model. A local surrogate model r k (w ) : R 

n w −→ R 

n y , i.e.,

 reduced model (RM) at the current iterate, replaces d(w ) , which 

e call the truth model (TM), in each iteration of the algorithm. 

nstead of (16) a series of subproblems 

min 

x =[ v ,w,y ] ∈ R n 
f (x ) 

s.t. g(x ) ≤ 0 

h (x ) = 0 

r k (w ) = y 
|| x − x k || ≤ �k 

(17) 

s solved within a respective trust-region �k . 

efinition 3.1. κ-fully linear: The reduced model r k (w ) is κ-fully 

inear on B (w k , �k ) if for constants κ f , κg > 0 

|| r k (w ) − d(w ) || ≤ κ f �
2 
k |∇r k (w ) − ∇d(w ) || ≤ κg �k 

(18) 

olds ∀ w ∈ B (w k , �k ) . 

For the convergence of the TRF method, r k (w ) must be κ-fully 

inear in the trust-region at each iteration. This condition assures 

hat for �k −→ 0 the difference between the two models and their 

ensitivities within the trust-region converge to zero. If the model 
6 
ensitivities ∇d(w k ) are known, we get a κ-fully linear reduced 

odel r k (w ) from any sufficiently smooth model ˆ r k (w ) : R 

n w −→
 

n y by applying the the first order correction, defined by 

 k (w ) = F OC( ̂ r k (w )) := 

ˆ r k (w ) + d(w k ) − ˆ r k (w k ) 

+(∇d(w k ) − ∇ ̂

 r k (w k )) 
T (w − w k ) . (19) 

.2. Additional strategies and pseudocode of the TRF algorithm 

The TRF method includes additional strategies to handle infeasi- 

le subproblems and to determine conditions for termination. The 

lgorithm’s pseudocode is shown in Algorithm 1 . 

To make sure that a feasible point to (17) close to the trust- 

egion center exists, where the approximation of the κ-fully linear 

M is more reliable, the TRF method solves a series of compatible 

roblems (17) . 

efinition 3.2. Compatibility: The trust-region step from (17) is 

ompatible, if for κ� ∈ (0 , 1) , κμ > 0 there exists an x = [ v , w, y ] ∈
 

n with 

g(x ) ≤ 0 

h (x ) = 0 

r k (w ) = y 

| x − x k || ≤ κ��k min { 1 , κμ�μ
k 
} . 

If (17) is not compatible, the algorithm enters a restoration 

hase to create a new iterate x k +1 and a new RM r k +1 (w ) , which

esults in a compatible subproblem (TRSP k +1 ). For the restoration 

hase to be successful it is sufficient to find a feasible point to (16) .

f x k +1 is a feasible point to (16) and r k +1 (w ) was created via the

orrection (19) , the new subproblem (TRSP k +1 ) is guaranteed to be 

ompatible, as the trust-region center x k +1 is a feasible point. For 

xample, a feasible point to (16) can be found by repeatedly solv- 

ng the optimization problem 

min 

 =[ v ,w,y ] 
|| d( ̃  w i ) − y || 

.t. g(x ) ≤ 0 

h (x ) = 0 
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Algorithm 1 Trust-Region Filter Algorithm 

1: procedure Trust-Region Filter Algorithm 

2: Initialize x 0 , �0 , ω ∈ (0 , 1) , γc ∈ (0 , 1) , θ0 ← ‖ y 0 − d(w 0 ) ‖ 
3: for iteration = 0 , 1 , 2 , . . . do 

4: Generate κ-fully linear surrogate model r k (w ) wrt. x k , 

�k 

5: if trust-region step from TRSP k wrt. r k (w ) , �k is compat- 

ible then 

6: Compute criticality measure χk 

7: if χk < ζ�k then 

8: �k ← ω�k 

9: Optimize trust-region step from TRSP k wrt. r k (w ) , �k 

and obtain x ∗
k 
. 

10: if ˆ x k acceptable to the filter then 

11: x k +1 ← x ∗
k 

12: θk +1 ← ‖ y k +1 − d(w k +1 ) ‖ , f k +1 ← f (x ∗
k 
) 

13: Update �k according to the switching condition 

14: if switching condition (SW) does not hold then 

15: Add ( f k , θk ) to the filter 

16: else 

17: �k +1 ← γc �k , x k +1 ← x k 
18: θk +1 ← θk , f k +1 ← f k 

19: if χk +1 < χtol and θk +1 < θtol then 

20: Terminate successfully 

21: else 

22: Restoration: Find x k +1 , which is feasible for ( ?? ) 

v

t

o

fi

c  

D
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D
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g  
ia iteration over the tear stream 

˜ w i and choosing ˜ w i +1 = w 

∗ from 

he optimal solution. 

