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Recomputing Sanskrit Astronomical Tables:
The Amṛtalaharī of Nityānanda (c. 1649/50 c)

Anuj Misra*

1. Introduction

Astronomical tables (koṣṭhakas or sāraṇīs) begin to appear in Sanskrit astral
sciences from around the twelfth century c. These tables described different
calendrical quantities (like the division of synodic lunar months or the lu-
nar mansions), a variety of mathematical and trigonometric relations, and the
planetary positions and motions. By the early modern period of Indian his-
tory, the corpus of Sanskrit astronomical tables had grown to reflect incredi-
ble ingenuity in the way complex calendrical and planetary elements were cal-
culated and represented. In Mughal India,1 as medieval Islamicate astronomy
began interacting with Sanskrit mathematical astronomy, the computational
practices of Sanskrit astronomers started to reflect this exchange of ideas. It
is in this historical context that we find the Amṛtalaharī of Nityānanda.
Nityānanda was a seventeenth-century Sanskrit astronomer at the court of

the Mughal emperor Shāh Jāhān (r. 1592 to 1666 c). He was commissioned
by Āsaf Khān, the emperor’s chief minister (vazīr), to translate into Sanskrit
the Zīj-i Shāh-Jahānī, an enormous compilation of Persian astronomical tables
prepared by Mullā Farīd al-Dīn Masʿūd al-Dihlavī in October 1629 c. Nityā-
nanda dedicated himself to the task and in the early 1630s, he completed
his translation the Siddhāntasindhu ‘Ocean of Siddhāntas’.2 Around a decade
later, in 1639 c, Nityānanda published his canonical treatise (siddhānta)

* Preliminary numerical computations were done with the assistance of Zachary Hynd
(Seequent, New Zealand).

1 Mughal India refers to the cosmopolitan society under the rule of the Mughal emperors
(1526 to 1857 c) where artistic, scientific, and linguistic exchanges between Islamicate (Ara-
bic and Persian) and Sanskrit scholars flourished for over three hundred years, see Truschke,
Culture of Encounters.

2 The four complete extant manuscripts of the Siddhāntasindhu, one bearing the seal of
Emperor Shāh Jāhān himself, are currently held at the City Palace Museum Library in Jaipur,
India. These manuscripts are over 450 folia each and contain vast numbers of mathematical,
astronomical, and astrological tables of different kinds, see Pingree, A Descriptive Catalogue,
pp. 138–43.



188	 ANUJ MISRA RECOMPUTING SANSKRIT ASTRONOMICAL TABLES 189

and Mercury, or the positive norming in the tables of planetary equa-
tions.

Pingree concludes his paper with the remark:7

‘It remains unclear why Nityānanda wrote it [the Amṛtalaharī]; indeed, it is indeed
[sic] astonishing that even one copy of this unusual attempt to reform siddhāntic
astronomy has survived. It is a curiosity, but perhaps it played some role in history
by suggesting to Jayasiṃha’s astronomers how they might express de La Hire’s Latin
tables, which use the Julian and Gregorian calendars, in the form of an adjusted
Indian calendar.’

To understand better the implication of Nityānanda’s ‘attempt to reform sid-
dhāntic astronomy’, I recompute and analyse a set of astronomical tables from
the Amṛtalaharī in this study. My goal is to recompute the attested values
seen in the manuscript (MS Sanskrit 19) instead of suggesting the correct val-
ues derived from historically apposite procedures. By identifying the computa-
tional methods (including irregularities) and analysing the differences between
the attested values and our recomputed results, we can gain an insight into
the subtle mathematical practices of table authors.8 The analytical and his-
torical methods applied in this study demonstrate how numerical tables can
be seen as mathematical artefacts in the transmission of scientific knowledge
between cultures.
Section 2 begins with a description of the source manuscript and a general

overview of the tables of the Amṛtalaharī. Following this, I describe the set
of six tables selected for this study (hereafter referred to as the ‘selected cor-
pus’) and provide an English translation of the Sanskrit text associated with
these tables. Towards the end of the section, I discuss my methodological
framework to study the selected corpus, and also describe the mathematical
standards adopted in this study. In Section 3, for each table, I first outline
my recomputation strategies (including any irregular recomputations that ex-
actly reproduce an attested value), and then analyse the differences between
the attested values and my recomputed results individually. These discussions
also include a few proposed emendations to the attested values based on my

