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Predictive processing, a leading theoretical framework for sensory processing, suggests

that the brain constantly generates predictions on the sensory world and that perception

emerges from the comparison between these predictions and the actual sensory input.

This requires two distinct neural elements: generative units, which encode the model

of the sensory world; and prediction error units, which compare these predictions

against the sensory input. Although predictive processing is generally portrayed as a

theory of cerebral cortex function, animal and human studies over the last decade

have robustly shown the ubiquitous presence of prediction error responses in several

nuclei of the auditory, somatosensory, and visual subcortical pathways. In the auditory

modality, prediction error is typically elicited using so-called oddball paradigms, where

sequences of repeated pure tones with the same pitch are at unpredictable intervals

substituted by a tone of deviant frequency. Repeated sounds become predictable

promptly and elicit decreasing prediction error; deviant tones break these predictions

and elicit large prediction errors. The simplicity of the rules inducing predictability make

oddball paradigms agnostic about the origin of the predictions. Here, we introduce two

possible models of the organizational topology of the predictive processing auditory

network: (1) the global view, that assumes that predictions on the sensory input are

generated at high-order levels of the cerebral cortex and transmitted in a cascade of

generative models to the subcortical sensory pathways; and (2) the local view, that

assumes that independent local models, computed using local information, are used

to perform predictions at each processing stage. In the global view information encoding

is optimized globally but biases sensory representations along the entire brain according

to the subjective views of the observer. The local view results in a diminished coding

efficiency, but guarantees in return a robust encoding of the features of sensory input

at each processing stage. Although most experimental results to-date are ambiguous in

this respect, recent evidence favors the global model.

Keywords: predictive coding, medial geniculate body, inferior colliculus, abstract processing, sensory coding,

auditory processing, subcortical sensory pathway
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1. INTRODUCTION

The massive bundle of corticofugal fibers stemming from
auditory cortex and targeting nuclei of the subcortical auditory
pathway (Winer, 1984, 2005b; Schofield, 2011) have posed a
puzzling problem to the auditory neuroscience community for
decades (Syka et al., 1988;Winer, 2005a; Robinson andMcAlpine,
2009; He and Yu, 2010). Sensory processing is classically
understood as a bottom up problem, where increasingly complex
features are read-out in a hierarchical constructive manner
(Epstein, 1993; Martin, 1994; DeCharms and Zador, 2000). But
then, what is the corticofugal system good for, and why is it
that massive?

One possibility is that sensory processing is not a purely
bottom-up process, but that top-down information is used
proactively to encode sensory input (Mumford, 1992; Rao and
Ballard, 1999; Friston, 2003, 2005). This is the thesis of the
predictive processing framework (PPF) (Heeger, 2017; Spratling,
2017; Keller and Mrsic-Flogel, 2018; Walsh et al., 2020): that
higher-level regions of the cerebral cortex keep and update
a model of the sensory world that is used to predict, in a
generative manner, the sensory input at lower-level regions of
the cerebral cortex; and that neurons at those lower-level regions
encode prediction error: the difference between the predictions
and the actual input. Prediction error is further conveyed to
the higher-level representation and used there to adjust the
generative model. Extending this role to the corticofugal system
between cerebral cortex and subcortical sensory pathway nuclei
suggests that predictions drawn by generative models in cerebral
cortex are conveyed to subcortical sensory neurons that encode
prediction error (Von Kriegstein et al., 2008; Diaz et al., 2012;
Malmierca et al., 2015). Many authors have argued that the PPF
might underlay cognitive processes beyond perception including
(e.g.,): vocalization in humans (Okada et al., 2018) and birds
(Yildiz and Kiebel, 2011), learning in cognitive development
(Nagai, 2019), episodic memory (Barron et al., 2020), abstract
cognition and reasoning (Spratling, 2016), inculturation (Fabry,
2018), and even the emergence of faith (Andersen, 2019).
Here we focus on sensory processing and, in particular, on
auditory perception.

Over the last decade the auditory neuroscience community
has robustly shown the predominance of neurons encoding
prediction error neurons in subcortical sensory pathway nuclei
(Anderson et al., 2009; Malmierca et al., 2009, 2014, 2019;
Grimm et al., 2016; Parras et al., 2017; Carbajal and Malmierca,
2018). Although these results are often taken as proof that
the corticofugal system is indeed transmitting predictions, most
experimental paradigms control predictability using simple rules
that can be readily encoded at the same processing stage as
the prediction error (Eytan et al., 2003; Mill et al., 2011; Wang
et al., 2014; May et al., 2015); i.e., without needing a top-down
system. We will call this the ‘local model’ of predictive coding
in the following. Conversely, we refer to predictive coding as
a ‘global model’ if a generative model at higher-levels of the
processing hierarchy generates predictions for the lower levels.
The distinction between local and global models of predictive
coding is important for understanding the function of the

corticofugal pathway. It is also important for the understanding
of the nature of sensory processing: if predictions are computed
at higher stages of the processing hierarchy and transmitted
downwards, that would mean that the auditory system can only
make sense of stimuli that are conceivable at these higher-
level representations.