To get an indicator of how close the current iterate is to an 

ptimal point, we consider the criticality measure. We now de- 

ne x c,k to be a feasible point for (17) close to the trust-region 

enter according to || x c − x k || ≤ κ��k min { 1 , κμ�
μ
k 
} . According to

efinition 3.2 , this point x c,k exists for any compatible subproblem 

17) and may indeed be x k itself. 

efinition 3.3. Criticality measure: Let (17) be compatible and 

(x ) be the optimal solution of the linear program 

φ(x ) = min 

�x =[�x v , �x w , �x y ] ∈ R n 
∇ f (x ) T �x 

s.t. g(x ) + ∇g(x ) T �x ≤ 0 

∇h (x ) T �x = 0 

∇r k (w ) T �x w 

− �x y 
‖ �x ‖ ∞ 

≤ 1 

here �x v ∈ R 

n v , �x w 

∈ R 

n w , �x y ∈ R 

n y . Then the criticality mea-

ure χk is given by 

k = | φ(x c,k ) | 
The criticality measure χk goes to zero, if the iterate x k ap- 

roaches a KKT-point of (17) without the trust-region constraint. 

ecause the RM is κ-fully linear, the error of the RM approaches 

ero for �k −→ 0 , and a KKT-point of (17) without the trust-region 

onstraint approaches a KKT-point of (16) . Hence, if the critical- 

ty measure is small with respect to the trust-region radius, the 

rust-region radius is reduced and the TRF method continues until 

k approaches zero. On the other hand, shrinking �k to 0 is not 

eeded if the RM is generated via the first order correction (19) , 

r k (w k ) = ∇d(w k ) holds, and χk = 0 indicates a KKT-point of (16) .

n this case. optimality holds, even if �k is large. 

The TRF method furthermore includes a filter check. A filter is 

efined as the set 

 k = { ( f (x i ) , θ (x i )) for i ∈ I F ⊂ { 1 , . . . , k }} 
a  

7 
here θ (x i ) = ‖ y i − d(w i ) ‖ ∞ 

is the infeasibility measure. A new it-

rate x k +1 is accepted by the filter F k , if θ (x k +1 ) ≤ (1 − γθ ) θi or

f (x k +1 ) ≤ f i − γ f θi holds ∀ ( f i , θi ) ∈ F k i.e., if sufficient progress was

ade to improve feasibility or objective of the previous iterates. 

f a new step is rejected by the filter, the iteration continues with 

 k +1 = x k and a reduced trust-region radius. If a step is accepted, 

he switching condition 

f k − f (x k +1 ) ≥ κθθ (x k ) 
γs (20) 

s checked. If (20) holds, the iterate is an f-type step. In this case, 

he new iterate is accepted and the trust-region radius �k is in- 

reased. If (20) does not hold, the iterate is a θ-type step. The pre-

ious iterate ( f k , θk ) is added to the filter, and the trust-region ra- 

ius is changed according to 

ρk = 1 − θ (x k +1 ) 

θk 

k +1 = 

{ 

γc �k if ρk < η1 

�k if η1 ≤ ρk < η2 

γe �k if η2 ≤ ρk 

An exception is made if ρk < 0 holds. In this case a new step is

ejected, despite making small progress in f k . 

.3. Convergence 

Eason (2018) showed that the TRF method converges to a first 

rder KKT point of (16) , given the following assumptions hold: 

1 The functions f, g, h, and d defining (16) are twice- 

continuously differentiable. 

2 The problem domain is closed and bounded. 

3 The Mangasarian-Fromovitz constraint qualification (MFCQ) 

holds for (16) at all limit points of the TRF iteration. 

4 The reduced model is κ-fully linear, twice-continuous differen- 

tiable and the second derivatives are uniformly bounded. 

5 The solution ˆ x k of (17) reduces the objective function value ac- 

cording to the fraction of Cauchy decrease 

f (x c,k ) − f ( ̂  x k ) ≥ κt χk min { χk /βk , �k } 
for a κt > 0 and a bounded sequence βk > 1 . In other words, 

the solver used for optimizing the trust-region step must make 

sufficient progress in relation to the criticality measure evalu- 

ated in x c,k . 

In practice this condition is fulfilled, by using an NLP optimiza- 

tion strategy to solve (17) , which is initialized in the feasible 

point x c,k . 

6 The condition ‖ x c,k − x k ‖ ≤ κu θk holds for small θk < δ and a 

κu > 0 . If r k (w k ) = d(w k ) holds, as is the case if the first order

correction (19) is used to generate the RM, this condition is ful- 

filled. 

Eason shows that the TRF method will create a subsequence 

 k i } with compatible trust-region steps (TRSP k i ) and 

lim 

 −→∞ 

χk i 
= 0 , lim 

i −→∞ 

θk i 
= 0 , lim 

i −→∞ 

�k i 
= 0 , lim 

i −→∞ 

x k i = x ∗

here x ∗ is a KKT-point of (16) . For the convergence proof we refer

o Eason (2018) . 