7 ibid., p. 213.
8 In this study, I use the term table authors to indicate those historical actors who change

certain numerical values based on their own computational decisions as they recopy a table.
Other actors, like scribes, who copy the tables without making any computational changes are
set apart. This separation is made for expedient reasons; it is not an attempt to divide them
into mutually exclusive categories. In fact, both kinds of actors modify a table as they copy
it (e.g. through their inadvertent oversights in copying); however, what sets them apart in
this study are recomputational interventions. Scribes and table authors may both intentionally
intervene to rectify a corrupted/illegible/missing entry, but table authors (often) do so by
applying a mathematical algorithm (e.g. interpolating) whereas scribes may simply fill in the
numbers by observing a pattern. More on this in Section 2.3.
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the Sarvasiddhāntarāja ‘King of all Siddhāntas’ as an attempt to explain Is-
lamicate (Ptolemaic) astronomical models and parameters in the language of
a traditional Sanskrit siddhānta.3 Misra, The Golādhyāya, pp. 12–17, discusses
the scientific milieu of Mughal India in which Nityānanda lived and worked.
A short paper by David Pingree brought Nityānanda’s Amṛtalaharī to my

attention.4 The Amṛtalaharī is a collection of astronomical tables for comput-
ing Indian calendrical elements, planetary positions, and ascensions of zodia-
cal signs. Pingree made some insightful observations on how the Amṛtalaharī
was an experiment in bringing elements of Islamicate and Sanskrit astronomy
together. The list below summarises some of his main remarks on the ta-
bles of the Amṛtalaharī (based on MS Sanskrit 19 from the collection of the
University of Tokyo).
1. The name Amṛtalaharī is reconstructed. As the incomplete incipit on
f. 1v indicates, Nityānanda may have called his work Kheṭakṛti. How-
ever, the manuscript catalogue of the collection of the University of
Tokyo identifies this work as the Amṛtalaharī, and accordingly, I follow
Pingree in referring to this work with its catalogued name.

2. Brief notes (in the paratext surrounding the tables) refer to earlier San-
skrit works, e.g. Makaranda’s Makaranda (1428 c) is mentioned in
the paratext surrounding the tithi tables on f. 2r.5 There are also certain
calendrical elements that, according to Pingree, are Nityānanda’s own
inventions. For instance, the mean motion tables employ a lunar-solar
calendar equivalent to three Metonic cycles of 57 solar years found in
Jewish calendars (and explained in Islamicate zījes).6

3. Pingree conjectures the epoch of the Amṛtalaharī as 21 February Julian
in 1593 c. According to him, the epoch year 1593 is the beginning
of the 57-year long period within which the work was composed. This
puts the terminus ante quem of the work around 1649/50 agreeing with
Nityānanda’s floruit in the early parts of the seventeenth century.

4. Certain features of the lunar and planetary tables of the Amṛtalaharī
closely resemble those seen in similar tables from Islamicate and Ptole-
maic traditions, and mostly absent in Sanskrit astronomical works,
e.g. tabulating the mean motions of the anomalies of the Moon, Venus,

3 See Pingree, ‘Indian Reception’, pp. 476–80; Pingree, ‘The Sarvasiddhāntarāja’; Montelle
et al., ‘Computation of Sines’, and Montelle and Ramasubramanian, ‘Determining the Sine’.

4 Pingree, ‘Amṛtalaharī’. In Misra, The Golādhyāya only two works are credited to Nityā-
nanda, the Sarvasiddhāntarāja and the Siddhāntasindhu. The existence of the Amṛtalaharī was
unknown to me at the time.

