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Inf-Sup-Constant-Free State Error Estimator for
Model Order Reduction of Parametric Systems in

Electromagnetics
Sridhar Chellappa, Lihong Feng, Valentı́n de la Rubia and Peter Benner

Abstract—A reliable model order reduction process for
parametric analysis in electromagnetics is detailed. Special
emphasis is placed on certifying the accuracy of the
reduced-order model. For this purpose, a sharp state error
estimator is proposed. Standard a posteriori state error estimation
for model order reduction relies on the inf-sup constant. For
parametric systems, the inf-sup constant is parameter-dependent.
The a posteriori error estimation for systems with very small
or vanishing inf-sup constant poses a challenge, since it is
inversely proportional to the inf-sup constant, resulting in overly
pessimistic error estimation especially at and around resonance
frequencies. Such systems appear in electromagnetics since the
inf-sup constant values are close to zero at points close to resonant
frequencies, where they eventually vanish. We propose a novel a
posteriori state error estimator which avoids the calculation of the
inf-sup constant. The proposed state error estimator is compared
with the standard error estimator and a recently proposed one
in the literature. It is shown that our proposed error estimator
outperforms both existing estimators. Numerical experiments are
performed on real-life microwave devices such as narrowband
and wideband antennas, two types of dielectric resonator filters
as well as a dual-mode waveguide filter. These examples show
the capabilities and efficiency of the proposed methodology.

Index Terms—Computational techniques, error estimation,
finite element method, Galerkin method, microwave circuits,
numerical analysis, reduced basis method, reduced order
modelling

I. INTRODUCTION

THE rapid rise in demand for novel communication
devices with an emphasis on optimal performance has

posed a challenge to the standard design and prototyping
workflow to manufacture such devices. As a result, a
great computational effort is carried out to get physical
insight from time-consuming electromagnetic simulations by
means of parametric studies. The ultimate goal of these
parametric analyses is to develop robust and effective electrical
designs, which are of paramount importance for industry.
Different efforts in the computational electromagnetic (CEM)
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community have been carried out to speed this costly process
up and many of them follow the model order reduction (MOR)
trend [1], [2], [3], [4], [5], [6], [7], [8], [9], [10].

MOR has demonstrated its robustness in reducing the
complexity of parametric systems [11], [12]. While many
works proposing new MOR methods are available, not all
of them guarantee the accuracy of the proposed methods by
providing an error analysis of the methods, e.g., [2], [3].
It is quite usual that the proposition of corresponding error
estimation lags behind new algorithms. So far, the standard
a posteriori state error estimator is widely used if no better
choice is available, namely, residual norm divided by the
inf-sup constant [10], [11], [13], [14]. As already stated in [15],
keeping the inf-sup constant in the denominator of the error
estimator causes risk for many problems with small inf-sup
constants. The system of time-harmonic Maxwell’s equations
is one of them since it has inf-sup constants close to zero
near to resonant frequencies. This leads to an error estimator
having very large magnitude at those frequencies, even though
the true error is already very small [16], [17], [18].

Some a posteriori error estimators independent of
the inf-sup constant are recently proposed in [15], [19]. There,
instead of computing the inf-sup constant, additional dual or
residual systems are solved to obtain the error estimators. A
state error estimator is proposed in [19], and an output error
estimator is considered in [15]. The output error estimators
are of interest when the accuracy of the outputs needs to be
guaranteed by the reduced-order model (ROM). However, for
some cases, e.g., for fast frequency sweeps in electromagnetics
as well as in acoustics [16], [17], the state vector should be
accurately approximated by the ROM. The error estimator
in [15] is motivated by the aim to control the output error
and can hardly be applied to estimate the error of the whole
state vector. Therefore, state error estimation is important for
generating accurate ROMs in such situations.

As the central contribution of this work, we introduce a
new a posteriori error estimator for the state error introduced
by the ROM approximation. The proposed estimator avoids
computing the inf-sup constant. Instead, it exploits a residual
system to construct the estimator. The same residual system
was also used in [19]. However, our newly proposed error
estimator is more accurate and more efficient to compute
than the one detailed in [19], according to our analyses
in Section IV-A. To avoid the expensive inf-sup constant
computation, the norm of the residual introduced by the ROM
is often heuristically used as an error estimator. On the one
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hand, from our analysis in Section II-A, it is not theoretically
reliable, and may not guarantee the accuracy of the ROM
for certain problems. On the other hand, although it gives
acceptable results for many problems, the residual estimator
often overestimates the true error, often with effectivity factor
much larger than 10. The proposed error estimator not only
theoretically guarantees the accuracy of the ROM, but is also
much more accurate, with the effectivity factor around 1.
Further, an adaptive algorithm is proposed to iteratively build
the ROM by using this new state error estimator.

The rest of the paper is organized as follows. In Section II,
we introduce the parametric problem in electromagnetics
considered in this work, and the standard state error estimation.
The new state error estimation is proposed in Section III.
The estimator proposed in [19] is reviewed and theoretically
compared with our proposed estimator in Section IV.
Numerical simulations in Section V show the performance of
the proposed estimator, as well as the results of the standard
estimator and the estimator in [19]. Finally, in Section VI, we
provide conclusions.

II. PARAMETRIC PROBLEM AND STANDARD STATE ERROR
ESTIMATION

The systems we are interested in are steady (time-harmonic),
linear, parametric systems in the form of,

A(µ)x(µ) = b(µ). (1)

Here, µ ∈ Cm is the vector of parameters, A(µ) ∈ Cn×n is
the system matrix, b(µ) ∈ Cn, and x(µ) ∈ Cn is the state
solution, n is assumed to be large, say n ∈ O(105). System
(1) is referred to as the full order model (FOM). Such systems
arise from numerical discretization of partial differential
equations (PDEs) and integral equations (IEs), such as the
time-harmonic Maxwell’s equations where differential and
integral approaches are both possible.

The ROM can be obtained based on Galerkin projection,

Â(µ)z(µ) = b̂(µ), (2)

where the reduced matrices are given by Â(µ) = V TA(µ)V ∈
Cr×r, b̂(µ) = V T b(µ) ∈ Cr and V ∈ Rn×r is the projection
matrix spanning the reduced space. z(µ) ∈ Cr stands for the
reduced state vector. r � n is the order of the ROM. The
approximate state vector obtained from the ROM is x̂(µ) =
V z(µ), such that x(µ) ≈ x̂(µ).

Remark 1: The system setting and the error estimators
presented in the following can be readily extended to systems
with multiple inputs [15], i.e., the right-hand side is a matrix
B(µ) ∈ Cn×p. Please also refer to the details in Section V,
where a circuit with two ports is used to test the error
estimators. The true solution in this case is X(µ) ∈ Cn×p
and the corresponding approximate solution matrix is X̂(µ) =
V Z(µ), Z(µ) ∈ Cr×p. For simplicity of explanation in the
following sections, we consider a single-input system.

Next, we introduce the standard state error estimation and
point out the role of the inf-sup constant.

A. Standard State Error Estimation

The residual obtained by substituting the approximate
solution into the FOM is given by

r(µ) = b(µ)−A(µ)x̂(µ). (3)

Then from (1), we obtain,

r(µ) = A(µ)x(µ)−A(µ)x̂(µ), (4)

so that

‖e(µ)‖ := ‖x(µ)− x̂(µ)‖ = ‖A(µ)−1r(µ)‖. (5)

The standard a posteriori state error estimation is obtained
by invoking the sub-multiplicativity property of the operator
norm in (5). We state the following proposition:

Proposition 1: If A(µ) is nonsingular, then the norm of the
error e(µ) in (5) is bounded above and below by the norm of
the residual ‖r(µ)‖2 as

1

σmax
‖r(µ)‖2 ≤ ‖e(µ)‖2 ≤

1

σmin
‖r(µ)‖2 (6)

with σmax and σmin being the maximal and minimal singular
values of the matrix A(µ), respectively.
Proof From (4), we can show the following upper bound on
the residual:

‖r(µ)‖2 = ‖A(µ)e(µ)‖2,
≤ ‖A(µ)‖2‖e(µ)‖2 = σmax‖e(µ)‖2.