Predictability plays an important role in sensory processing:
there are many benefits of predictability on behavioral
performance in the neurotypical brain (e.g., Davis and
Johnsrude, 2007; Jaramillo and Zador, 2011; Sohoglu and
Davis, 2016; Mazzucato et al., 2019). If using such predictability
for understanding the world is not possible, this likely results
in dysfunction. Deficits in the predictive elements of the PPF
have already been suggested to explain a number of symptoms
in neuropsychiatric conditions, including in schizophrenia
(Horga et al., 2014; Sterzer et al., 2018, 2019), autism-spectrum
disorders (van de Cruys et al., 2014; van Schalkwyk et al., 2017),
attention deficit and hyperactivity (Gonzalez-Gadea et al., 2015),
and mood and eating disorders (Frank et al., 2016; Clark et al.,
2018). Deficits in the predictive elements of the PPF have also
been directly linked to dysfunction of cortico-thalamic pathways
and sensory auditory thalamus in developmental dyslexia (Diaz
et al., 2012; Müller-Axt et al., 2017; Tschentscher et al., 2019).
Understanding the computational mechanism for encoding
predictability and the role of the corticofugal system in predictive
sensory processing is a necessary prerequisite for a mechanistic
understanding of these disorders.

In the following, we review the existing literature on predictive
processing in the auditory sensory system with a special focus
on the potential role of the corticofugal pathway. We focus on
audition because it is the modality where subcortical predictive
processing has been explored the most in the last decade (Nelken
and Ulanovsky, 2007; Garrido et al., 2009; Grimm et al., 2011;
Escera andMalmierca, 2014;Malmierca et al., 2015; Heilbron and
Chait, 2017; Carbajal and Malmierca, 2018).

2. GLOBAL AND LOCAL MODELS OF THE
PREDICTIVE PROCESSING FRAMEWORK

A longstanding question on sensory processing is whether
perception is purely exploratory or rather a process of inference
(Von Helmholtz, 1867; Atick, 1992; Bejjanki et al., 2011;
Lochmann and Deneve, 2011; Purves et al., 2015; de Lange
et al., 2018). In the exploratory view, observers passively receive
information from their senses and construct a representation of
their sensory surrounds based on a lump of perceptual objects
(Epstein, 1993; Martin, 1994; Quiroga et al., 2005; Chechik et al.,
2006; Wood et al., 2019). The exploratory view is implemented
by the so-called representational framework of sensory processing
(Epstein, 1993; DeCharms and Zador, 2000; DiCarlo et al.,
2012). The representational framework sees perception as a
constructive process carried out by a cascade of feature detectors:
neurons that analyse neural activity at the immediately lower
hierarchical stage and respond selectively to certain activation
patterns (Figure 1A). For instance, a neuron that responds
selectively to the word percept integrates inputs from neurons
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FIGURE 1 | Representational and predictive processing frameworks. (A) Schematic view of a possible implementation of the representational framework during the

decoding of the syllable /per-/. (B) Schematic view of a possible implementation of the predictive processing framework while performing predictions on the incoming

syllable /-cept/. Purple features are predictions. The middle panel depicts a simulation of the neural activity in the auditory nerve across the tonotopic axis (y-axis)

elicited by the spoken word percept. (C) Example implementation of the local model: whereas predictions at the word level are used to encode prediction error at the

immediately lower level as formulated by the PPF, predictions are not used to calculate the predictive model of the lower stages, and thus the remaining levels depend

on bottom-up information only. (D) Example implementation of the global model: predictions at the word level propagate downwards affecting the predictive model of

all stages (dashed descending arrows), so that prediction error at the lowest level is encoded with respect to a model that is ultimately defined in the highest level.

Intermediate implementations where interactions between the models exist up to a certain level only are also possible but not displayed here. Note that (B) depicts the

global model.

encoding the syllables per and cept; the neuron encoding per
receives inputs from neurons encoding p-, e, and -r; and, if
the word is decoded from the auditory modality, the neuron

encoding p- receives inputs from the neurons encoding each
of the formant transitions (frequency-modulated sweeps) that
characterize the consonant.
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The PPF (Heeger, 2017; Spratling, 2017; Keller and Mrsic-
Flogel, 2018; Walsh et al., 2020) presents the same hierarchical
organization as the representational framework, but the feature
detectors are used for inference rather than exploration. In the
PPF, a feature detector needs two ingredients: a (generative)
model that builds hypotheses about the sensory world, and
a prediction error unit that tests these hypotheses against
the actual sensory input. The PPF is intimately linked with
Bayesian inference (Friston, 2005; Kiebel et al., 2008), where the
posterior conclusions drawn from the data are amplifications
or reductions of a prior belief. This means that according to
the PPF we are more likely to perceive what we expect. In an
extreme interpretation of the framework, it implies that if we
do not have an implicit prior belief that a perceptual object
might exist, we cannot perceive its existence at all. Today,
evidence from psychophysics (de Lange et al., 2018), human
neuroimaging (Siman-Tov et al., 2019;Walsh et al., 2020), animal
neurophysiology (Bendixen et al., 2012; Carbajal and Malmierca,
2018; Pakan et al., 2018), and theoretical neuroscience (Brenner
et al., 2000; Fairhall et al., 2001; Huang and Rao, 2011; Badcock
et al., 2019), converges in the idea that predictions on the sensory
world are constantly used to encode sensory input.

To-date there are at least three different algorithms describing
how the PPF could be implemented in the brain (for a review,
see Spratling, 2017). All of them hypothesize the existence of two
kinds of sensory neurons: those that encode the generativemodel,
and those that encode prediction error. A neuron encoding the
generative model at a certain stage of the processing hierarchy
k receives inputs from its associated prediction error units, that
signal if the model is correct or incorrect. It also receives input
from generative models at higher stages l > k, that guide the
generation of predictions at level k. A prediction error unit at
stage k compares the predictions of its associated generative
model at stage k + 1 with the sensory inputs incoming from the
immediately lower processing stage (Figure 1B).