5 See Pingree, ‘Amṛtalaharī’, footnote 9 on p. 210.
6 ibid., pp. 211–12.
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analysis, particularly, when an inadvertent or intentional scribal effect is evi-
dent. Finally, in Section 4, I summarise the main observations of this study,
and discuss the methodological questions that arise when recomputing histor-
ical tables using modern computational tools.

2. TheAmṛtalaharī of Nityānanda

2.1. Description of the digitised microfilm

For this study, I have used a digital copy of the only verified manuscript of
the Amṛtalaharī currently known to be extant.9 MS Sanskrit 19 (henceforth
identified with the siglum ‘Tk’) is a part of the Sanskrit manuscript collec-
tions of the University of Tokyo and contains the tables of the Amṛtalaharī.10
The digitised microfilm of MS Tk11 contains the (catalogue?) reference num-
bers 547 (old) and 19 (new) at the very beginning of the reel. The second
frame captures an image of the cover page of the manuscript with the word
‘Amṛtalaharī’ (in the centre) and number ‘13’ (at the top-left corner) writ-
ten in Sanskrit. The handwriting on the cover page is notably different from
that of the scribe who copied this manuscript. I suspect an earlier cataloguer,
or perhaps Prof. Junjirō Takakusu, who brought the manuscript from Nepal
to Japan in 1913,12 wrote this on the cover page of the manuscript. The reel
number of the microfilm (MF_13) and the catalogued name Amṛtalaharī13
appear to be based on this writing on the cover page. All remaining frames
contain images of two folia of the manuscript, one above the other, with the
digital stamp Gl Liby. Uivsiy of Tokyo at the bottom-
right corner of each frame. Plates 8 and 9 show ff. 1v–2r from MS Tk,
photographed by Taro Mimura in January 2021, as examples.

2.1.1. Manuscript description from surrogate

According to Matsunami’s catalogue,14 MS Tk is a paper manuscript with
51 folia of dimensions 11× 5 inches that contain a collection of Sanskrit

9 An unconfirmed manuscript of a work called Amṛtalaharīsāraṇī (of unknown author-
ship) is catalogued in the collection of the Nepalese-German Manuscript Cataloguing Project
maintained by the University of Hamburg (https://catalogue.ngmcp.uni-hamburg.de/receive/
aaingmcp_ngmcpdocument_00002491). At the time of writing this chapter, I have been un-
able to independently verify the authenticity or the contents of this manuscript.

10 MS Tk is referenced in Matsunami, A Catalogue of the Sanskrit Manuscripts, pp. 8–9.
11 This is available at http://picservice.ioc.u-tokyo.ac.jp/03_150219~UT-library_sanskrit_

ms/MF13_03_004~MF13_03_004/?pageId=001.
12 See Pingree, ‘Amṛtalaharī’, p. 210.
13 See Matsunami, A Catalogue of the Sanskrit Manuscripts, pp. 8–9.
14 ibid.
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astronomical tables in Devanāgarī. I list below some additional features of
MS Tk from its digital surrogate.
1. The folio edges of the manuscript are frayed. There are no visible bind-
ing marks or string holes suggesting, perhaps, that the stacked folia were
merely wrapped in cloth and held together between (wooden?) cover
boards (resembling loose-leaf, unbound books called pothīs). The hand-
writing is in black ink, legible, free of any corrections, and produced
by a single scribal hand. The tables themselves appear to be written be-
tween (faint) double-ruled margins and, in a few instances, the paratext
and numbers extend into the margins. The folio numbers are written
on verso pages, towards the middle of the page in the right margin.

2. On f. 1v, an incomplete incipit verse is partially visible along the frayed
top edge of the folio. It contains the last three quatrains (pādas) (of an
incomplete verse in the indravaṃśā meter):

yā paṇḍitair indrapurī virājate |
śrīdevadattasya suto dvijānugaḥ
tasyāṃ vasan khetakṛtiṃ cikīrṣati ||
The [city of ] Indrapurī that appears beautiful with [the presence] of
scholars (paṇḍita), the ‘twice-born’ (dvija) [i.e. Brahmin] son of Śrī
Devadatta resident in that city desires to complete [this work called]
Kheṭakṛti.