Next, starting once again from (4), we derive an upper bound
for the error:

r(µ) = A(µ)e(µ),

=⇒ e(µ) = A(µ)−1r(µ).

Hence,

‖e(µ)‖2 = ‖A(µ)−1r(µ)‖2
≤ ‖A(µ)−1‖2‖r(µ)‖2 =

1

σmin
‖r(µ)‖2.

Combining the above two bounds, the proposition is shown to
be true.

Through this inequality, we define the upper bound for the
state approximation error

‖e(µ)‖ = ‖x(µ)− x̂(µ)‖ ≤ 1

σmin
‖r(µ)‖ =: δ(µ). (7)

Further, in this discretized setting, σmin plays the role of the
inf-sup constant. However, the standard error estimator δ(µ)
approaches infinity when the matrix A(µ) is close to singular
at some values of µ, resulting in a rather poor estimation
and a rough bound. This is true for many problems [15].
Furthermore, the above error estimation leads to unacceptable
overestimation of the state error even for well-conditioned
problems [20]. Given no better choices, the residual norm
‖r(µ)‖ is often used as a heuristic error estimator [21], [22],
[23], [24], [25], [26], [27], [28], [29]. However, it is clear from
(6) that using ‖r(µ)‖ as the error estimator is not reliable, as
the scaling factor before it is completely ignored. In particular,
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when σmax � 1, we have ‖e(µ)‖ � ‖r(µ)‖, meaning ‖r(µ)‖
may underestimate the true error much. In the next section,
we propose a new error estimator that avoids computing the
inf-sup constant while being theoretically more reliable than
the heuristic estimator ‖r(µ)‖.

III. PROPOSED STATE ERROR ESTIMATION

From (4), we know that

A(µ)(x(µ)− x̂(µ)) = r(µ).

To compute the error e(µ) for each value of µ, we need to
solve the residual system corresponding to each µ:

A(µ)e(µ) = r(µ). (8)

Note that the residual system (8) is of the original large
dimension n. It is not practical to solve many large systems
at many values of µ in order to know the error distribution in
the whole parameter domain. For fast error estimation, we first
construct the ROM of the residual system using a projection
matrix Ve ∈ Rn×` that spans the error subspace. This is given
as,

Ã(µ)ze(µ) = r̃(µ), (9)

where Ã(µ) = V Te A(µ)Ve, r̃(µ) = V Te r(µ), and ẽ(µ) :=
Veze(µ) approximates e(µ). Then, our proposed state error
estimation is given by ‖ẽ(µ)‖, i.e.

‖x(µ)− x̂(µ)‖ = ‖e(µ)‖ ≈ ‖ẽ(µ)‖. (10)

We obtain the following analysis for the rigorousness and
tightness of the state error estimator ‖ẽ(µ)‖.

Theorem 1: The state error ‖e(µ)‖ can be bounded by
‖ẽ(µ)‖ as follows:

‖ẽ(µ)‖ − γ(µ) ≤ ‖e(µ)‖ ≤ ‖ẽ(µ)‖+ γ(µ). (11)

Here γ(µ) = ‖e(µ)− ẽ(µ)‖ ≥ 0 is independent of the inf-sup
constant and it is a small value if ẽ(µ) well approximates
e(µ), which is achievable by accurate MOR of the residual
system (8).
The theorem can be easily proved by applying the triangular
inequality to ‖e(µ)− ẽ(µ)‖, and is not detailed here.

Remark 2: Theorem 1 is also valid for a complex matrix
V ∈ Cn×r. Considering that a real matrix V is used in our
numerical tests (see Remark 5), we keep V real all through
the paper to avoid confusion.

A. Computing the State Error Estimator

In order to compute the state error estimator ‖ẽ(µ)‖, we
need to construct the ROM (9) for the residual system (8).
Consequently, the projection matrix Ve has to be computed. In
a similar manner as in [15], we look at the residual system (8)
in order to identify the subspace for the trajectory of the state
error vector e(µ):

e(µ) = A(µ)−1r(µ)
= A(µ)−1(b(µ)−A(µ)x̂(µ))
= A(µ)−1b(µ)− x̂(µ)
= A(µ)−1b(µ)− V z(µ).

(12)

Note that A(µ)−1b(µ) is nothing but the state solution x(µ).
Suppose there exists a projection matrix Vr ∈ RN×r such that
its columns span a subspace Vr in which x(µ) can be well
approximated, then x(µ) can be approximately represented
by the columns of Vr, i.e. x(µ) ≈ Vrzr(µ) with zr(µ) :=
V Tr x(µ). Thus,

e(µ) = A(µ)−1b(µ)− V z(µ)
≈ Vrzr(µ)− V z(µ).

(13)

It is clear from (13) that e(µ) can be approximated by the
linear combination of the columns in Vr and V . Therefore,
we can construct Ve as

Ve = orth([Vr, V ]), (14)

where we use MATLAB® notation to denote the
orthogonalization of the column space of the input argument
of the orth function.

Since the state error vector e(µ) 6= 0, range(Vr) should
be different from range(V ) used for constructing the original
system ROM (2). Notice that, if Vr = V , this implies Ve = V .
The following theorem holds:

Theorem 2: If Ve = V , then ‖ẽ(µ)‖ = 0.
Proof Suppose that Ve = V . The ROM (9) reads

Â(µ)ze(µ) = r̃(µ),

where we have used the fact that Ã(µ) = Â(µ) for Ve = V .
Substituting (3) into r̃(µ) = V T r(µ), we get

ẽ(µ) = V ze(µ),

= V
(
Â(µ)−1(V T r(µ))

)
,

= V
(
Â(µ)−1V T ( b(µ)−A(µ)x̂(µ) )

)
(using (3)),

= V
(
Â(µ)−1( b̂(µ)− Â(µ)z(µ) )

)
,

= V
(
Â(µ)−1(0)

)
(using (2)),

= 0.

The computation of Vr (avoiding Vr = V ) will be detailed in
Algorithm 1.

In the next subsection, we propose an algorithm for
constructing the ROM (2) of the original FOM (1) by using
the proposed state error estimator ‖ẽ(µ)‖.

Remark 3: The expression for the error e(µ) in (13) is seen
to be similar to a heuristic approach to check the accuracy
of a ROM by using two separate reduced-order models of
varying orders and determining the difference between their
approximation of the state vector. However, we emphasize
that our approach has its differences. Our approach uses
ẽ(µ) defined in (10), which has a guaranteed accuracy as
per Theorem 1. Whereas, using the norm of Vrzr(µ) −
V z(µ) in (13) as an error estimator is not guaranteed to be
accurate. Moreover, the heuristic approach does not provide
any guidance on which criteria to use to compute Vr and V so
that ‖Vrzr(µ)− V z(µ)‖ is an accurate estimation. Therefore,
this approach can only be heuristically implemented.
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Algorithm 1 Constructing the ROM (2) using the state error
estimator ‖ẽ(µ)‖
Input: System matrix and right-hand side vector A(µ), b(µ),

training set Ξ including a certain number of samples of
µ, tolerance tol for the acceptable state error.

Output: ROM (2).
1: Initialize V = [ ], Ve = [ ], ε = 1 + tol. Two different

samples µ∗ and µ∗e randomly taken from Ξ.
2: while ε > tol do
3: Compute V (µ∗) using a favorite MOR method and

update V : V = orth([V, V (µ∗)]).
4: Compute Vr(µ

∗
e) using a favorite MOR method and

update Vr: Vr = orth([Vr, Vr(µ
∗
e)]).