.4. Simplifications of the TRF method 

.4.1. Trust-region radius 

As shown by Yoshio and Biegler (2021) , the trust-region ra- 

ius in the subproblem (17) must not necessarily extend to all 

odel variables x . Instead it can be formulated in terms of the de- 

rees of freedom alone. We partition x = [ ̂  x , ̄x ] , where x̄ = [ v x̄ , w x̄ ]

re the degrees of freedom and ˆ x = [ v ˆ x , w ˆ x , y ] are determined by
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he equality constraints ˆ h = [ h (x ) � , (d(w ) − y ) � ] � . As long as the

odel sensitivities are non-singular, the trust-region constraint on 

he degrees of freedom propagates to the remaining variables ac- 

ording to 

 x − x k ‖ ≤ ‖ ̄x − x̄ k ‖ + ‖ ̂

 x − ˆ x k ‖ 

≤ ‖ ̄x − x̄ k ‖ + ‖∇ x̄ ̂
 h ( ̄x k ) 

−� ∇ ˆ x ̂
 h ( ̂  x k ) 

� ( ̄x − x̄ k ) ‖ 

≤ (1 + ‖∇ x̄ ̂
 h ( ̄x k ) 

−� ∇ ˆ x ̂
 h ( ̂  x k ) 

� ‖ ) ‖ ( ̄x − x̄ k ) ‖ . 

For a detailed proof we refer to Yoshio and Biegler (2021) . We 

herefore can rewrite the trust-region radius as 

 ̄x − x̄ k ‖ ≤ �k . (21) 

n the current work, the degrees of freedom correspond to x̄ = w . 

e apply both strategies, the full trust-region radius and the trust- 

egion radius regarding the degrees of freedom, and compare the 

esults. 

.4.2. Regularity and feasibility of the trust-region step 

To ensure that MFCQ holds, which is required in the limit point 

f the iteration to ensure convergence according to assumption A3 , 

or all x ∈ R 

n , one can introduce artificial variables and � 1 penal-

ies, and rewrite (16) as: 

min 

x =[ x v ,x w ,x y ] ∈ R n , 
x p ,x n ∈ R n h + n y , 

x q ∈ R n h 

f (x ) + β((x p + x n ) � e h + x � q e g ) 

s.t. g(x ) ≤ x q 
[ h (x ) � , (y − d(w )) � ] � = E(x p − x n ) 
x p , x n , x q ≥ 0 

(22) 

here e h ∈ R 

n h and e g ∈ R 

n h + n y are vectors with elements of 1 and

 is a scaling matrix. Note here that the artificial variables only 

eed to be added to constraints which may violate the MFCQ. The 

orresponding trust-region subproblem 

min 

x =[ x v ,x w ,x y ] ∈ R n , 
x p ,x n ∈ R n h + n y , 

x q ∈ R n h 

f (x ) + β((x p + x n ) � e h + x � q e g ) 

s.t. g(x ) ≤ x q 
[ h (x ) � , (y − r k (w )) � ] � = E(x p − x n ) 
‖ w − w k ‖ ≤ �k 

x p , x n , x q ≥ 0 

(23) 

as a feasible solution with x q, j = max (0 , g j (x )) , x p ⊥ x n , x p,i +
 n,i = | [ h (x ) � , (y − r k (w )) � ] � 

i 
| and the compatibility check can be

kipped. In this case, we compute the infeasibility measure as 

k = ‖ [ d(w k ) − y k , x p,k , x n,k , x q,k ] ‖ and enter the restoration phase

f �k ≤ �tol and θk > θtol . 

.5. Application of the TRF method to PSA optimization 

We show here, how we optimize the PDAE model from 

ection 2.1 with the TRF method and how the model based on 

quilibrium theory from Section 2.2 is used as a local surrogate 

odel. In Section 3.5.1 we define the function d(w ) , which is used

o apply the TRF method. The TM d(w ) represents the correla- 

ion between the columns design and cycle operation, given by the 

ariable w, and the product gas flow and concentrations of the PDE 

odel at cyclic steady state (CSS), denoted y . In Section 3.5.2 we 

how the corresponding reduced model r(w ) , which calculates the 

orrelation between design and product via a set of algebraic equa- 

ions derived from equilibrium theory. Finally, we discuss the cal- 

ulation of derivatives of the TM, which are needed to apply the 

rst order correction. 
8 
.5.1. The truth model d(w ) 