3. Towards the top-left corner of f. 1v, the title ⟨A⟩mṛtalaharī (the initial
a is lost to the frayed edge of the folio) appears in the left margin.
According to Pingree, it is written by a different hand compared to the
copyist of the manuscript.15 The digital surrogate makes it difficult to
validate this claim with surety; however, I believe this was written by
the same hand as the main copyist. The shape of the remaining letters
in the word matches the chirography of the primary scribe.

4. The Sanskrit numerals, along with the paratext, table titles, and row
headings in Sanskrit, are written in the Nepālī (Pracalita Lipi, Newar,
or Nepāla Lipi) and Devanāgarī scripts, occasionally, conflating the two
scripts together. For example, Table 1 shows samples of Sanskrit num-
bers in MS Tk written in Pracalita Lipi and Devanāgarī.

5. The paratext surrounding the tables also use the two scripts in an in-
termixed manner. On the top-left corner of f. 1v (below the frayed
top edge), the words of the incipit … … (…yā paṃḍitair
iṃdrapūrī…) are in Pracalita Lipi. In other places, identical Sanskrit
words are written variously in Pracalita Lipi or Devanāgarī. For exam-
ple, the compounded words … … (…dhanam ṛṇaṃ…) on lines 3–4

15 See Pingree, ‘Amṛtalaharī’, p. 210.
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Script Sample

Hindu-Arabic Numerals 0 1 2 3 4 5 6 7 8 9
Devanāgarī Numerals ० १ २ ३ ४ ५ ६ ७ ८ ९
Pracalita Lipi Numerals

Digits ‘0–9’ in Devanāgarī (from f. 14r)
Digits ‘0–9’ in Pracalita Lipi (from f. 1v)

Mixed scripts (from f. 1v):
Numbers ‘25–29’ in Pracalita Lipi (top line)
Numbers ‘35–39’ in Devanāgarī (bottom line)

Table 1: Samples from MS Tk showing Sanskrit numbers written in different scripts.

of the text block to the right of f. 1v are in Pracalita Lipi, while the
same set of words …धनमृणं… (…dhanam ṛṇaṃ…) on line 4 of the text
block to the right on f. 2r are in Devanāgarī.

6. When letters in the two scripts are homoglyphic (in handwritten San-
skrit), the scribe appears to write the letters using Pracalita Lipi, e.g. the
letter la, seen as in MS Tk, is closer in appearance to the letter in
Pracalita Lipi than the letter ल in Devanāgarī.

7. Finally, the number ‘1’ is written at the beginning of every table title. In
Prachalita Lipi, the number stands for the Sanskrit invocation siddhir
astu ‘may there be success’ as a benedictory supplication.16

2.2. Overview of the tables of the Amṛtalaharī
Table 2 includes an overview of the types and foliation of the tables of the
Amṛtalaharī in MS Tk. A more detailed description of these tables, and the
different table parameters in each instance, can be found (in the Appendix)
in Pingree, ‘Amṛtalaharī’, pp. 214–17.
My study focuses on the collection of tables seen in row VI of Table 2.

The selected corpus includes the table of Sines (kramajyā);17 the table of solar
declinations (krānti); the three tables of shadow lengths for gnomons (śaṅku-
chāyā) of heights 60 digits, 12 digits, and 7 digits; and the table of lunar
latitudes (śara).
For each of these six different tables, the arguments range from 1◦ to 90◦

in one-degree steps, and their corresponding values are expressed in sexages-

16 See Sircar, Indian Epigraphy, pp. 92–97 for a discussion on auspicious marks in Indian
texts and epigraphs.

17 Throughout this chapter, I use capitalised initials for trigonometric functions ‘Sine’, ’Co-
sine’, ’Chord’, etc. to indicate a non-unitary radius R (sinus totus). Mathematically, Sin θ ≡
Rsin θ, Cos θ≡R cos θ, Crd θ≡R crd θ, etc.
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Number Table types Foliation

I.A Tables of tithis.18 Ff. 1v–6v
I.B Tables of nakṣatras.19 Ff. 7r–11v
I.C Tables of yogas.20 Ff. 11v–17v
II Tables of abdapas and saṅkrāntīs.21 Ff. 17v–18r
III Tables of planetary mean motions of the Sun, the

Moon, Lunar anomaly, Lunar node, Mars, Mercury’s
anomaly, Jupiter, Venus’ anomaly and Saturn.