5: If a real V is preferable, then
V := orth

([
real(V ) , imag(V )

])
; also, if a real Vr is

preferred, then Vr := orth
([

real(Vr) , imag(Vr)
])

.
6: Form Ve: Ve = orth([Vr, V ]).
7: Compute the estimated state error vector ẽ(µ) using V

and Ve.
8: Choose the next sample µ∗ from Ξ as

µ∗ = arg max
µ∈Ξ
‖ẽ(µ)‖.

9: Choose the next sample µ∗e from Ξ following

µ∗e = arg max
µ∈Ξ
‖re(µ)‖,

where re(µ) = r(µ)−A(µ)ẽ(µ).
10: ε = ‖ẽ(µ∗)‖.
11: end while
12: Use V to construct the ROM: Â(µ) = V TA(µ)V , b̂(µ) =

V T b(µ).

B. Constructing the ROM

The algorithm for constructing the ROM (2) is detailed
in Algorithm 1, where the proposed state error estimator is
used to select samples of the parameter µ for computing the
projection matrix V . We make some remarks to highlight
various aspects of Algorithm 1.
• orth(·) in Algorithm 1 means to orthonormalize the

columns of the matrices inside the parentheses to get
a single orthonormal matrix. This can be done by, e.g.,
modified Gram-Schmidt process or QR decomposition.

• The algorithm is automatic. The user needs only to
provide a training set Ξ. Adaptive sampling approaches
for iteratively updating the training set exist [30], [31],
[32], [33] and can be combined with Algorithm 1. Since
it is not the focus of the paper, we will present the
corresponding algorithm elsewhere.

• In Steps 3-4, parameter dependent matrices V (µ∗) and
Vr(µ

∗
e) can be computed using a favorite MOR method.

When using the reduced basis method, we have

V (µ∗) = A(µ∗)−1b(µ∗), Vr(µ
∗
e) = A(µ∗e)

−1b(µ∗e).

In [15], a multi-moment-matching method [34] is used
to compute V (µ∗), which can also be used to compute
Vr(µ

∗
e). We do not repeat the details in this work.

• It is important that the parameter samples µ∗ and µ∗e must
be different, otherwise, this may lead to V = Vr, which
is in contradiction with the analysis in Subsection III-A
(see (13)). Therefore, we choose two different initial
samples, and select two different sequential ones in
Step 8 and Step 9, respectively. In Step 9, we simply
use ‖re(µ)‖, the residual norm introduced by ẽ(µ), the
approximate solution to the residual system (8), as the
indicator for selecting µ∗e in a greedy strategy. We have
re(µ) = r(µ)−A(µ)ẽ(µ).

• ε is taken as the maximal value of the state error
estimator, i.e. ‖ẽ(µ∗)‖.

• Algorithm 1 involves increased computational effort (one
additional FOM solution at every greedy iteration), when
compared to a greedy algorithm using the residual norm
‖r(µ)‖ as a heuristic error estimator. However, this is
a small price to pay considering the by far increased
reliability of the proposed state error estimator ‖ẽ(µ)‖.
A residual norm can easily over- or underestimate the
true error. On the one hand, overestimation of the true
error often leads to a ROM whose reduced dimension r
is unnecessarily large for the desired tolerance; this is
the case when the inf-sup constant σmin is large. On the
other hand, underestimation of the true error can falsely
trigger an early termination of the greedy algorithm, thus
resulting in a poor ROM. This is true for systems for
which σmax is small, e.g., σmax ≤ 0.1; see (6). We also
emphasize that the additional computational cost for the
proposed state error estimator is restricted to the offline
stage of MOR and that there is no reduction of the
computational speedup at the online stage.

IV. REVIEW OF THE RANDOMIZED STATE ERROR
ESTIMATOR

In this section, we briefly summarize an existing approach
in literature [19], which also proposes an inf-sup constant free
a posteriori error estimator. We also compare and contrast
the key differences between the error estimation methodology
from [19] and our proposed method.

A randomized state error estimator is proposed in [19] for
Galerkin projection based MOR. It is stated that the ‖ · ‖Σ
norm of the state error satisfies

‖e‖2Σ = eTΣe = eTE(zzT )e = E((zT e)2), (15)

where z ∈ Rn is a zero mean Gaussian random vector with
covariance matrix Σ ∈ Rn×n and E(·) refers to the expected
value or the mean value.

An approximation to E((zT e)2) is firstly proposed,

E((zT e)2) ≈
( 1

K

K∑
i=1

(zTi e)
2
)1/2

, (16)

where zi ∈ Rn are K samples of z. After simple derivations,
it is proved that [19]

( 1

K

K∑
i=1

(zTi e)
2
)1/2

=
( 1

K

K∑
i=1

(ξi(µ)T r(µ))2
)1/2

, (17)
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where r(µ) is the residual defined in (3) and the parametric
functions ξi(µ), i = 1, . . . ,K, satisfy the following K random
dual systems, respectively,

A(µ)T ξi(µ) = zi, 1 ≤ i ≤ K. (18)

To define the error estimator, reduced systems for those K
random dual systems are first constructed as,

V TrdA(µ)TVrdξ̂i(µ) = V Trdzi, 1 ≤ i ≤ K.
The subscript rd is short for random dual. Then ξi(µ) can
be approximated by Vrdξ̂i(µ) as ξi(µ) ≈ ξ̃i(µ) := Vrdξ̂i(µ).
Finally, the state error estimator is defined as

∆̃(µ) =
( 1

K

K∑
i=1

(ξ̃i(µ)T r(µ))2
)1/2

. (19)

It is proved in [19] that if Vrd = Ve, then ∆̃(µ) in (19) can
be written as

∆̃(µ) =
( 1

K

K∑
i=1

(zTi ẽ(µ))2
)1/2

. (20)

Note that Ve and ẽ(µ) are defined in (9). This means, with the
assumption Vrd = Ve, ∆̃(µ) is an average of K inner products
of zi and ẽ(µ), i = 1, . . . ,K.

A. Comparison between ∆̃(µ) and ‖ẽ(µ)‖
• It is clear that ∆̃(µ) is an approximation to(

1
K

K∑
i=1

(ξi(µ)T r(µ))2
)1/2

in (17). The approximation is

caused by MOR for the K random dual systems in (18);
or alternatively by MOR for the residual system (8)
if ∆̃(µ) in (20) is considered. Combining (15), (16)

and (17), we see that
(

1
K

K∑
i=1

(ξi(µ)T r(µ))2
)1/2

is

again an approximation to the state error ‖e‖Σ.
Whereas, our proposed state error estimator ‖ẽ‖ is
a direct approximation to the state error ‖e‖, where
the approximation is only introduced by MOR for the
residual system (8). If similar accuracy of MOR for both
error estimators is obtained, then ‖ẽ‖ should be more
accurate than ∆̃(µ).

• For computing ∆̃(µ), no efficient method is proposed
in [19] to compute the projection matrix Ve for the
reduced residual system (9). Instead, two algorithms are
proposed [19, Algorithms 3.1, 3.2] to compute Vrd and
reduce the K random dual systems (18). In contrast, we
have proposed an efficient method of computing Ve in
subsection III-A, so that only one system needs to be
reduced.

• If ‖·‖2 is used for both error estimators, then Σ for ‖e‖Σ
is the identity matrix, according to (15).