Although the PPF was first formulated as a theory on sensory
processing in the cerebral cortex (Rao and Ballard, 1999; Friston,
2005; Shipp, 2016), the existence of potential prediction error
units in the subcortical auditory pathway has been reported
widely during the last decade (Anderson et al., 2009; Malmierca
et al., 2009, 2014, 2019; Grimm et al., 2016; Parras et al., 2017;
Carbajal and Malmierca, 2018). Whether this prediction error
is, as proposed by the PPF, a signature of active inference, is
still unclear (Carbajal and Malmierca, 2018). If that was the
case, prediction error in subcortical sensory structures should
signal error with respect to global hypotheses of the sensory
world. This means that, if after hearing per- we expect the word
to be completed with a -cept (Figure 1B), an auditory signal
breaking such prediction (like, for instance, -meable) should elicit
prediction errors in those neurons encoding the syllable -cept, but
also errors on the neurons encoding the -c- and its corresponding
spectrotemporal properties such as formant transitions. This
schema assumes that predictions are transmitted downwards
through an inverse hierarchical structure (Figure 1D). We call
this the global model, because it assumes that predictions at the
highest stage in the processing hierarchy are used to inform
generative models globally across the brain (Kiebel et al., 2008;

Malmierca et al., 2015; Siman-Tov et al., 2019; Casado-Román
et al., 2020).

An alternative possibility is that predictions and its associated
errors are computed locally (Eytan et al., 2003; Mill et al., 2011;
Wang et al., 2014; May et al., 2015). We call this scenario the
local model. Predictions at each stage are performed accordingly
to the level of abstraction of the local representation and its local
time constant of integration. In this scenario, violations to the
prediction -cept would elicit prediction error in the populations
encoding the syllable -cept, but not in the populations encoding
the formant transitions of the syllable -c- (Figure 1C). Although
not strictly adherent to the principles of the PPF, this local
strategy presents its own advantages. First, it still optimizes the
neural code by encoding only those parts of the stimulus that
are not predictable. Second, it keeps robust representations of
the stimuli that are independent of each other across stages of
the processing hierarchy - this has the advantage that it could be
used to simultaneously test multiple hypotheses. Third, it does
not require a constant top-down transmission of expectations.

3. PREDICTION ERROR RESPONSES ARE
UBIQUITOUS IN THE AUDITORY
THALAMUS AND MIDBRAIN

Prediction error responses in the mammal subcortical auditory
pathway (Malmierca et al., 2015; Parras et al., 2017) have been
mostly investigated through stimulus-specific adaptation (SSA).
SSA is a phenomenon where individual sensory neurons adapt
to specific stimulus properties (Ulanovsky et al., 2003, 2004).
SSA is typically shown in passive listening conditions (and often
in anesthetized animals) using some variation of the classical
oddball paradigm: sequences of several repetitions of a standard
tone that are interrupted by rarely occurring deviants. Deviants
typically differ from the standards only in the tone frequency.
In oddball sequences, pure tones are separated by fixed inter-
stimulus-intervals (ISI), so that the onset of the next tone in
the sequence is always predictable. By repetition of the standard
tones, oddball paradigms induce predictions on the frequency
of the next tone. The experimenter can control the amount
of prediction error elicited by the deviants with two variables:
the frequency difference between deviant and standard (which
controls the amount of error of the prediction with respect to
the actual sensory input) and the probability of occurrence of
the deviant (which controls how certain the model is about the
prediction that the next stimulus will be a standard). SSA to
frequency deviants has been consistently found in the auditory
thalamus (medial geniculate body, MGB) (Anderson et al., 2009;
Antunes et al., 2010; Richardson et al., 2013; Duque et al.,
2014; Parras et al., 2017) and midbrain (inferior colliculus, IC)
(Malmierca et al., 2009; Zhao et al., 2011; Duque et al., 2012;
Pérez-González et al., 2012; Ayala et al., 2013, 2015, 2016; Ayala
and Malmierca, 2015, 2018; Duque and Malmierca, 2015; Parras
et al., 2017; Valdés-Baizabal et al., 2017, 2020) of non-human
mammals, as well as in the human IC and MGB (Cacciaglia
et al., 2015; Tabas et al., 2020). Several studies have failed to
detect any SSA in neurons or populations of the first stage of the
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auditory subcortical pathway: the auditory brainstem (cochlear
nucleus, CN) (Duque et al., 2012, 2018; Ayala et al., 2013, 2015;
Parras et al., 2017). Although SSA has been mostly investigated
using frequency deviants, similar adaptation dynamics have been
demonstrated to amplitude modulation deviants (Gao et al.,
2014) and, in bats, to frequency modulation deviants (Thomas
et al., 2012). However, there seems to be no SSA to loudness
deviants (Duque et al., 2016). The SSA magnitude is typically
measured with the SSA index, a ratio that compares the neuronal
responses to a tone when used as a standard with the responses
to the same tone when used as a deviant.

Although positive SSA indices are often taken as an indication
that the neuron encodes prediction error (i.e., surprise to the
violation of a prediction), positive SSA indices could also result
from simple repetition suppression to the standard (Taaseh
et al., 2011; Parras et al., 2017; Carbajal and Malmierca, 2018).
Parras et al. developed a novel approach to disentangle repetition
suppression from prediction error by comparing the responses
to deviants in classical oddball sequences with the responses
to the same sounds when embedded in control sequences
that contain varying non-predictable stimuli. They argued that,
if the responses to deviants encoded prediction error, these
responses should be stronger when a precise prediction on the
incoming stimuli is available (as in oddball sequences) than when
predictions are broad (as in the control sequences, where all
control stimuli have the same likelihood of occurrence). They
termed the difference of the responses to the deviant tone in
oddball and control sequences the index of prediction error (iPE),
and demonstrated that neurons showing SSA do typically show
positive iPEs. However, iPE > 0 is not a sufficient indication of
prediction error because, as modeling studies have shown (Eytan
et al., 2003; Mill et al., 2011, 2012), positive iPEs can also arise due
to simple repetition suppression due to suppressed inhibition.
In any case, it is useful to consider SSA as an aggregation of
two separate phenomena: the suppression of the responses to the
standards, and the recovery of the responses to the deviant.