To optimize the separation performance of the PSA via the TRF 

ethod, we need to introduce the variables w, y, and the TM func- 

ion d(w ) . The degrees of freedom of the PSA model are the ad-

orption pressure p AS , desorption pressure p DE , column diameter 

 i , column length L, cycle time t f , and a fraction of product gas

ed back to the column during the PR step B f . With proper scaling

f the variables, we define w = [ p AS , p DE , R i , L, t f , B f ] 
� . The model

esponse is given by the gas flow rates of the product stream 

(w ) = [ F CO 2 
, F CH 4 

, F H 2 ] 
� at CSS, where F i denotes the mole flow

ate of component i in mol/s. The product stream gas flow rates 

re given by 

 i = εa s (1 − B f ) 

t f / 4 ∫ 
t=0 

p(t) 

RT (t, z = 0) 
y i (t , z = 0) u (t , z = 0) d t . 

hich is the flow rate of the gas leaving adsorption column dur- 

ng the adsorption step AS. This implies that for each function call 

(w ) the CSS of the DAE system must be evaluated. 

.5.2. Building a reduced model 

The reduced model r(w ) , which is needed for the TRF method, 

as the same output stream r k (w ) = [ N 

k 
CO 2 

, N 

k 
CH 4 

, N 

k 
H 2 

] � as the TM.

he reduced model is calculated based on dimensionless pressure 

nd time. The parameters R i , L, and t f are scaling the interstitial 

elocity of the gas flowing in and out of the column. In addition to 

he inputs w for the truth model, the equilibrium model has addi- 

ional degrees of freedom, which are the adsorption parameters k A , 

 B as well as the concentration of the gas entering the column dur- 

ng DE and PR, denoted y DE and y PR . We allow for different values

f the adsorption parameters in various step of the PSA process, 

.e. k A = [ k AD 
A 

, k DPI 
A 

, k PR 
A 

, . . . ] and let p RM 

denote the additional DOFs

p RM 

= [ k � 
A 
, k � 

B 
, y DE , y PR ] 

� . We use these additional DOFs to derive a

ocal reduced model r k (w ) from the equilibrium model at a current 

terate w k of the TRF algorithm: 

Let r(w, p RM 

) denote the model response of the equilibrium 

odel, which is the product gas flow rates of the separation at 

SS. We minimize the error of the equilibrium model to the TM 

esponse d(w k ) at the current iterate according to 

p ∗k = arg min 

p 
|| d(w k ) − r(w k , p) || 2 

nd define ˆ r k (w ) = r(w, p ∗
k 
) . To guarantee convergence of the TRF

q. (18) must hold for the reduced model at the current iterate 

 k . We can assure that these conditions hold, by applying the first 

rder correction (19) . 

.6. Derivatives 

To apply the first order correction (19) we need to calculate the 

ensitivities ∇d(w k ) of the TM at CSS. One option to calculate the 

ensitivities is the finite difference approach, which is simple to 

mplement, but has several disadvantages in practice. Firstly, the 

valuation of the finite differences is very time consuming. It re- 

uires multiple function evaluations of the TM, each of which in- 

lude the calculation of the CSS via successive substitution. Fur- 

hermore, the successive substitution calculates the CSS only up 

o a predefined tolerance || x PSA 
0 

− x PSA (t f ) || ≤ CSS tol , where x PSA (t f )

enotes the states of the system of ODEs of the TM at final time 

 f , and x PSA 
0 

denotes the corresponding initial value. This CSS tol- 

rance results in an error in the model response d(w ) , which is 

mplified in the finite difference calculation and results in a large 

rror in ∇d(w k ) . 

An alternative is to consider d as a function of the input w and 

 

PSA (0 , w ) at CSS, which is implicitly depending on w via the CSS



J. Uebbing, L.T. Biegler, L. Rihko-Struckmann et al. Computers and Chemical Engineering 151 (2021) 107340 

Fig. 4. Mole fraction of CH 4 in the gas phase over the position in the column and time The plots show the result of the CH 4 mole fraction at cyclic steady state with parameter 

w re f and feed y CO 2 = 0 . 4 , y CH 4 = 0 . 6 . While the states of the TM indicate a mixing of gases entering the column at different points in time, the RM shows a clear separation at the 

shockwaves and waves. This effect is particularly pronounced during the DE step, at 0.5 to 0.7 on the dimensionless time scale. 

Table 2 

Values of the reference point w re f prior to 

scaling. 

p AS p DE R i L t f B f 
bar bar m m s - 

13 1 0.3 2 200 0.7 
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quation h CSS (w ) = x PSA (0 , w ) − x PSA (t f , w ) = 0 . Then we calculate

d(w k ) via 

d(w k ) 
� = 

d d(w, x PSA (0 , w )) 

d w 

(w k ) 
� 

= 

∂d(w, x PSA (0 , w )) 

∂w 

(w k ) 
� 

+ 

∂d(w, x PSA (0 , w )) 

∂x PSA (0 , w ) 
(w k ) 

� d x PSA (0 , w ) 

d w 

(w k ) 
� (24) 

here the partial derivatives ∂d(w,x PSA (0 ,w )) 
∂w 

and ∂d(w,x PSA (0 ,w )) 

∂x PSA (0 ,w ) 
are 

he backward sensitivities of the PSA model equations. Further- 

ore, we apply the implicit function theorem to get 

d x PSA (0 , w ) 

d w 

(w k ) 
� = −∇ h 

−� 
CSS,x (w k ) ∇ h CSS,w 

(w k ) 
� (25) 

rom the CSS equation. We then use automatic differentiation of 

asADi Andersson et al. (2014) to calculate (25) and the backwards 

ensitivities. 