Ff. 18v–27r

IV Tables of planetary equations: (a)manda equations for
the Sun and the Moon; and (b) the set of first śīghra,
manda, and second śīghra equations for the five star-
planets.22

Ff. 27v–44r

V Tables of rising times of zodiacal signs (right and
oblique ascensions).

Ff. 44v–49r

VI Tables of (a) Sines (here: Table VI.A); (b) solar decli-
nations (Table VI.B); (c) shadow lengths of gnomons
of heights 60 digits (Table VI.C1), 12 digits (Ta-
ble VI.C2), and 7 digits (Table VI.C3); and (d) lunar
latitudes (Table VI.D).

Ff. 49v–50v

VII Tables of adjustments for the five star-planets. F. 51r

Table 2: An overview of the tables of the Amṛtalaharī in MS Tk.

18 A tithi is the thirtieth part of a synodic lunar month, or the time interval during which
the longitudinal difference between the Sun and the Moon increases by 12◦.

19 A nakṣatra (or lunar mansion) is the constellation in which the Moon is located. Typ-
ically, Sanskrit astronomy lists 27 nakṣatras each spanning 13◦20′ along the 360◦ orbit of
revolution of the Moon.

20 A yoga (or nityayoga ‘daily yoga’) is the duration in which the combined motions of
the Sun and the Moon amount to 1 nakṣatra or 13◦20′. There are 27 identified yogas corre-
sponding to the 27 nakṣatras.

21 The abdapas are the weekdays on which particular years commence, and saṅkrāntīs refer
to the solar ingress (saṅkramaṇa) into the 12 zodiacal signs (rasis) and 27 lunar mansions
(nakṣatras).

22 In Indian astronomy, the manda-saṃskāras are the equation-of-centre corrections applied
to the mean longitude of the planets (madhyama-grahas) to produce the manda-corrected
longitudes or manda-sphuṭa-grahas. In case of the Sun and the Moon, this is the only cor-
rection required to obtain their true longitudes (sphuṭa-grahas). However, for the other five
star-planets—the two interior planets Mercury and Venus and the three exterior planets Mars,
Jupiter, and Saturn—an additional śīghra-saṃskāra (correction due to the anomaly of con-
junction) is applied to their manda-sphuṭa-grahas to obtain their true longitudes. For exte-
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Script Sample

Hindu-Arabic Numerals 0 1 2 3 4 5 6 7 8 9
Devanāgarī Numerals ० १ २ ३ ४ ५ ६ ७ ८ ९
Pracalita Lipi Numerals

Digits ‘0–9’ in Devanāgarī (from f. 14r)
Digits ‘0–9’ in Pracalita Lipi (from f. 1v)

Mixed scripts (from f. 1v):
Numbers ‘25–29’ in Pracalita Lipi (top line)
Numbers ‘35–39’ in Devanāgarī (bottom line)

Table 1: Samples from MS Tk showing Sanskrit numbers written in different scripts.

of the text block to the right of f. 1v are in Pracalita Lipi, while the
same set of words …धनमृणं… (…dhanam ṛṇaṃ…) on line 4 of the text
block to the right on f. 2r are in Devanāgarī.

6. When letters in the two scripts are homoglyphic (in handwritten San-
skrit), the scribe appears to write the letters using Pracalita Lipi, e.g. the
letter la, seen as in MS Tk, is closer in appearance to the letter in
Pracalita Lipi than the letter ल in Devanāgarī.