V. NUMERICAL RESULTS

We test the proposed state error estimator ‖ẽ(µ)‖ and the
existing ones on six different real-life applications. The first
is a dual-mode circular waveguide filter, and two excitation
ports are considered. The next three examples are models of

narrowband and wideband antennas, where only one excitation
port is taken into account. To illustrate the wide applicability
of the proposed approach, we choose challenging models for
the last two examples. The fifth example is that of a coax-fed
dielectric resonator filter, consisting of many resonances over
the frequency range of interest, while for the final example,
we consider a three-parameter inline dielectric resonator filter
in which the dielectric constants in two spatial regions of the
filter are considered as additional parameters. After numerical
discretization of the time-harmonic Maxwell’s equations by
means of the finite element method (FEM), the systems can
be written in the form of (1). The in-house code for FEM
simulations uses a second-order first family of Nédélec’s
elements [35], [36] on meshes provided by Gmsh [37]. Fast
frequency sweep is considered for the first five examples. As a
result, only one parameter models are taken into account with
µ = s := 2πf . Here, s is the complex frequency variable,
 is the imaginary unit, and f is the frequency with unit Hz.
The system matrix has the affine form given by,

A(s) := S + sU + s2T ,

where S is the stiffness matrix, T is the mass matrix and U is
the FEM matrix related to the first-order absorbing boundary
conditions (ABC) and S,U , T ∈ Rn×n. B(s) := sQ with
Q ∈ Rn×p, with p being the number of ports and Q being a
matrix related to the excitation currents at the ports. Finally,
the state solution X(s) ∈ Cn×p stands for the electric field
in the analysis domain. It should be pointed out that integral
equation methods for electromagnetic scattering can be taken
into account as parametric problems in (1) [29], [38]. By
the same token, other parameters than frequency are also
possible [39]. Therefore, for the last example, in addition to the
frequency response, we are also interested in the variation of
the system response with respect to the two dielectric constants
d1, d2. We have µ = (s, d1, d2). The system matrix for the
final example has the following affine form:

A(s) := S + sU + s2
(
T0 +

d1

dref
T1 +

d2

dref
T2

)
with T0, T1, T2 ∈ Rn×n, and dref being the reference dielectric
constant of the dielectric material in the analysis domain.

In our experiments, we define the true error (εtrue) based on
the number of input ports. We first consider the error for each
column Xi(µ) of the solution X(µ) separately and define the
maximal true error as,

εtrue = max
i∈{1,...,p}
µ∈Ξ

‖Xi(µ)− X̂i(µ)‖,

where X̂i(µ) is the i-th column of the approximate solution
X̂(µ). Here, Ξ denotes the training set consisting of elements
sampled from the parameter space. Note that for each i, the
system of Xi(µ) is a single input system, i.e. A(µ)Xi(µ) =
Bi(µ), where Bi(µ) is the i-th column of B(µ). We use the
maximal error estimator to estimate εtrue:

εest = max
i∈{1,...,p}
µ∈Ξ

∆i(µ).
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∆i(µ) refers to any of the four error estimators used to
estimate the error ‖Xi(µ)−X̂i(µ)‖: the residual norm ‖r(µ)‖
(3), the standard error estimator δ(µ) (7), the randomized
error estimator ∆̃(µ) (20), and the proposed state error
estimator ‖ẽ(µ)‖ (10). We use the metric of effectivity to
gauge how close the estimated error is to the true error:
eff := Error estimator

True error = εest
εtrue

. For each of the six examples
considered, we evaluate the performance of the four error
estimators. In the sequel,
• Test 1 refers to the greedy algorithm with the standard

error estimator δ(µ),

• Test 2 denotes the greedy algorithm employing the
residual norm ‖r(µ)‖ as a heuristic error estimator,

• Test 3 uses the randomized error estimator ∆̃(µ) from
[19], to drive the greedy algorithm and

• Test 4 consists of the proposed error estimator ‖ẽ(µ)‖ in
the greedy algorithm.

In all numerical tests, the vector 2-norm ‖ ·‖2 is used for both
the true and estimated errors.

Remark 4: Note that the error εtrue and error estimators are
defined for the scaled solution after scaling the right hand side
matrix B(µ) with a proper scaling constant in order to avoid
large norm of the solution X(µ). This is due to the fact that the
entries in the left hand side matrix A(µ) have much smaller
magnitudes than those in B(µ) because of the large value of s
associated with Q. Without scaling, both X(µ) and X̂(µ) have
large norms, leading to large absolute errors, which cannot
reflect the real accuracy of the ROM. Therefore, we first scale
the right hand side and then construct the ROM. The scaling
constant scale is determined by looking at the magnitude of
the largest entry in the right-hand side matrix B(µ) := sQ.
The approximate solution X̂(µ) can be recovered by scaling
back without losing any accuracy. The scaling constant we
take here is scale = 10 5 , and the right hand side after scaling
is sQ/scale.

Remark 5: Algorithm 1 is tailored for the proposed error
estimator ‖ẽ‖, which can be seen from Steps 7-8 of the
algorithm. Similar greedy algorithms can be developed for
the other three error estimators. To avoid redundancy, we
do not list the corresponding algorithms for those estimators.
However, we should point out that although we use the same
name: greedy algorithm for all the error estimators, they are
not the same algorithm, but the corresponding algorithm for
each of the estimators. The fact that greedy algorithms may
be different with different error estimators is mainly due to
the fact that different computational steps (e.g., projection
matrices) could be involved in computing the error estimators.
For example, instead of Ve, Vrd is needed for computing
the randomized error estimator ∆̃(s). In particular, we use
the greedy algorithm proposed in [19] for the randomized
estimator.

Remark 6: For the randomized error estimator ∆̃(µ) in Test
3, we make use of Algorithm 3.1 from [19] to construct Vrd,
where a separate greedy algorithm is used. For this purpose,
tolrd is defined to be the tolerance for this separate greedy
procedure to generate Vrd.

Remark 7: For the three antenna examples in this work,
the state vectors are complex, so that the projection matrix
V obtained in Steps 3-4 of Algorithm 1 is complex.
However, the system matrices S, U , T are all real. It is seen
that colspan{V } ⊂ colspan{Re(V ), Im(V )} over C. Here
colspan{·} means the subspace spanned by the columns of
a matrix (the matrices). Then, from the proof of Lemma 6.2
in [34], it can be easily proved that the ROM constructed using
Ṽ := orth

[
Re(V ), Im(V )

]
and the ROM computed using

V satisfy the same moment-matching property in Theorem
6.1 from [34]. Based on this observation, we redefine a real
projection matrix V as V := Ṽ to make the reduced matrices
Ŝ, Û , T̂ also real, but still keep the same approximation
property as the original complex-valued V .

Owing to the large size of the models, the simulations
for all the examples were performed on a workstation with
3 GHz Intel®Xeon E5-2687W v4 processor and 256 GB of
RAM, with MATLAB®2019b. It should be pointed out that, in
our experiments, the CPU time performance is not optimized,
since MATLAB®code is used in the numerical computations.
However, a fair comparison among the different methodologies
is taken into account.

A. Example I : Dual-Mode Circular Waveguide Filter

Fig. 1 shows a dual-mode circular waveguide filter as well
as its geometry dimensions and mesh for FEM analysis.
Dual-mode filters are widely used in satellite communication,
due to their power handling capabilities [21], [40]. We consider
a system with p = 2 input ports. The dimension of the system
is n = 36, 426 and the system matrix is A(s) = S+s2T . This
time, we solve for the E-wall cavity problem and no ABC is
needed, as a result, U ≡ 0. The frequency band of interest is
[11.5, 12] GHz. The tolerance for the state error of the ROM
is set to be tol = 10−6. The training set Ξ for Algorithm 1
is made up of 101 uniformly sampled f ∈ [11.5, 12] GHz.

1) Test 1. Standard error estimator: For the first test,
we use the standard error estimator δ(s), which involves
computing the inf-sup constant. Calculating the inf-sup
constant for all parameters in the training set is expensive.
Fig. 2a shows that the greedy algorithm requires 10 iterations
to converge to the defined tolerance. Fig. 2b plots the
effectivity changing with iteration number. It is of order
O(100), showing that δ(s) is not sharp. The algorithm results
in a ROM of size 20.

2) Test 2. Residual norm as a heuristic error estimator:
We use the norm of the residual ‖r(s)‖2 as an estimator
for the state error. Fig. 3a illustrates the convergence of
the corresponding greedy algorithm which stops within 10
iterations. The effectivity in Fig. 3b is of order O(10). The
algorithm results in a ROM of size 20.