The IC, MGB, and also auditory cortex are typically
subdivided in primary and secondary subdivisions. The bulk
of primary subdivisions, consisting of the entire CN, the
central nucleus of the IC (cIC), and the ventral section of
the MGB (vMGB), constitute the so-called lemniscal pathway,
characterized by narrow frequency tuning bands and faithful
encoding of the stimulus properties (Lee and Sherman, 2011).

The bulk of secondary subdivisions, consisting of the cortex
of the IC (xIC), and the medial (mMGB) and dorsal (dMGB)
sections of the MGB, constitute the non-lemniscal pathway,
characterized by wider or absent frequency tuning and stronger
corticofugal projections (Lee and Sherman, 2011). While the
primary or lemniscal subdivision is attributed with the task of
transmitting sensory information directly to the cerebral cortex,
the secondary or non-lemniscal subvidision is thought to play a
secondary role (Lee and Sherman, 2011). If the PPF is the main
mechanism for sensory processing, it should govern sensory
coding in the lemniscal pathway.

Animal studies seem to converge in that SSA is more prevalent
(i.e., present in a larger fraction of neurons) and stronger (i.e.,
showing larger SSA indices) in non-lemniscal sections of IC and

MGB (Anderson et al., 2009; Ayala et al., 2016; Parras et al., 2017).
SSA neurons in the non-lemniscal pathways also show larger
iPEs than their lemniscal counterparts. This finding is, however,
not backed by studies in humans, which found no topological
organization of SSA across IC or MGB (Cacciaglia et al., 2015;
Tabas et al., 2020), or even reported comparable SSA indices in
lemniscal and non-lemniscal MGB (Tabas et al., 2020).

SSA is elicited in IC andMGB in both, awake and anesthetized
animals (Richardson et al., 2013; Duque and Malmierca, 2015;
Parras et al., 2017), and under passive and active listening in
humans (Cacciaglia et al., 2015; Tabas et al., 2020). One study
reported higher SSA indices under anesthesia due to a global
reduction of spontaneous activity (Duque and Malmierca, 2015);
another study reported generally higher iPEs in the awake
condition (Parras et al., 2017). Therefore, although SSA might be
modulated by awareness, it is also present in states of reduced
consciousness. This is fully in line with the principles of the PPF,
where inference on the sensory world is computed autonomously
as a coding strategy, rather than as a conscious inference effort.

In IC and MGB, the SSA index always increases with
increasing frequency difference between deviant and standard,
with decreasing ISI, and with decreasing probability of
occurrence of the deviant. This phenomenology seems to indicate
that neurons showing SSA do encode prediction error with
respect to the hypothesis that the next tone will be a standard,
and that this error is larger when there is a precise hypothesis than
when there is none. Whether this model is computed locally (in
the IC or theMGB) or globally and projected across the hierarchy
(see Figures 1C,D) is still unclear. Early studies interpreted the
fact that SSA is more prominent in non-lemniscal subdivisions of
the rodent auditory pathway as evidence of global computation
(Malmierca et al., 2015; Ayala et al., 2016). Later, evidence that
both SSA indices and iPE increase along the rodent ascending
auditory pathway led to the interpretation that prediction error
is also computed locally at each stage (Parras et al., 2017; Carbajal
andMalmierca, 2018). Functional MRI (fMRI) studies in humans
also indicated that IC and MGB showed stronger responses to
sounds that broke the predictions than to sounds for which
predictions were not available. They did, however, not find
that these effects were more prominent in the non-lemniscal
subdivisions (Cacciaglia et al., 2015; Tabas et al., 2020).

4. ENCODING FIDELITY IN THE AUDITORY
BRAINSTEM IS ENHANCED BY
REPETITION AND PREDICTABILITY

Electroencephalographic (EEG) methods present a much higher
temporal resolution than fMRI (Buxton, 2009), allowing to
measure directly the responses to each individual tone in the
sequence. However, fine temporal resolution is offered at the
expense of spatial precision: triangulating the origin of the evoked
potentials in the brain is generally an ill-posed problem. This
difficulty makes measuring responses from subcortical nuclei,
particularly because they are located centrally in the brain,
especially challenging (Boston and Moller, 1985; Coffey et al.,
2019).
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To-date, the only non-invasive measurements of subcortical
auditory evoked activity are the auditory brainstem response
(ABR) and the frequency-following response (FFR). The ABR
(Jewett et al., 1970; Parkkonen et al., 2009) consist of a series of
short transient auditory evoked potentials peaking within 8ms
after tone onset with sources ranging from the auditory nerve
up to the MGB. Human ABRs do not seem to show SSA to
broadband spectrum deviants (Slabu et al., 2010) nor loudness
deviants (Althen et al., 2011).

The FFR (Gerken et al., 1975; Boston and Moller, 1985;
Chandrasekaran and Kraus, 2010) is a component of the auditory
evoked fields that is synchronized to the acoustical signal.
Although the FFR partially stems from sources in cerebral cortex
(Coffey et al., 2016), most generators seem to be subcortical
(Bidelman, 2018; Coffey et al., 2019), especially when it is
synchronized to stimulus frequencies above the cortical limit for
phase-locking (estimated to be between 50 and 250Hz).