7. Finally, the number ‘1’ is written at the beginning of every table title. In
Prachalita Lipi, the number stands for the Sanskrit invocation siddhir
astu ‘may there be success’ as a benedictory supplication.16

2.2. Overview of the tables of the Amṛtalaharī
Table 2 includes an overview of the types and foliation of the tables of the
Amṛtalaharī in MS Tk. A more detailed description of these tables, and the
different table parameters in each instance, can be found (in the Appendix)
in Pingree, ‘Amṛtalaharī’, pp. 214–17.
My study focuses on the collection of tables seen in row VI of Table 2.

The selected corpus includes the table of Sines (kramajyā);17 the table of solar
declinations (krānti); the three tables of shadow lengths for gnomons (śaṅku-
chāyā) of heights 60 digits, 12 digits, and 7 digits; and the table of lunar
latitudes (śara).
For each of these six different tables, the arguments range from 1◦ to 90◦

in one-degree steps, and their corresponding values are expressed in sexages-

16 See Sircar, Indian Epigraphy, pp. 92–97 for a discussion on auspicious marks in Indian
texts and epigraphs.

17 Throughout this chapter, I use capitalised initials for trigonometric functions ‘Sine’, ’Co-
sine’, ’Chord’, etc. to indicate a non-unitary radius R (sinus totus). Mathematically, Sin θ ≡
Rsin θ, Cos θ≡R cos θ, Crd θ≡R crd θ, etc.
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imal numbers (up to a fractional precision of seconds). The six tables are
identically arranged over three folia (ff. 49v–50v) of MS Tk. Each folio has
thirty arguments in the first row, followed by six successive rows listing the
corresponding six function values (i.e. the attested values of each table) in in-
dividual rows. Appendix A (pp. 226–31) includes the images of ff. 49v–50v
from MS Tk and a diplomatic transcription of the six tables on these folia.

2.2.1. Translation of the table titles

The three table titles (seen at the top of ff. 49r–50v of MS Tk respectively)
are presented below. The Sanskrit text is transliterated with Latin characters
and also translated into English.

|| 1 atha kramajyā-krānti-ṣaṣṭyaṅgula-śaṅku-dvādaśāṅgula-saptāṅgula-śaṅku-
chāyā-candra-śarāṃśāḥ ||

Now, the Sines (kramajyā); the solar declinations (krānti); the shadow lengths
(chāyā) [of ] 60-digit gnomon (ṣaṣṭi-aṅgula-śaṅku), 12-digit (dvādaśa-aṅgula) [gno-
mon], 7-digit gnomon (sapta-aṅgula-śaṅku); [and] the degrees of lunar latitudes
(candra-śara-aṃśa).

|| 1 pratyaṃśa-kramajyā-krānti-chāyāḥ śarāśca ||
For every degree (aṃśa), the Sines (kramajyā), the solar declinations (krānti), the
shadow lengths (chāyā), and the [lunar] latitudes (śara).

|| 1 iti pratyaṃśaka-kramajyā-kranti-chāyāḥ śarāśca samāptaḥ ||
Thus, the Sines (kramajyā), the solar declinations (krānti), the shadow lengths
(chāyā), and the [lunar] latitudes (śara) for every degree (aṃśaka) ends.

At the bottom of f. 50v of MS Tk, we find the following text:

|| pātonacandro bhujā kārye bhujyaṃśebhyaḥ śaro grāhyāḥ yadi pātonacandraḥ ṣaḍbho-
nas tadā śaraḥ saumyaḥ yadādhikas tadā yāmyaḥ ||23

In [taking] the longitude (bhujā) of the Moon (candra) minus the node (pāta), the
lunar latitude (śara) is to be understood from the degrees fulfilling it [i.e. calculated
according to the degrees of lunar elongation]. If the [longitude of ] the Moon minus
the node (pāta) is less than six signs (ṣaḍ-bha) [i.e. less than 180◦] then the lunar
latitude (śara) is in the northern direction (saumya) [i.e. north of the ecliptic plane];
if it is more [i.e. greater than 180◦] then [the lunar latitude] is in the southern
direction (yāmya) [i.e. south of the ecliptic plane].