. Results 

.1. Comparison of TM and RM 

To get an impression of the accuracy of the RM, we compare the 

esults at the reference point w re f for separation of a binary gas 

ixture. The values of the reference point are shown in Table 2 . 

For the comparison, we consider the separation of a binary 

ixture of CO 2 and CH 4 . Fig. 4 shows the mole fraction of CH 4 

n the gas phase of one column over bed length (ordinate) and 

ime (abscissa), starting with the adsorption step AS. Notable is a 

hift in time of the desorption of CO 2 from the adsorbent, which 

s indicated by the vertical dark blue area in this figure at times 

.5 to 0.7. Also, while the TM shows a monotonic decrease of CH 4 

oncentration over space, the RM has increased CH 4 concentra- 

ions near the end of the column. Both of these phenomena can 

e explained by the adsorption kinetics of the models. The ad- and 
9 
esorption happens instantaneously in the equilibrium RM, while 

he TM has adsorption kinetics that slow the ad- and desorption. 

ig. 5 shows the divergence of amount adsorbed and the adsorp- 

ion equilibrium in the column of the TM. The strong adsorption 

f CO 2 during the desorption step, at times 0.5 to 0.7 on the di- 

ensionless time scale, is clearly visible, causing the aforemen- 

ioned shift in time. The difference in the amount adsorbed and 

he amount adsorbed at equilibrium is higher for CH 4 , which is the 

ight component, because of the faster adsorption kinetic of CO 2 . 

Important for the speed of convergence of the TRF method is 

ot the accurate representation of the states within the column, 

ut an accurate representation of the TM model response, d(w ) , 

lose to the reference point at which the RM was created. 

Fig. 6 shows the relative error of the model response with re- 

pect to the distance to the reference point w re f . This figure shows 

hat the error is small close to the reference point, as desired, and 

ncreases linearly with greater distance. 

.2. Optimization of PSA processes via TRF method 

We apply the TRF algorithm to optimize the PSA model with 

espect to recovery and purity of the product gas CH 4 . The trust 

egion step subproblem was solved using IPOPT Wächter and 

iegler (2006) and MA57 HSL (0000) . The variables w, y, and the 

unction d(w ) are as defined as in Section 3.5 . We introduce addi-

ional variables, v = [ v p , v r ] , which represent the purity and recov-

ry of the product methane and define the optimization problem 

max 
x =[ v ,w,y ] ∈ R n 

f (x ) = v p + v r 

s.t. v r − N CH 4 

N f eed 
CH 4 

= 0 

v p − N CH 4 

N CH 4 
+ N H 2 + N CO 2 

= 0 

d(w ) = y 
lb w 

≤ w ≤ ub w 

0 ≤ y i ≤ N 

f eed 
i 

i ∈ { CO 2 , H 2 , CH 4 } 
0 ≤ v ≤ 1 

he objective corresponds to finding a Pareto optimal point with 

espect to product purity and recovery. 

The superscript f eed refers to the mole flow rate of the feed 

as. We choose a CSS tolerance of 

SS tol = 10 

−3 �k (26) 

o assure that the error of the model evaluation decrease with 

he trust-region radius. The results we show here have a trust- 
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Fig. 5. The difference q ∗ − q between amount adsorbed q and amount adsorbed at equilibrium q ∗ in mmol/g. The plots show the difference of the amount adsorbed q and the 

amount adsorbed equilibrium q ∗ with parameter w re f and feed y CO 2 = 0 . 4 , y CH 4 = 0 . 6 for the components CH 4 and CO 2 in mol/g. 

Fig. 6. Relative difference between the model response of the TM and the RM cor- 

responding to the reference point w re f . The plots show the error �y 
| y TM | ∞ = 

| y TM −y RM | ∞ | y TM | ∞ of 

the RM created at reference point w re f prior to application of the first order correction 

(19) . After fitting the parameters of the equilibrium model to the model response of the 

TM at reference point y TM = d(w ) , the resulting RM was evaluated at different inputs 

w on a grid around w re f . We define y RM = r re f (w ) . The x-axis shows the difference of 

the input w to the reference point w re f . At �w = 0 the error of the parameter fitting, 

which was used for building the RM, is shown. The plot shows the increasing error of 

the model with greater distance from the reference point w re f . 