Two studies have shown SSA of the absolute power of the FFR
in a neighborhood of the frequencies characterizing the stimuli
(Shiga et al., 2015; Alho et al., 2019). However, the entrainment
of the FFR to the stimulus waveform seems to follow the exact
opposite trend than SSA: an increased entrainment to standards
as compared to deviants (Chandrasekaran et al., 2009; Strait
et al., 2011; Slabu et al., 2012; Skoe et al., 2014; Lau et al.,
2017; Font-Alaminos et al., 2020). We call this phenomenology
repetition entrainment enhancement. The repetition entrainment
enhancement of the FFR seems independent of stimulus class: it
has been shown for syllables (Chandrasekaran et al., 2009; Strait
et al., 2011; Slabu et al., 2012; Gorina-Careta et al., 2016; Lau
et al., 2017; Alho et al., 2019), amplitude modulated tones (Shiga
et al., 2015), pitch contours in Mandarin syllables (Skoe et al.,
2014), and pure tones (Font-Alaminos et al., 2020). One of these
studies showed that the repetition entrainment enhancement is
present even when the onset of the sounds is not predictable
(i.e., with jittered ISIs) (Slabu et al., 2012), although predictable
onsets do result in lower FFR power and higher FFR entrainment
(Gorina-Careta et al., 2016). Moreover, two studies showed
that the magnitude of the repetition entrainment enhancement
correlates with the ability of the subjects to recognize speech
in noise (Chandrasekaran et al., 2009; Strait et al., 2011). The
fact that the FFR adapts its properties to the stimulation history
is contrary to the predictions of a representational framework.
The FFR repetition entrainment enhancement is, however, also
not straightforward to interpret within the PPF. If the FFR
represented prediction error, we would expect a gradual decay of
the signal (and with it its SNR and quality of the entrainment)
with each repetition of a standard. Another possibility is that
the FFR encodes the generative model of the sensory input,
which becomes more and more precise with each repetition.
However, if that was the case the FFR would always represent
expectations, which means that we would expect an FFR tuned
to the standard during the presentation of a deviant. It is
possible that the generative model corrects itself quickly after
detecting that the stimulus is not a standard, which would
result in a reduction of the FFR entrainment to the deviant.
If that was the case the entrainment to the deviants would
be much weaker than to the first standards in the sequence;

however, the literature reports that the deviant and first standard
elicit the same FFR entrainment (Font-Alaminos et al., 2020).
A last possibility is that the FFR has contributions from both,
prediction error and generative model units, and that the balance
between the contribution of one and the other results in the
observed phenomenology.

5. MIXED EVIDENCE ON THE GLOBAL
MODEL BASED ON DEACTIVATION OF
HIGH-ORDER PROCESSING
STRUCTURES

Studies reviewed so far have established that sensory
processing in the auditory pathway cannot be explained by
a representational framework. The studies suggested that
computation of expectations and prediction error is common
to many mammals, and that it occurs even during sleep and
anesthesia. However, all these studies use paradigms that have
as a core feature repetition to induce predictions on the sensory
input. This means that prediction error is computed with respect
to a model of the sensory world that could have been generated
locally, at the level of the IC and MGB, or globally, at a higher
level of the processing hierarchy. Thus, results reviewed so far
are ambivalent with respect to the actual organization of the
PPF and are compatible with both, the local and global models.
The next sections of this review focus on studies that tried to
disentangle between these two possibilities.

Neural populations encoding higher levels of abstraction
are thought to be encoded at successively higher stages in
the processing hierarchy (Kiebel et al., 2008). This hierarchical
organization is exquisitely presented in the auditory system,
where the CN encodes a faithful representation of raw sensory
input (Rhode and Smith, 1986), the IC and MGB encode
intermediate features like formant transitions (Kuo and Wu,
2012), and auditory cortex encodes the identity of sounds
as complex auditory objects (Chechik and Nelken, 2012).
One way to test whether expectations are computed globally
and transmitted downwards through the auditory hierarchy
is to study whether SSA in IC and MGB depends on the
cerebral cortex.

Three animal studies have compared SSA in subcortical
sensory pathway nuclei before and during reversible deactivation
of the ipsilateral auditory cortex. Two of the studies used a
cryoloop to temporarily deactivate rat’s auditory cortex, and
measured SSA in neurons of the IC (Anderson and Malmierca,
2013) and MGB (Antunes and Malmierca, 2011). Both studies
reported that SSA in single neurons was affected by deactivation
of the cerebral cortex. The overall averaged amount of SSA
in IC and MGB did, however, not significantly change during
deactivation. The authors concluded that although cerebral
cortex may modulate subcortical SSA, it does not generate it.
This means that SSA cannot be solely driven by the global model
of the PPF. In contrast, a third study (Bauerle et al., 2011) used
muscimol to deactivate auditory cortex and measured SSA in
neurons of vMGB (i.e., in the lemniscal section) in gerbils. The
authors found that SSA was completely abolished after muscimol
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application, concluding that SSA indeed depends on cerebral
cortex function, supporting the global model.

Divergences between the three studies could be caused by:
(1) different deactivation methods, (2) different species, or (3)
differences between the lemniscal and non-lemniscal pathways.
Whereas deactivation by cryoloop allowed the investigators
to show recovered responses after cortical inactivation, the
longer recovery periods and possible diffusion of muscimol
(Lomber, 1999) prevented Bauerle et al. from recording post-
inactivation responses. Thus, Bauerle et al. could not completely
rule out that the abolition of SSA after drug administration
was due to irreversible damages induced during the application
of the drug or diffusion of the drug into thalamus (Bauerle
et al., 2011). Although the authors claim that side effects of
muscimol were unlikely, reproduction of the results are needed
to confirm that deactivation of auditory cortex abolishes SSA
in vMGB.