23 This sentence is grammatically ill-formed; for example, the attested words bhujyaṃśe-
bhyaḥ (instead of bhujāṃśebhyaḥ) and grāhyāḥ (instead of grāhyaḥ) have orthographic defects.
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2.3. Methodology of recomputation and analysis

Before describing my general methodology for recomputing and analysing in-
dividual tables, I note the following remarks on the selected corpus, and on
my mathematical practice of recomputing numerical tables.
1. Ff. 49v–50v of MS Tk do not contain any instructions to compute the
attested values of the six functions (Tables VI.A–VI.D). As the transla-
tions of the table titles show, the titular text merely identifies the types
of tables written on a particular folio.24 The other table titles through-
out the rest of this manuscript (as well as the paratext surrounding those
tables) also lack any computational instructions. Hence, the recomputa-
tion strategies used in this study are derived from other apposite San-
skrit and Islamicate sources.
Recent studies on Nityānanda’s texts,25 and more generally, the cul-

ture of science that thrived at the Mughal courts of early seventeenth
century India,26 suggest that he was well acquainted with Islamicate
(Persianate) theories in addition to Sanskrit siddhāntic astronomy.27 His
Amṛtalaharī uses certain parameters that are distinctly Islamicate, e.g. a
sinus totus of 60, as well as those that are traditionally siddhāntic, e.g. an
ecliptic obliquity of 24◦. In fact, the Amṛtalaharī contains several in-
stances that testify to Nityānanda’s familiarity with (and acceptance of )
both traditions of knowledge. It is, therefore, reasonable to choose re-
computational methods from the Sanskrit texts (e.g. siddhāntas, karaṇas,
or koṣṭhakas) or the Islamicate zījes that were in circulation in Mughal
India during his time.28

2. Establishing an absolute agreement between the attested and recom-
puted values is extremely difficult, if not nearly impossible. While some
differences can be explained computationally, there are other unknown
factors that lead to differences between the attested and recomputed val-
ues.29 In fact, even at the level of recomputations, the arithmetical prac-
tices of table authors (e.g. dividing mixed fractions, rounding/truncating

24 The text at the bottom of f. 50v of MS Tk explains certain aspects of the lunar latitude
(śara); however, it does not describe a computational procedure or algorithm.

25 For example, Misra, The Golādhyāya; Montelle et al., ‘Computation of Sines’, and Mon-
telle and Ramasubramanian, ‘Determining the Sine’.

26 For example, Minkowski, ‘Astronomers and Their Reasons’ and Truschke, Culture of En-
counters.

27 For example, Misra, ‘Persian Astronomy in Sanskrit’ and Misra, ‘Sanskrit Recension of
Persian Astronomy’.

28 See Ansari, ‘On the Transmission’ and Ansari, ‘Survey of Zījes’.
29 See Appendix A2 Tabular errors in van Dalen, ‘A Statistical Method’, pp. 116–19 for a

statistical description of the errors in numerical tables.
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the fractions, approximating/interpolating between fractions, etc.) affect
our own calculations at every step. The cumulative effect of these de-
cisions create an uncertainty in precisely reproducing the attested value.
In this study, all recomputed values are presented up to a level of com-
putational efficacy that retains a residual arithmetical noise.

3. In some instances, the differences between the attested and recomputed
values can indicate scribal discrepancies. Typically, these include
(a) inadvertent copying oversights in the digits of an entry (or the whole

entry), e.g.
– permutation or transposition of digits/entries,
– unwitting alteration of homoglyphic digits (due to misreading);
– dittography, i.e. copying a sequence of digits/entries twice;
– haplography, i.e. omitting a sequence of identical digits/entries
while copying; or

– mistranscription, i.e. a general non-purposive mistake in reading
and copying an individual digit, a whole entry, or a sequence of
digits/entries; and

(b) intentional interventions by historical actors (scribes/table authors) to
rectify corrupted/illegible/missing digits of an entry (or the whole
entry), e.g.
– ad hoc substitution, i.e. replacing illegible digits by other digits;
– assimilation, i.e. merging digits of adjacent entries to create new
entries;

– insertion, i.e. filling missing digits or whole entries by inspecting
the sequence; or

– contamination, i.e. inserting digits/entries from elsewhere (on the
folio) to fill missing entries.