3) Test 3. Randomized error estimator: To compute
the randomized estimator ∆̃(µ) from [19], K = 20
random vectors are generated from a normal distribution
by the MATLAB®command mvnrnd with seed 0, using
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Fig. 1. Dual-mode circular waveguide filter. Cavity length 43.87 mm, radius
14 mm, iris thicknesses 1.5 mm, slot lengths 10.05 mm, slot widths 3 mm,
arm widths 2 mm, horizontal arm length 7.65 mm, vertical arm length 8.75
mm, tuning screw depth 3.59 mm and coupling screw depth 3.31 mm.

2 4 6 8 10

104

10−1

10−6

Iterations

M
ax

im
um

er
ro

r εest
εtrue

(a)

2 4 6 8 10
0

200

400

Iterations

e
f
f

(b)

Fig. 2. Dual-mode circular waveguide filter: results for Test 1. (a)
Convergence of the greedy algorithm. (b) Effectivity (eff).

the MersenneTwister random number generator. The
projection matrix Vrd is constructed for the K random
dual systems in (18), using Algorithm 3.1 in [19] with
tolrd = 0.5. It is seen from Fig. 4a that the greedy
algorithm takes 8 iterations to converge leading to a
ROM of order 16. In Fig. 4b, the effectivity of ∆̃(µ) is
plotted. Although it is close to one, there are obvious
underestimations at some iterations. Furthermore, generating
Vrd takes considerable time as shown in Table I, even for
relatively large error tolerances (∼ O(10−1)).

4) Test 4. Proposed error estimator: The performance of
‖ẽ(s)‖2 is tested by using Algorithm 1. As illustrated in Fig. 5,
Algorithm 1 needs 8 iterations to converge with effectivity
very close to 1. Compared with the standard error estimator
δ(µ) and the residual norm error estimator ‖r(µ)‖2, ‖ẽ(s)‖2
is much tighter, and therefore converges faster leading to a
ROM of smaller order r = 16. It is also more reliable than the
randomized estimator ∆̃(µ) with almost no underestimation.
Fig. 6 provides a comparison of the scattering parameter
response for this filter resulting from the FOM and the ROM.
As can be seen, the ROM obtained using Test 4 produces a
very good match.

For the next set of tests, we consider three different antenna
models:

(i) Substrate Integrated Waveguide (SIW) antenna.
(ii) Antipodal Vivaldi (AV) antenna.

(iii) Dielectric Resonator (DR) antenna.
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Fig. 3. Dual-mode circular waveguide filter: results for Test 2. (a)
Convergence of the greedy algorithm. (b) Effectivity (eff).
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Fig. 4. Dual-mode circular waveguide filter: results for Test 3. (a)
Convergence of the greedy algorithm. (b) Effectivity (eff).

For each of the models, we perform Tests 2, 3 and 4, as
for Example I. For these examples, performing Test 1 is
computationally expensive; moreover, the resulting estimation
of the error is not sharp, just like in Example I. Therefore, for
the remaining examples, we do not show the additional results
involving the standard error estimator.

B. Example II : Substrate Integrated Waveguide Antenna

Such antennas have gained popularity recently owing to
their low-cost and efficiency [41]. Fig. 7 shows the model of
the antenna along with the mesh used for its discretization.
The system is of order n = 390, 302, with just one input. The
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Fig. 5. Dual-mode circular waveguide filter: results for Test 4. (a)
Convergence of Algorithm 1. (b) Effectivity (eff).
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Fig. 6. Dual-mode circular waveguide filter: scattering parameter responses of
FOM and ROM computed from Test 4. Top: The magnitudes of the scattering
parameter responses |S11|, |S21|; Bottom: The phases ∠(S11),∠(S21).

frequency band of interest is [6, 9] GHz. The training set Ξ
consists of 61 uniformly sampled parameters from this band.
The tolerance (tol) for the greedy algorithm is set as 10−4.

1) Test 2. Residual norm as a heuristic error estimator:
We illustrate the convergence of the greedy algorithm using
the residual estimator in Fig. 8a. The algorithm converges in
8 iterations to a ROM of size r = 16 and takes around 12
minutes. The effectivity shown in Fig. 8b is less than one for
the first four iterations, meaning the estimator underestimates
the true error. For the next four iterations, it is of order
O(10). Using the residual norm as an error estimator enjoys
the advantage that it is very easy to implement, with only
marginal overhead costs in terms of computation. However,
in general, it is a crude approximation to the actual error.

2) Test 3. Randomized error estimator: Next, we use
the error estimator from [19]. We use K = 5 randomly
distributed vectors, each of length n to construct Vrd. The
random number generator MersenneTwister was used
with the seed set to 1. The tolerance used to obtain Vrd is
tolrd = 1. Even for such a crude tolerance, the algorithm
requires around 28 minutes to converge. The long time to
converge and the lack of any a priori knowledge to choose
the number of random vectors K and the tolerance are the
main disadvantages of using this algorithm. Fig. 9 shows the
convergence of the greedy algorithm and the effectivity. The
overall procedure requires 7 iterations to converge to a ROM
of dimension r = 14.

3) Test 4. Proposed error estimator: For the proposed error
estimator, we show the results of Algorithm 1 in Fig. 10. It
requires 7 iterations to converge to a ROM with r = 14. The
overall time to converge was around 21 minutes, much less

Fig. 7. Geometry of the SIW antenna proposed in [41].
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Fig. 8. SIW antenna: results for Test 2. (a) Convergence of the greedy
algorithm. (b) Effectivity (eff).

than the time required to precompute Vrd in Test 3. Further,
compared to the other methods, the proposed method achieves
a better effectivity, where only at the first two iterations, the
error estimator underestimates the true error. This is quite
reasonable, since at those stages the ROM of the residual
system (8) is not yet accurate enough, leading to large γ(µ) in
(11). In Fig. 11 we show the scattering parameter response at
the coaxial port obtained from the FOM and the ROM using
Test 4. The results are nearly identical, thus showing the good
approximation capabilities of the proposed approach.
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Fig. 9. SIW antenna: results for Test 3. (a) Convergence of the greedy
algorithm. (b) Effectivity (eff).
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Fig. 10. SIW antenna: results for Test 4. (a) Convergence of Algorithm 1.
(b) Effectivity (eff).
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Fig. 11. SIW antenna: scattering parameter responses of FOM and ROM
computed from Test 4. Top: The magnitude of the scattering parameter
response |S11|; Bottom: The phase ∠(S11).

C. Example III : Antipodal Vivaldi Antenna

For the next example, we employ an Antipodal Vivaldi
antenna. It is known for good wide-band impedance
performance [42] and contains a large number of in-band
resonances. The discretized model, shown in Fig. 12 is of
dimension n = 283, 846 with f ∈ [1, 6] GHz being the
parameter space of interest. The tolerance for the ROM is set
as 10−3. The training set is made up of 51 uniform samples
from the parameter range of interest.

1) Test 2. Residual norm as a heuristic error estimator: In
Fig. 13a the convergence of the greedy algorithm is shown.
The algorithm requires up to 20 iterations to achieve the set
tolerance, taking roughly 30 minutes. For this model, the
norm of the residual overestimates the true error by roughly
one order of magnitude, as seen in Fig. 13b, where the
effectivity is illustrated. The resulting ROM has dimension
r = 40.

2) Test 3. Randomized error estimator: To construct Vrd
for this example, we draw K = 6 random vectors using
the mvnrnd command and set tolrd to be 1. The random
number generator MersenneTwister was used with the
seed set to 1. The procedure based on Algorithm 3.1 from
[19] to generate Vrd takes nearly 89 minutes. The results of
the greedy algorithm are displayed in Fig. 14. Compared to
Test 2 for this example, Test 3 requires only 17 iterations to
converge. It results in a ROM of dimension r = 34.