Although the studies using the cryoloop (Antunes and
Malmierca, 2011; Anderson and Malmierca, 2013) do not report
whether neurons belong to the lemniscal or non-lemniscal
subdivisions of the IC and MGB, the relatively elevated SSA
indices [SSAi > 0.18 in IC (Anderson and Malmierca, 2013)
and average SSAi ∼ 0.31 in MGB (Antunes and Malmierca,
2011)] indicate that most recorded neurons in the cryoloop
experiments belonged to the non-lemniscal subdivisions. In
comparison, SSA indices from the vMGB in Bauerle et al. (2011)
were around SSAi = 0.07, even though they used shorter ISIs
and higher intensity levels than the cryoloop studies, which
potentially elicits higher levels of SSA. One possibility is that the
cerebral cortex triggers SSA only in the lemniscal pathway. This
would be surprising, given that most corticofugal fibers target
neurons in the non-lemniscal subdivisions of the IC and MGB
(Lee and Sherman, 2011). Another possibility is that cortical
control of non-lemniscal areas depends on the stimuli used and
the specific experimental task and that the conditions used in
the animal experiments so far do not elicit top-down control
of SSA.

The thalamic reticular nucleus (TRN) is a laminar GABAergic
nucleus that covers large parts of the thalamus and serves as
interface to the cerebral cortex (Ohara and Lieberman, 1985;
Pinault, 2004). TRN neurons show even stronger SSA than nuclei
of the auditory sensory pathway, with SSA indices that double
those of the (non-lemniscal) MGB (Yu et al., 2009). Moreover,
TRN deactivation has been shown to affect the responses on
MGB after (not during) the presentation of a deviant (Yu et al.,
2009). This suggests that the deactivation does not influence the
prediction error component of MGB responses, but potentially
rather the encoding of the generative model of the sensory world.
However, Yu et al. measured the effect of TRN deactivation in
just one MGB neuron so these results should be interpreted with
caution until replications are available.

In summary, there are only very few studies investigating
corticofugal influences on presumed prediction error responses
in IC and MGB. Only two studies show that SSA in IC and MGB
is driven by top-down control (Yu et al., 2009; Bauerle et al.,
2011).

6. FAVORING EVIDENCE FOR THE GLOBAL
MODEL BASED ON MANIPULATION OF
HIGH-ORDER EXPECTATIONS

An alternative approach to study the computational principles of
the subcortical sensory pathway nuclei is to measure adaptation
in subcortical sensory nuclei while manipulating predictions
that are unlikely to stem directly from subcortical processing.
Such predictions can be derived either from complex statistical
regularities that are unlikely to be encoded in subcortical
sensory structures or from cognitive representations that are
characterized by high levels of abstraction.

One first step toward such an approach is to use paradigms
that tap into so-called meta-adaptation. Meta-adaptation is
a phenomenon where adaptation dynamics themselves adapt
depending on changes in the context in which the adaptation
dynamics occur (Robinson et al., 2016): Robinson and colleagues
exposed Guinea pigs to repeated switches between quiet and loud
environments. They observed that the adjustment in the dynamic
range of neurons in IC accelerated after repeated exposure to
the two different environments. Thus, the adaptation of the
dynamic range adapted to the novel but familiar environmental
context. This meta-adaptation effect largely attenuated after the
experimenters deactivated auditory cortex using a cryoloop.
Under the light of the PPF, the faster adaptation dynamics
would result from the prediction that switches occur often. The
result that meta-adaptation on IC depends on the integrity of
the cerebral cortex can thus be interpreted as evidence that the
generative model is encoded in auditory cortex, favoring the
global model.

Malmierca et al. (2019) used an elegant paradigm with
complex statistical regularities to investigate responses in the
anesthetized rat’s IC. The authors used as predictable entity a
pattern of two tones that was presented in a repetitive manner
(i.e., A-B-A-B-A-B. . . ). To elicit prediction error, the pattern
was rarely violated by a repetition of one of the tones (. . .A-
B-A-B-B). The rationale was that the representation of the
tone dyad A-B is putatively encoded at higher processing levels
than the representation of a single tone typically exploited in
SSA experiments. Neurons encoding prediction error in IC
would therefore only respond to violations of the pattern if
predictions encoded in higher levels are used to predict sensory
input in the IC. The authors reported that only 14 of 281
measured samples of IC neurons, located in both lemniscal and
non-lemniscal subdivisions of the nucleus, showed statistically
significant prediction errors to violation of the patterns. The
study was the first to investigate SSA in the subcortical sensory
pathway with a paradigm that it likely represented in complex
generative models in the brain. However, since the fraction of
neurons with significant prediction error reported in the study
(14/281 ≃ 4.98%) was close to the false-discovery rate of the
study (α = 0.05), replications would need to confirm this
effect unequivocally.

Yu et al. (2009) used a different approach to control
predictability: They used a light to cue the onset of the auditory
stimuli while recording from neurons of the anesthetized rat’s
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MGB. They found that the visual cue resulted in significantly
suppressed responses in 20 of 118 (≃ 17%) measured neurons
and significantly enhanced responses in 23 of them (≃ 19.5%),
both way above the false discovery rate of the study. Assuming
that the causal link connecting the visual cue to the expectations
on the auditory input is computed at a processing stage other
than the MGB, we interpret these results as evidence for the
global model. Favoring this interpretation, the authors show that
deactivation of the TRN suppresses the effects of cuing in both
directions; however, this result is once again shown in a single
neuron and should be interpreted with caution until replications
are available.