Table 3 

Parameters of the TRF algorithm. The parameters of the TRF algorithm influence 

how the trust region radius changes over time. A good choice of parameters is 

strongly problem dependent. Here, we manually choose parameters to dampen 

oscillations of the trust region radius. 

case γe γc η1 η2 ω κ�

A 1.5 0.5 0.05 0.2 0.8 0.8 

B & C (Compatibility Check) 1.1 0.5 0.05 0.5 0.1 0.8 

C (Artificial Variables) 1.01 0.5 0.05 0.5 0.1 0.8 

r

C

f

T

m

h

o

R

t

Fig. 7. Objective f k , infeasibility measure θk , and criticality measure χk over the 

number of iterations (trust-region radius: Full). The plots show the development of 

objective value f k , infeasibility measure θk and criticality measure χk at each iteration. 

Objective is to find a Pareto optimal point with respect to purity and recovery. The 

trust-region radius is calculated with respect to all variables x . 
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C 4 k k  
egion radius of 10 −4 to 10 −6 upon termination, which implies a 

SS tolerance of 10 −7 to 10 −9 . The parameters of the TRF algorithm 

or the different cases we consider in the following are shown in 

able 3 . 

We also validate the assumptions for convergence of the TRF 

ethod introduced in Section 3.3 . Assumption A2 is fulfilled by 

aving box constraints for the problem variables. By using the first 

rder correction (19) and proper formulation and scaling of the 

M, Assumptions A4 and A6 hold. Initializing the optimization of 

he subproblem in the trust-region step with x c,k and returning a 
10 
ocal optimum results in sufficient progress with respect to x c,k to 

ulfill A5. During the optimization run, we check, whether the lin- 

ar independence constraint qualification (LICQ) holds for (16) . The 

ICQ holds at every iterate of our optimization runs and implies 

he MFCQ, which is needed for A3. Finally, Assumption A1 may 

ot always hold, because the model response d(w ) and sensitivi- 

ies ∇d(w ) include the error of the CSS calculation and the inte- 

ration of the discretized model DAEs. During the optimization this 

s noticeable by oscillations in the objective value, feasibility mea- 

ure and criticality measure. The error of the model response d(w ) 

as empirically determined to be around 10 · CSS tol , thus for a CSS 

olerance of 10 −8 we have a corresponding model error of around 

0 −7 . This error propagates to the sensitivities, because for the ap- 

lication of the implicit function theorem (25) we assume to be at 

he CSS. Because the oscillations occur at a larger order of magni- 

ude however, the errors are mostly caused by the integrator. We 

erminate the TRF method here, when θk , χk ≤ 10 −5 . 

In the following, we separate a 4:6 binary mixture of CO 2 and 

H . Fig. 7 shows the development of objective f = f (x ) , infea-
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Table 4 

Number of iterations and computational time. The table shows the number of iterations and the total computational time spend in the trust-region 

step of the different optimization runs. The computation time is obtained using an Intel Quad core i5-6600 3.30 GHz system with 6 GB RAM. Agarwal 

et al. used an Intel Quad core 2.4 GHz system with 8 GB RAM. Considering the different specifications of the devices, the results show a clear decrease 

in computational time of the current method over the POD approach. Agarwal et al. considered three different optimization runs: the optimization via 

a filter method, as we applied here, and the optimization via an exact penalty method with first (FOC) and zero order correction (ZOC). The ∗ marks 

a case for which the iteration was stopped at χk = 1 . 02 · 10 −5 instead of χk = 1 . 0 · 10 −5 . 

case objective # vars # iterations t TM [s] 

A (TR: full) 1.7892 67 72 5.5 

A (TR: DoFs) 1.7896 67 55 4.5 

B (H 2 , TR: DoFs) 1.3808 67 84 5.0 

C (Compatibility Check) -0.7318 67 94 5.3 

C (Artificial Variables) ∗ -0.7257 67 73 5.1 

Agarwal and Biegler (2013) (filter) 52247 51 4896.0 

Agarwal and Biegler (2013) (ZOC, exact penalty) 52247 13 2142.0 

Agarwal and Biegler (2013) (FOC, exact penalty) 52247 92 6768.0 
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Fig. 8. Objective f k , infeasibility measure θk , and criticality measure χk over the 

number of iterations (trust-region radius: DoFs). As in Fig. 7, but now the trust-region 

radius is calculated with respect to the degrees of freedom. 

Fig. 9. Objective f k , infeasibility measure θk , and criticality measure χk over the 

number of iterations (mixture with hydrogen, trust-region radius: DoFs). As in Fig. 