3) Test 4. Proposed error estimator: Using Algorithm 1
with tol = 10−3 for the Antipodal Vivaldi antenna results in
a ROM of dimension r = 36, with the convergence achieved
in 18 iterations. The convergence of the maximum error and
the corresponding effectivity are shown in Fig. 15. Although
in comparison to the randomized error estimator in Test 3,
the proposed approach takes one extra iteration to converge,
the overall time for Test 4 is only 56 minutes. Moreover,
the effectivity is nearly 1 for most of the iterations. The
randomized estimator tending to underestimate the true error
also explains why it takes fewer iterations to converge: the
algorithm stops according to the already small error estimate,
even before the true error is below the tolerance over the whole
frequency domain.

While we have set a coarser tolerance of 10−3 for this
example, this is not a limitation of Algorithm 1. Depending on
the application or problem at hand, there is usually a trade-off
between accuracy and computational cost. The tolerance can
be used to define this trade-off. In some applications, a greater
accuracy for the ROM may be desired in order to perform
highly accurate design choices by simulating the ROM. In
such scenarios, the tolerance can be set low to achieve
a high-quality ROM. However, there also arise situations
where a highly accurate ROM is not needed or the offline
computational cost that can be afforded is less. In such cases,
a higher tolerance can be set to achieve the desired trade-off.

For this example, we run Test 4 by setting a lower tolerance
of 10−4. As can be seen from Fig. 16a, the greedy algorithm
converges to this smaller tolerance in 20 iterations, taking 62
minutes. We also note that the effectivity shown in Fig. 16b is
also nearly identical and close to 1 for most of the iterations.
Finally, we make a comparison of the scattering parameter
response of the Vivaldi antenna obtained from the FOM and
the ROM. The results in Fig. 17 display a very close match
between the two.

D. Example IV : Dielectric Resonator Antenna

The next example we consider is the model of a dielectric
resonator antenna [43] shown in Fig. 18. Reducing the
metallization part, such antennas tend to have low losses and
are light weight [44]. Among the six examples considered,
this model has the largest dimension with n = 484, 294.
The frequency band of interest spans [2.5, 4.5] GHz. For the
training set, we sample 41 points uniformly. The tolerance for
the greedy algorithms is tol = 10−3.

1) Test 2. Residual norm as a heuristic error estimator:
The residual error estimator serves as a fairly good surrogate



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES 10

Fig. 12. Antipodal Vivaldi antenna detailed in [42].
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Fig. 13. Antipodal Vivaldi antenna: results for Test 2. (a) Convergence of the
greedy algorithm. (b) Effectivity (eff).
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Fig. 14. Antipodal Vivaldi antenna: results for Test 3. (a) Convergence of the
greedy algorithm. (b) Effectivity (eff).

5 10 15

101

10−1

10−3

Iterations

M
ax

im
um

er
ro

r εest
εtrue

(a)

5 10 15

0.2

0.4

0.6

0.8

1

Iterations

e
f
f

(b)

Fig. 15. Antipodal Vivaldi antenna: results for Test 4. (a) Convergence of
Algorithm 1. (b) Effectivity (eff).
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Fig. 16. Antipodal Vivaldi antenna: results for Test 4 with tolerance tol =
10−4. (a) Convergence of Algorithm 1. (b) Effectivity (eff).
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Fig. 17. Antipodal Vivaldi antenna: scattering parameter responses of FOM
and ROM computed from Test 4. Top: The magnitude of the scattering
parameter response |S11|; Bottom: The phase ∠(S11).

for the true error, as can be seen in Fig. 19. The algorithm
converges in 12 iterations to a ROM of size r = 24. The
runtime for the algorithm until convergence is around 49
minutes.

2) Test 3. Randomized error estimator: We set K = 5,
tolrd = 1 to determine Vrd. Once again, the random number
generator MersenneTwister was used with the seed
set to 1 to draw the random vectors. As for the previous
example, this process takes up a large time, requiring almost
113 minutes. Fig. 20a shows the convergence of the greedy
algorithm while Fig. 20b displays the effectivity of the
estimator. Evidently, the randomized error estimator shows a
mean effectivity around one, but with a tendency to slightly
underestimate the true error. The resulting ROM of size
r = 22 is achieved in 11 iterations.

3) Test 4. Proposed error estimator: For the final test,
we apply Algorithm 1 to reduce the model of the dielectric
resonator antenna. Fig. 21 shows the procedure results in a
ROM with size r = 22, as in Test 3. However, unlike the



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES 11

Fig. 18. Dielectric resonator antenna designed in [44].
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Fig. 19. Dielectric resonator antenna: results for Test 2. (a) Convergence of
the greedy algorithm. (b) Effectivity (eff).

randomized error estimator, there is no underestimation of the
true error. In fact, the effectivity is almost unity, for most
of the 11 iterations. Also, the time required for Algorithm 1
is about 90 minutes. As done for the previous examples, we
also plot the scattering parameter response for this antenna
in Fig. 22. We see that the response obtained from the ROM
is almost exactly matching the results obtained using the full
order model, thus showing the good performance of the ROM.

E. Example V : Coax-fed Dielectric Resonator Filter

Next, we consider the coax-fed dielectric resonator filter
originally proposed in [45]. The geometry of the filter is shown
in Fig. 23. The filter consists of two cylindrical dielectric
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Fig. 20. Dielectric resonator antenna: results for Test 3. (a) Convergence of
the greedy algorithm. (b) Effectivity (eff).
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Fig. 21. Dielectric resonator antenna: results for Test 4. (a) Convergence of
Algorithm 1. (b) Effectivity (eff).
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Fig. 22. Dielectric resonator antenna: scattering parameter responses of FOM
and ROM computed from Test 4. Top: The magnitude of the scattering
parameter response |S11|; Bottom: The phase ∠(S11).

resonators, each having a concentric hole. The discretized
model is of dimension n = 154, 066. We consider a wide
frequency range of interest, i.e., f ∈ [4.0, 12.0] GHz. This
example is quite challenging owing to the presence of multiple
resonances in its frequency range. The tolerance for the ROM
is set as tol = 10−4 and the training set consists of 2000
uniformly-sampled parameters from the parameter range.

Due to the large number of samples in the training set,
we refrain from showing the true error convergence for this
example. This is due to the significant computational cost
and storage requirements associated with determining the
true solutions. Note that the true error is computed only for
comparison, and its computation is always avoided in practical
applications anyway.

1) Test 2. Residual norm as a heuristic error estimator: By
using the norm of the residual ‖r(s)‖ as the error estimator
in Algorithm 1, we obtain a ROM of dimension r = 127. The
convergence of the greedy algorithm is illustrated in Fig. 24
(dotted line). The total number of iterations required is 64
and the time taken to converge is 12 minutes and 32 seconds.
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Fig. 23. Geometry of the coax-fed dielectric resonator filter from [45].

2) Test 3. Randomized error estimator: Applying the
randomized error estimator from [19] leads to a ROM with
slightly smaller dimension of r = 124, with the greedy
algorithm taking 14 minutes and 62 iterations to converge
as seen in Fig. 24 (dashed line). A large part of the offline
time is spent in constructing the matrix Vrd, which took
about 204 minutes. To determine Vrd, we set K = 10 and
tolrd = 10. The K random vectors were drawn using
mvnrnd in MATLAB® using the simdTwister random
number generator, with the seed set to 10.

3) Test 4. Proposed error estimator: The results of using
the proposed error estimator in Algorithm 1 is shown in
Fig. 24. The greedy algorithm needs 61 iterations to achieve
the desired tolerance of 10−4, taking around 30 minutes to
converge. The resulting ROM has dimension r = 122. The
proposed approach thus results in a ROM having the smallest
dimension among the three tests.

While it indeed takes a longer time to converge when
compared to Test 2, the proposed approach enjoys the benefits
of having a guaranteed accuracy of the estimated error and a
ROM of smaller dimension.

The scattering parameter computed from the FOM and the
ROM obtained from Test 4 are compared in Fig. 25. The
magnitude and the phase are plotted separately. The ROM
offers an excellent match with the true scattering response for
this example. In the same figure, we also show the locations of
the greedy parameters µ∗ picked during Test 4. More samples
are concentrated in the higher frequency regions, owing to
the presence of a significant number of resonances there. It is
also noteworthy to see that Algorithm 1 avoids sampling in
the range [4.6, 7] GHz where no resonances appear.