Lau et al. (2017) showed entrainment enhancement of
the FFR in humans driven by high-order predictability using
pitch contours of Mandarin syllables. The authors presented
a target syllable in three different contexts: an unpredictable
context, where the likelihood of the target was 1/3; a repetitive
context, where all stimuli were repetitions of the target; and
a patterned context, where the target was presented in a
pattern of three syllables that was repeated over and over. The
results demonstrated that the FFR entrainment was enhanced
by predictability (i.e., that the FFR was more correlated to
the stimulus waveform in the two predictable contexts than in
the unpredictable context). In addition, the entrainment was
stronger for the high-order predictability (i.e., in the patterned
context) than when predictability was dictated by repetition.
Although predictability enhancement cannot be interpreted as
prediction error dynamics within the PPF, the result that
predictability stemming from a higher level of abstraction has a
stronger weight than predictability stemming from repetition in
the strength of the FFR supports the global model.

The most recent evidence for the global model comes from
a study in humans from our lab (Tabas et al., 2020) where
we manipulated high-order predictions while preserving local
stimulus statistics. We used fMRI to measure responses in the
IC and MGB to a variation of the classical oddball sequence
where the predictability of the deviants was manipulated using
abstract rules. We disclosed to the participants that in each
oddball sequence one of the standards at positions 4, 5, or 6 will
be substituted by a deviant (Figure 2A). Since each position was
equally likely across the experiment, after 3 repetitions of the
standard subjects expect a deviant in position 4 with a likelihood
of p = 1/3, after hearing 4 standards they expect a deviant in
position 5 with p = 1/2, and after 5 standards subjects fully
expect a deviant in position 6. According to the local model of
the PPF, only the ratio between deviants and standards will have
an effect on the strength of the responses to the deviant tones
(Figure 2A, blue); according to the global model of the PPF, the
responses will be the weaker the higher the likelihood of the tone
according to the abstract rules (Figure 2A, red).

Using Bayesian Model comparison, we showed that responses
in the IC and MGB (Figure 2B) were far more likely to be
produced by a mechanism following the principles of the global
model (where the magnitude of the response decreased with
predictability) than by a mechanism following the principles of
the local model (where the magnitude of the responses decreased
with the number of times the stimulus has been repeated before).

The global model was similarly prominent in both lemniscal
and non-lemniscal sections of the MGB, revealing once again
no particular functional organization of the human auditory
pathway in respect of the PPF.

7. SUBCORTICAL PREDICTIVE
PROCESSING IN OTHER SENSORY
MODALITIES

Although here we have focused on the auditory modality, it is
likely that the processing architecture of other sensory modalities
follows similar principles. Indeed, analogous functional and
anatomical organizations have been found between the auditory
and visual (Rauschecker, 2015), and visual and somatosensory
(Pack and Bensmaia, 2015) systems. Moreover, if the auditory
pathway is organized according to a global PPF, this organization
should necessarily extend to other sensory modalities: otherwise
the predictive potential of the global model would be largely
under-exploited. There is indeed plenty of evidence that
information across modalities is integrated and applied to
sensory coding according to the principles of the PPF (see
reviews, von Kriegstein, 2012; van Wassenhove, 2013; Talsma,
2015). In this section, we describe a few examples of predictive
processing in the visual and somatosensory subcortical pathways.

Predictive coding was originally enunciated as a visual theory
(Rao and Ballard, 1999). Most literature on visual predictive
processing is concerned with the problem of extra-classical
receptive field properties in response to concurrent stimulation
(e.g., Aitchison and Lengyel, 2017). Some studies have, however,
also considered how predictions on future events are used
during the encoding of visual information in the subcortical
visual pathway. Evidence for predictive processing of this kind
has been reported in the retina (Hosoya et al., 2005; Kastner
and Baccus, 2013; Howlett et al., 2017; Johnston et al., 2019;
Kastner et al., 2019), including a study demonstrating SSA to
movement in retinal bipolar cells (Ölveczky et al., 2007); in the
superior colliculus, in the form of SSA to Gabor patterns (Jin
and Glickfeld, 2020) and luminance (Boehnke et al., 2011); and in
visual thalamus to location and polarity of light bars (Dhruv and
Carandini, 2014). In the visual thalamus, predictive feedback has
been suggested to stem from corticofugal efferents from primary
visual cortex (Jehee and Ballard, 2009; Zabbah et al., 2014), but
has yet not been demonstrated empirically. Thus, evidence to-
date in the visual subcortical pathway is compatible with both,
the global and local models of the PPF.

Adaptation to local stimulus statistics has also been reported
in the mammal (Khatri et al., 2004; Mohar et al., 2013; Liu et al.,
2017) and human somatosensory thalamus (Allen et al., 2016),
but results are compatible with both, the local and global models
of the PPF. One of these studies (Mohar et al., 2013) found a
functional subdivision of the somatosensory thalamus similar
to that of the animal literature in the auditory modality: non-
lemniscal subdivisions showed stronger adaptation dynamics
than their lemniscal counterparts. Evidence for the global model
was provided by a study (Pais-Vieira et al., 2013) that considered
the effect of anticipation on somatosensory thalamus during the
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FIGURE 2 | Evidence for the global model in the human IC and MGB. (A) Schematic view of the expected responses for the different trials by the local (blue) and the

global (red) models. (B) Posterior probability map of the global (red) and local (blue) models. z-coordinates correspond to the MNI space.

activation of the facial whiskers of the rat. Pais-Vieira et al. found
that effects of anticipation clearly present in somatosensory
thalamus vanished after deactivation of the somatosensory cortex
with muscimol. Perhaps the most compelling demonstration
that the somatosensory pathway is organized according to the
PPF is the common placebo effect, described by the PPF as
a drastic reduction of pain sensation by the imposition of a
strong analgesic prior (Büchel et al., 2014). Favoring the global
model, reduction of activity to painful stimulation after the
administration of a placebo has been found in themedulla (Matre
et al., 2006; Eippert et al., 2009).