8, but a ternary mixture with hydrogen is the feed gas to the PSA columns. 
ibility measure θk = ‖ y k − d(w k ) ‖ and criticality measure χk over 

ime, where the trust-region radius is calculated with respect to all 

ariables. Termination occurs after 72 iterations. We validated the 

alculation of derivatives described in Section 3.6 with a straight- 

orward Finite Differences approach. Qualitatively, the calculated 

erivatives were identical. However, as expected the unavoidable 

umerical noise in the Finite Differences led to an increase in the 

umber of iterations (roughly 300). 

The number of iterations needed and the total time spend 

n the calculations of the trust-region step are summarized in 

able 4 as case A (TR: full). In the previous work of Agarwal and

iegler (2013) a reduced model based on proper orthogonal de- 

omposition (POD) was used for the optimization of a 2 column 

SA cycle, which has 52247 algebraic variables. For a direct com- 

arison we note that the study of Agarwal differs from ours in 

ultiple aspects, such as the PSA set-up, the number of modeled 

olumns, the cycle configuration, and the direct determination of 

he CSS via Newton method. Considering these differences, we can 

ake the following observations; our approach requires more it- 

rations, presumably due to the lower model accuracy of the RM 

nd the more complex PSA set-up. However, the total accumulated 

ime spend in the trust-region step is significantly lower. We at- 

ribute the reduction in computational time to the smaller size of 

he RM. The proposed RM based on equilibrium theory has a total 

f 67 variables for our 4-column, 9-step configuration and required 

 total of 5.5 seconds to solve over 72 iterations. If the trust-region 

adius is only calculated with respect to the degrees of freedom, 

ermination occurs after 55 iterations. The results are shown in 

ig. 8 and Table 4 as case A (TR: DoFs). 

As a second case, we consider the calculation of the trust-region 

adius with respect to the degrees of freedom according to (21) . 

he optimization results are shown in Fig. 8 and in Table 4 as case

 (TR: DOFs). Table 4 shows that fewer iterations are needed in 

his case. 

The equilibrium model which we apply as the reduced model 

as the drawback of only modeling binary mixtures in the gas 

hase. To analyze if the optimization of a ternary mixture is pos- 

ible nonetheless, we optimize the separation of a 1:1:1 mixture 

f CO 2 , CH 4 and H 2 , which we denote as case B (H 2 , TR: DoFs) in

able 4 . The hydrogen in the gas phase is here approximated only 

y the first order correction term. In this case the criticality mea- 

ure did not reach the threshold of χtol = 10 −5 with the adaptive 

SS tolerance (26) even after 200 iterations. We attribute this to 

he lower accuracy of the reduced model in this case, and chose 

 fixed CSS tolerance of CSS tol = 10 −8 instead of using (26) . While

his increases the overall computational costs, it converges success- 

ully and improves the reliability of the function evaluations and 

orresponding gradients. The result is shown in Figure 9 . 
11 
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Fig. 10. Objective f k , infeasibility measure θk , and criticality measure χk over the 

number of iterations (with Compatibility Check). As in Fig. 7, but the objective is 

to maximize the units efficiency with respect to a product purity of at least 95 %. The 

feasibility of the trust-region step is enforced by performing the compatibility check and 

calling the restoration phase if necessary. 

Fig. 11. Objective f k , infeasibility measure θk , and criticality measure χk over the 

number of iterations (with artificial variables). The difference to the case shown in 

Fig. 10 is that the trust-region step is always feasible because of artificial variables, 

which are penalized in the objective. The restoration phase is called if an iteration is 

not feasible or optimal, but the trust-region size is below the predefined threshold. 
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.3. Optimizing PSA work demand 

In the following we use the introduced algorithm and the re- 

uced model to the application of biogas upgrading. Carbon diox- 

de must be removed from the product gas of anaerobic diges- 

ion, which is a gas mixture of CO 2 and CH 4 , prior to feed to 

he gas grid. Typically, product gas from anaerobic digestion con- 

ains 50 − 70 mol.-% of CH 4 Mohseni et al. (2012) . We assume 

ere that the mixture contains 60 mol.-% CH 4 and 40 mol.-% CO 2 . 

he purity of the product gas must meet specifications of the local 

as grid, i.e., 95 mol.-% of CH 4 after the separation, according to 

dler et al. (2014) . 