F. Example VI : Inline Dielectric Resonator Filter

The final example we discuss is the sixth-order inline
dielectric resonator (I-DR) filter from [46] shown in Fig. 26.
It is made of two cascaded triple-resonator configurations,
resulting in six inline dielectric resonators. In addition to the
frequency f , we consider the dielectric constants (d1, d2) from
the two triple-resonators as additional parameters (d1, d2 stand
for the relative dielectric permittivity of the first three and
last three inline dielectric resonators, respectively), resulting
in a three-parameter system. We have f ∈ [2.10, 2.25] GHz,
d1, d2 ∈ [76.5, 77.5]. Further, the reference dielectric constant
of the dielectric material is dref = 77.0. The discretized model
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Fig. 24. Coax-fed dielectric resonator filter: results for Tests 2, 3 and 4:
Convergence of Algorithm 1.
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Fig. 25. Coax-fed dielectric resonator filter: scattering parameter responses of
FOM and ROM computed from Test 4. Top: The magnitudes of the scattering
parameter responses |S11|, |S21|; Middle: The phases ∠(S11),∠(S21);
Bottom: The greedy parameters µ∗ selected by Algorithm 1 using the
proposed error estimator.

has dimension n = 229, 890. The training set for this example
is obtained using 1000 samples of the frequency and 2 samples
each for the dielectric constants d1, d2. A cartesian grid of
dimension 1000×2×2 is formed resulting in a training set with
4000 parameter samples. The ROM tolerance is tol = 10−3.

Similar to the previous example, we do not show the true
error convergence for this example in Tests 2 - 4 due to the
huge computational costs.

1) Test 2. Residual norm as a heuristic error estimator:
For the inline dielectric resonator filter, using the residual
norm in Algorithm 1 results in a ROM of dimension r = 30.
As shown in Fig. 27 (dotted line), the greedy algorithm takes
15 iterations to converge, taking around 3 minutes and 50
seconds.
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Fig. 26. Geometry of the sixth-order inline dielectric resonator filter from
[46].

2) Test 3. Randomized error estimator: We next apply the
randomized error estimator ∆̃(µ) from [19]. For this example,
we sample K = 10 random vectors each of dimension n to
obtain Vrd, with tolrd = 0.5. We use the simdTwister
random number generator, with a seed of 10. The total
time to obtain Vrd is roughly 206 minutes. Fig. 27 (dashed
line) illustrates the convergence of the greedy algorithm. It
converges in 12 iterations, taking 3 minutes and 23 seconds.
The resulting ROM has dimension r = 24. Note that the
dimension of this ROM is smaller than the one obtained from
Test 2.

3) Test 4. Proposed error estimator: Finally, we use the
proposed error estimator ‖ẽ(µ)‖ in Algorithm 1. The ROM
obtained has dimension r = 28. Fig. 27 shows the convergence
of the greedy algorithm, with the convergence achieved in 14
iterations. When compared to the randomized error estimator,
the proposed approach has a ROM of larger dimension. But,
the time taken by the proposed error estimator is significantly
shorter, at 8 minutes and 5 seconds.

In Fig. 28 we plot the locations of the greedy parameters
µ∗ for Test 4. It is worth noting that most of the samples
are present in the frequency range [2.15, 2.20] GHz where
the resonances occur. Finally, we test the performance of
the parametric ROM obtained from Test 4 on two parameter
samples which were not considered in the training set
Ξ. For this, we plot the magnitude and phase of the
scattering parameter responses for two parameters (d1, d2) =
(76.6, 76.9) and (d1, d2) = (77.2, 76.9). As seen from Fig. 29
and Fig. 30, the scattering parameter response obtained from
the ROM is nearly identical to the one obtained from the FOM
solver. This highlights the robustness of the ROM generated
using the inf-sup-constant-free error estimator and also its
ability to generalize well beyond the training data.

The time taken (in minutes) for the greedy algorithms
for all the six examples are summarized in Table I. The
greedy algorithm based on the residual norm requires the least
computational time among the four error estimators. However,
as illustrated in our numerical examples, the accuracy of the
residual-norm based error estimator is not uniformly good. The
residual norm overestimates the true error with an effectivity
factor up to 50. Moreover, although all the examples show that
the residual norm gives ROMs with acceptable accuracy, this
is not theoretically guaranteed a priori, meaning it may not
always give accurate ROMs. Furthermore, this situation may
also lead to ROMs with larger-than-necessary dimension. The
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Fig. 27. Inline dielectric resonator filter: results for Tests 2, 3 and 4:
Convergence of Algorithm 1.
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Fig. 28. Inline dielectric resonator filter: greedy parameters µ∗ selected by
Algorithm 1 using the proposed error estimator.
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Fig. 29. Inline dielectric resonator filter: scattering parameter responses of
FOM and ROM computed from Test 4 for parameter (d1, d2) = (76.6, 76.9).
Top: The magnitudes of the scattering parameter responses |S11|, |S21|;
Bottom: The phases ∠(S11),∠(S21).
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Fig. 30. Inline dielectric resonator filter: scattering parameter responses of
FOM and ROM computed from Test 4 for parameter (d1, d2) = (77.2, 76.9).
Top: The magnitudes of the scattering parameter responses |S11|, |S21|;
Bottom: The phases ∠(S11),∠(S21).

TABLE I
OFFLINE TIME TO GENERATE PROJECTION MATRIX V

Example
Time Taken (mins)

Test 1 Test 2 Test 3 Test 4

Dual-mode filter 6.49 0.21 3.71 0.58

SIW antenna - 12.35 38.78 21.38

AV antenna - 30.50 116.15 56.00

DR antenna - 48.88 159.25 90.23

C-DR filter - 12.55 216.80 29.93

I-DR filter - 3.82 209.31 8.10

TABLE II
COMPARISON OF COMPUTATIONAL COSTS:
BRUTE-FORCE VS. PROPOSED APPROACH

Example
Time Taken (s)

Speedup
Brute-force offline (Alg. 1) + online

Dual-mode filter 143 35 + 0.008 4.1

SIW antenna 9273 1283 + 0.007 7.2

AV antenna 9110 3360 + 0.018 2.7

DR antenna 24843 5414 + 0.015 4.6

C-DR filter 4600 1796 + 0.05 2.6

I-DR filter 6271 486 + 0.015 12.9

proposed error estimator, while acceptably more expensive
than the residual estimator, gives a far superior estimation of
the true error. In contrast to the residual norm, the proposed
error estimator gives ROMs with theoretically guaranteed
accuracy. This deserves the sacrifice of an extra but limited
amount of offline cost, if a reliable ROM, a goal of MOR more
important than the marginally increased offline time, is desired.
Also, in our tests, it requires significantly shorter offline time
when compared to the randomized error estimator.

In Table II, we compare the total computational cost of a
reduced-order model generated using the proposed approach
(Test 4) with that of a brute-force FOM simulation, over
a test set of parameters. For all the six examples, the test
set consists of parameter samples not used in the offline
stage of MOR. For the filter model, the test set consists
of 200 samples, while for the three antenna examples, the
test set has 100 samples in their corresponding parameter
domains. For the last two examples, viz., the C-DR and I-DR
filters, due to their larger storage requirements, we consider
a smaller test set in comparison to the training set. In case
of the C-DR filter, the test set contains 500 new frequency
locations. Since the I-DR filter is parametric, we consider
4 new parameter combinations (d1, d2) not present in the
training set. Each combination corresponds to 100 frequency
samples. The offline time reported for Algorithm 1 is the
same as in Table I, but in seconds. It is evident that our
proposed method has significantly reduced the computational
time, especially for models with large size. The comparatively
lower speedup for the dual-mode filter example is owing to
its relatively smaller dimension n = 36, 426 such that the
solver requires less time to compute the solution. Moreover,
the offline time of the proposed method is independent of
the number of testing samples, and its online time is almost
negligible compared with the offline time. Consequently, when
the amount of testing samples is increased, the speedup over
the brute-force approach will be even higher.