8. CONCLUSION

Converging evidence indicates that hierarchical predictive
processing is a key feature, if not the principal encoding strategy,
of subcortical sensory pathways. In the auditory modality,
it is clear that encoding in the IC and MGB are strongly
driven by expectations on the incoming stimuli. There is,
however, still mixed evidence about the underlying mechanism
of these expectations. We have summarized the two extreme
possible architectures of the predictive processing network in two
opposing views: a local model, where each stage in the hierarchy
encodes its own representation of the stimulus and performs
predictions on the representation of the immediately lower stage;
and the global model, where a global prediction, encoded at
higher processing stages, propagates downwards generating local
predictions at all subsequent cortical and subcortical stages. In

our review of the literature we have found a few studies favoring
the local model, several studies favoring the global model, and
a large number of studies whose results are agnostic to the
architecture of the predictive processing network.

One possibility is that the feedback propagation of the
global model is adapted according to the specific context.
Electrophysiological experiments in animals are typically
performed under anesthesia. This work has impressively shown
that SSA is a fundamental automatic reaction of sensory systems
rather than a phenomenon triggered by particular cognitive
actions or arousal. In anesthesia, however, animals experience
sounds under the same context: that of drug-induced coma. The
two studies that investigated pure tone SSA on awake animals
(Duque and Malmierca, 2015; Parras et al., 2017) demonstrated
that SSA is pervasive in alert states, but used passive listening
conditions. Whether the cognitive context and behavioral
relevance of the stimuli might have deeper repercussions when
more complex models of the sensory world are necessary in order
to compute expectations has not being investigated yet. This
possibility could explain why evidence for the global model in the
IC of anesthesized rats was inconclusive (Malmierca et al., 2019),
while there was strong evidence for the global model in awake
human participants (Tabas et al., 2020). It is also possible that
not all processing stages conform under the same context to the
same model: different stages of the processing hierarchy might
depend to a greater or smaller degree on high-level expectations.
Differences between the two studies could, however, also be
explained by the many methodological differences between
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animal and human studies and by potential species-specific
differences in rodent and human sensory systems.

An important open question is exactly where the neural units
that encode the model of the sensory world used to compute
prediction error in the subcortical nuclei are located. Although
in theory there is no reason why prediction error units could not
encode the generative model in a multiplexed code, prediction
error and the model are usually argued to be encoded in
distinct populations (e.g., Friston, 2003, 2005; Bastos et al., 2012;
Spratling, 2017; Keller and Mrsic-Flogel, 2018). However, in
comparison with the evidence for the ubiquity of prediction error
units, evidence for the existence of the generative model units is
scarce in the cerebral cortex (Bell et al., 2016; Fiser et al., 2016;
Walsh et al., 2020), and practically non-existent in subcortical
areas. There is weak evidence that TRN neurons might have an
active role on applying these models in MGB (Yu et al., 2009),
but the fact that TRN neurons themselves show SSA render this
hypothesis unlikely. According to the existing formulations of the
PPF (Kiebel et al., 2008; Spratling, 2017; Keller and Mrsic-Flogel,
2018), each representational level should have a corresponding
local model (see Figure 1B). This means that, if we accept that the
IC and MGB encode different stages of the processing hierarchy,
the MGB should have a local population of neurons encoding
predictions that are transferred to the IC. Some algorithms
actually locate the predictive model at the same processing stage,
meaning that the populations encoding the model would actually
reside in the IC (Spratling, 2017). There is, however, still no
evidence for the encoding of these models in subcortical stages.
Direct corticofugal connections exist all the way down to the
cochlear nucleus (Winer, 2005a), so it is theoretically possible
that all subcortical nuclei are located at the same hierarchical
stage with respect to the PPF and that their corresponding model
is located in primary auditory cortex. However, the presence
of thalamo-collicular, thalamo-cochlear, and colliculo-cochlear
efferents (Schofield, 2011) indicate that predictions are most
likely also conveyed across different subcortical stages.

Another key ingredient necessary to understand the
architecture of the PPF is the exact mechanism underlying the
computation of prediction error and generation of predictions at
each stage. Some PPF algorithms have suggested that prediction
error might be computed by subtracting the predictions from
the sensory input via inhibition (Wacongne et al., 2012).

However, predictability leads to behavioral benefits and wrong
predictions can sometime bias perception toward incorrect
percepts (de Lange et al., 2018); an inhibitory account of the
computation of prediction error would not be able to account for
any of these effects. Moreover, the dependence of the repetition
entrainment enhancement of the FFR on predictability and
the enhancement of the responses in the MGB by visual cues
(Yu et al., 2009) seem to indicate that predictions can enhance
the sensory representation, rather than inhibiting it. Future
models of the PPF face the challenge of reconciling these findings
with the repetition/predictability suppression characteristic of
prediction error.

Understanding the neural mechanisms underlying sensory
processing is the only robust approach to understand perception.
If, as enunciated by the global PPF model, sensory processing
is a process of inference, we should remove all claims of
perceptual objectivity, pay close attention to our priors and our
internal models of the world, and question ourselves about the
realities we cannot perceive just because they are not part of
our model space. Although absolute inference is an unlikely
scenario, since wemust have formed our currentmodels based on
empirical experiences, it is possible that our reliance on inference
grows more and more as we age (Lucas et al., 2014; Sherratt
and Morand-Ferron, 2018; Cohen et al., 2020). SSA and the
discovery of the encoding of prediction in subcortical sensory
pathways have opened the gates to a deep exploration on sensory
organization that might have strong philosophical repercussions
on the way we understand what we call reality. If future work
departs from paradigms that are unspecific about the underlying
model of the sensory world, research on the PPF could lead us to
the roots of the mechanisms that make us see, hear, and feel.
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