We formulate a new objective 

f (x ) = 10 

−3 · (w re v /ηcomp − e CH 4 v r ) , 

hich we aim to minimize, where 

 re v = RT amb ln 

(
p AS 

p DE 

)
s the specific reversible isothermal work demand for the gas 

ompression at T amb = 298 . 15 K, ηcomp = 0 . 8 is the efficiency of

he compressor, R = 8 . 3145 · 10 −3 kJ/mol/K is the gas constant, 

nd e CH 4 
= 831 . 9 kJ/mol is the chemical exergy of the product 

ethane. The objective reflects the chemical exergy of the pro- 

uced methane reduced by the work demand for the purification 

n kJ/mol. Furthermore, we add the constraint 

 p ≥ 0 . 95 (27) 

o the model to ensure the desired product quality in terms of 

ole fraction. We use this optimization problem to compare the 

wo approaches to ensure feasibility of the trust-region step, which 

e introduced in Section 3.4 : On the one hand, we use the com-

atibility check to test the feasibility of the trust-region step. If the 

rust-region step is infeasible, the restoration phase is called. We 

efer to this approach as case C (Compatibility Check) in the results 

f Table 4 . Alternatively, the trust-region step is always feasible if 

rtificial variables are added as described in Section 3.4 . We call 

his approach case C (Artificial Variables). A fixed CSS tolerance of 

SS tol = 10 −8 was applied as for case B. The parameters of the TRF 

lgorithm are shown in Table 3 . 

Fig. 10 shows the optimization of the PSA model with the com- 

atibility check until termination with θk = χk = 10 −5 . The com- 

utational time is listed in Table 4 . The iteration terminates af- 

er 94 iterations. The final optimization leads to a work demand 

f 12.1 kJ/mol for the purification of raw biogas. According to 

auer et al. (2013) a work demand of 0.15 to 0.3 kWh/Nm 

3 is 

ypical in the industrial application of PSA processes for biogas up- 

rading. Assuming a mole density of 4 4.4 4 mol/Nm 

3 for the raw 

iogas, this corresponds to 12.2 to 24.3 kJ/mol. The result of our 

ptimization is therefore slightly below the minimum level of tech- 

ology reported in the industry. With the sensitivities of the true 

odel we can determine the KKT multiplier of the purity con- 

traint (27) at the optimal solution. This multiplier has a value of 

.39, which indicates that relaxing the product purity to 94 mol.-% 

ecreases the objective value by approximately 33.9 kJ/mol. This is 

ostly caused by an increase of product recovery v r . 
Alternatively, Fig. 11 shows the optimization of the PSA model 

ith artificial variables. In this case we stop the optimization 

t iteration 73, when a criticality measure of χk = 1 . 02 · 10 −5 is

eached. To reach a point with χk ≤ 10 −5 a total of 209 iterations 

re needed here, despite that almost no progress is made after 

teration 73 (relative difference of the objectives at iteration 73 

nd 209 below 0.0 0 01 %). Here, the criticality measure fluctuates 

trongly without noticeable progress on either objective or feasi- 

ility. Initially the error in the CSS condition, i.e. a too large CSS 

olerance, was suspected to cause the very slow convergence in 
12 
his case. However, no change in this behavior was observed when 

valuating the true model with the very tight CSS tolerance of 10 −8 

sed here instead of the adaptive CSS tolerance (26) . Thus, errors 

f the integrator cause the iteration to stall, not the CSS tolerance. 

he final objective value is shown in Table 4 as case C (Artificial 

ariables). The value is slightly larger than the final objective of 

he comparative case C (Compatibility Check). We attribute this to 

he fact that we apply a local solver to a non-convex NLP, which 

an result in termination at a different local optimum. 

. Conclusions 

We propose a reduced model based on equilibrium theory, suit- 

ble for optimization of PSA processes within the trust-region fil- 
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er (TRF) algorithm. Our reduced model results in a significant re- 

uction in computational cost of the trust-region step, even for 

omplex PSA cycles, over a comparative study by Agarwal and 

iegler (2013) . We attribute the reduction in computational time 

o the reduced number of variables of the model. Nevertheless, by 

ampling the truth model (TM), the TRF method converges to the 

ptimal solution for the truth model. 

The reduced model was applied successfully to optimize a 9- 

tep 4-column PSA process. The optimization required more iter- 

tions than the comparative study, yet the overall computational 

ime spent in the trust-region steps was reduced significantly, from 

 to 6 seconds as opposed to 4896 seconds with a POD approach. 

The trust-region filter method we applied required fewer itera- 

ions until termination if the trust-region is calculated only in the 

egrees of freedom (55 iterations) as opposed to all variables (72 

terations). 

The solution of the reduced model based on equilibrium the- 

ry differs from the PDAE (TM) solution within the column. We 

dentified that assuming adsorption to be at equilibrium is the 

ain reason for the differences between the two models. We ex- 

ect processes with fast ad- and desorption kinetics to be repre- 

ented more accurately by the reduced model which could reduce 

he number of iterations needed for convergence. 

The bottleneck of the proposed method is the calculation of 

he cyclic steady state (CSS). An implementation of simultane- 

us methods for CSS calculations, as previously applied in the 

iterature would shorten runtime and improve the accuracy of 

alls to the PSA model. See for example Jiang et al. (2004) and 

say et al. (2018) , as introduced in Section 1 . 
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