In Table III, we show the maximum error over the test
set, for each of the six examples corresponding to Tests 2,
3, and 4. We notice that that the maximum test errors for
all the examples satisfy the defined tolerance. It can also be
seen that the lowest errors result from Test 2. This is mainly
due to the fact that the ROM obtained from Test 2 has the
largest dimension. This also indicates that using the residual
as the error estimator leads to overestimating the true error
for those examples. The maximum error over the test set
resulting from Tests 3 and 4 are very close to each other and
to the assigned tolerance. This again justifies the effectivity of
the corresponding error estimators. The error estimators can
accurately estimate the true error with effectivity (eff in the
figures) close to 1, thus producing ROMs with true errors also
close to but below the tolerance. However, the computational
cost of Test 3 is significantly larger. Thus, we can see that
the proposed error estimator used in Test 4 offers a good
compromise between the dimension of the ROM and its ability
to offer good performance for unseen parameter values.

Finally, for frequency-domain simulation of problems with,
e.g., geometrical or material parameters, which queries not
only many frequency samples but also many parameter
samples, further efficiency will be achieved by using the
proposed method as can be seen from the significant speedup
achieved for the I-DR filter which is a three-parameter
example.

VI. CONCLUSION

We have introduced a novel a posteriori error estimator
capable of accurately estimating the state error, even
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TABLE III
MAXIMUM ERROR OVER THE TEST PARAMETER SET FOR TESTS 2, 3 AND 4

Example tol
Maximum error over test set

Test 2 Test 3 Test 4

Dual-mode filter 10−6 5.22 · 10−8 4.19 · 10−7 6.32 · 10−7

SIW antenna 10−4 2.26 · 10−6 3.33 · 10−5 2.20 · 10−5

AV antenna 10−3 1.06 · 10−4 8.00 · 10−4 8.36 · 10−4

DR antenna 10−3 1.80 · 10−5 4.04 · 10−4 2.13 · 10−4

C-DR filter 10−4 6.98 · 10−8 5.70 · 10−5 5.80 · 10−5

I-DR filter 10−3 4.96 · 10−5 5.52 · 10−5 5.05 · 10−5

for systems where the inf-sup constant is very small.
Many engineering systems involving resonant electromagnetic
devices, such as microwave filters, antennas show this
behaviour. A waveguide filter model, models of three types
of antenna and two different types of dielectric resonator
filters are used to demonstrate the robustness of the proposed
error estimator. The proposed error estimator outperforms
the standard estimator and a recently proposed one in the
literature, both theoretically and numerically, thus showing
its great potential in electromagnetic simulation and analysis.
Although the proposed error estimator needs more offline
time than the residual-based approach, it derives a ROM with
guaranteed accuracy and is, therefore, more reliable. As a
result, compact reduced order models for challenging real-life
applications have been obtained.
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[35] J.-C. Nédélec, “Mixed finite elements in R3,” Numer. Math., vol. 35,
no. 3, pp. 315–341, Mar. 1980.

[36] P. Ingelstrom, “A new set of h (curl)-conforming hierarchical basis
functions for tetrahedral meshes,” IEEE Trans. Microw. Theory Techn.,
vol. 54, no. 1, pp. 106–114, Jan. 2006.

[37] C. Geuzaine and J.-F. Remacle, “Gmsh: A 3-D finite element mesh
generator with built-in pre-and post-processing facilities,” Int. J. Numer.
Methods Eng., vol. 79, no. 11, pp. 1309–1331, Nov. 2009.

[38] L. Wu, Y. Zhao, Q. Cai, R. Zhang, L. Gu, Z. Zhang, and Z. Nie,
“MLACE-MLFMA combined with reduced basis method for efficient
wideband electromagnetic scattering from metallic targets,” IEEE Trans.
Antennas Propag., vol. 67, no. 7, pp. 4738–4747, Jul. 2019.

[39] X. Dang, M. Li, F. Yang, and S. Xu, “Quasi-periodic array modeling
using reduced basis from elemental array,” IEEE J. Multiscale Multiphys.
Comput. Techn., vol. 2, pp. 202–208, Dec. 2017.

[40] V. de la Rubia and J. Zapata, “Microwave circuit design by means of
direct decomposition in the finite-element method,” IEEE Trans. Microw.
Theory Techn., vol. 55, no. 7, pp. 1520–1530, Jul. 2007.

[41] Y. Dong and T. Itoh, “Miniaturized substrate integrated waveguide slot
antennas based on negative order resonance,” IEEE Trans. Antennas
Propag., vol. 58, no. 12, pp. 3856–3864, Dec. 2010.

[42] Z. Lou and J.-M. Jin, “Modeling and simulation of broad-band antennas
using the time-domain finite element method,” IEEE Trans. Antennas
Propag., vol. 53, no. 12, pp. 4099–4110, Dec. 2005.

[43] V. de la Rubia and J. Zapata, “MAM-a multipurpose admittance matrix
for antenna design via the finite element method,” IEEE Trans. Antennas
Propag., vol. 55, no. 8, pp. 2276–2286, Aug. 2007.

[44] B. Li and K. W. Leung, “Strip-fed rectangular dielectric resonator
antennas with/without a parasitic patch,” IEEE Trans. Antennas Propag.,
vol. 53, no. 7, pp. 2200–2207, Jul. 2005.

[45] J. Brauer and G. Lizalek, “Microwave filter analysis using a new 3-D
finite-element modal frequency method,” IEEE Trans. Microw. Theory
Techn., vol. 45, no. 5, pp. 810–818, May 1997.

[46] S. Bastioli and R. V. Snyder, “Inline pseudoelliptic TE01δ-mode
dielectric resonator filters using multiple evanescent modes to selectively
bypass orthogonal resonators,” IEEE Trans. Microw. Theory Techn.,
vol. 60, no. 12, pp. 3988–4001, Dec. 2012.

Sridhar Chellappa received the Bachelors degree
in Electrical and Electronics engineering from
SASTRA University, India in 2013. He received
the Masters degree in Electrical Engineering in
2016 from the University of Oviedo, Gijón, Spain.
The Masters degree, a part of the Erasmus
Mundus Programme, was jointly awarded by a
consortium of universities consisting of the Sapienza
University of Rome, the University of Nottingham,
the Polytechnical Institute of Coimbra, and the
University of Oviedo. In 2022 he obtained his

PhD in Mathematics from the Otto-von-Guericke University of Magdeburg,
Germany. Since 2017 he has been a part of the Computational Methods in
Systems and Control Theory (CSC) group at the Max Planck Institute for
Dynamics of Complex Technical Systems, Magdeburg, Germany where he is
currently a postdoctoral researcher.

His main research interests are numerical analysis, model order reduction,
and error estimation with a focus on applications arising in fields such as
process engineering and computational electromagnetics.

Lihong Feng received the Ph.D. degree in
computational mathematics from Fudan University,
Shanghai, in 2002. She was a postdoc during
2002-2004 and worked at State Key Lab of ASIC
and System, Department of Microelectronics, Fudan
University, Shanghai as well as at Laboratory
for Simulation, Department of Microsystems
Engineering, University of Freiburg, Germany. She
was a Lecturer at Department of Microelectronics,
Fudan University, Shanghai from 2005-2006. She
received an Alexander-von-Humboldt Fellowship

for the period 2007–2009 and worked at the host institute TU Chemnitz,
Germany. Since 2010, she has been a senior scientist and team leader at
the Max Planck Institute for Dynamics of Complex Technical Systems in
Magdeburg.

Her research interests include model order reduction and fast simulation of
complex models arising from engineering applications, numerical analysis,
and scientific computing.

Valentı́n de la Rubia received the Ingeniero de
Telecomunicación and Ph.D. degrees from the
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