It is worth noting that the lists above are neither exhaustive nor mu-
tually exclusive. It is often the case that distinguishing between inad-
vertent or intentional actions is simply not possible. Moreover, even in
the clearest of examples, any emendations to the attested value (that are
meant to correct/rectify these actions) remain conjectural. With these
caveats, it is nevertheless useful to analyse the differences between the
attested and recomputed values. If a difference can be justifiably ex-
plained as the result of an inadvertent copying mistake or an inten-
tional (but inaccurate) intervention, the attested value can be emended
to a recomputed result as a proposed emendation.
For example, in Table VI.A, the attested digits (in the minutes places)

for Sin 16◦, Sin 17◦, Sin 18◦, and Sin 19◦ are 32, 33, 32, and 32 re-
spectively. The recomputed Sines for these arguments suggest that digits
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in the minutes places for each of these arguments should be 32. The
abrupt increase of +1m (for Sin 17◦) in an overall monotonic sequence
suggests a plausible error in coping ‘33’ instead of ‘32’. The digits २
and ३ in handwritten Devanāgarī are often homoglyphic, and hence,
an unwitting alteration of these digits is not uncommon. Accordingly,
I emend the digits in the minutes place of Sin 17◦ from ‘33’ to the
recomputed result ‘32’ in Table VI.A.

4. A particular class of intentional actions, different from the ones listed
in the previous remark, are recomputational interventions. While scribes
may intervene to correct a corrupted/illegible/missing entry following
some rudimentary logic, table authors do the same but they recalculate
(or estimate) the values using more elaborate mathematical procedures.
Sometimes, table authors apply these mathematical procedures to inten-
tionally intervene, but do so inattentively which leads to an erroneous
result. By retracing their calculations (using historically apposite proce-
dures instead of modern ones), we can detect the irregularities along
the way that lead to the errant result. The goal of this study is to re-
compute the attested results, and therefore, identifying recomputational
irregularities is an important part of the process. In my study of the se-
lected corpus, I have identified the following kinds of recomputational
irregularities:
(a) instances where table authors (unwittingly) err in applying a math-

ematical procedure, e.g. misidentifying an appropriate interval when
interpolating;

(b) instances where table authors perpetuate an erroneous calculation,
e.g. using an erroneous Sine to compute the solar declination; and

(c) instances where table authors round/truncate the sexagesimal digits
in a calculation inconsistently.

The six individual tables from the selected corpus are recomputed and anal-
ysed following a common methodological routine:

Routine of recomputation
1. Recompute the values of the table for the entire range of arguments
using apposite historical procedures.

2. Compare the attested values (in MS Tk) and the results of the first
recomputation, and note the differences (between the digits in corre-
sponding sexagesimal places).

3. Inspect all non-zero differences, and where possible, identify any irregu-
lar recomputations that reproduce the attested values (and thereby, elim-
inate these differences).
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4. Reassess the revised differences between the attested values and the re-
sults of the second recomputation (i.e. recomputations including irregu-
lar ones).

Routine of analysis
5. Re-examine the attested values in (the diplomatic transcription and the
digital surrogate of ) MS Tk for those arguments that still have large
(revised) differences.

6. Identify, if possible, any copying oversights or intentional (non-recom-
putational) interventions in the attested value, and propose emendations
or corrections to those values with justifications.

2.3.1. Mathematical standards

1. I follow two main mathematical standards to recompute the individual
tables in this study:
(a) recomputed sexagesimal values are reduced to the second fractional

place by systematically rounding the digits in the final result instead
of truncating them (at the seconds place),30 and

(b) recomputed Sines are chosen over attested Sines (in MS Tk) for all
calculations.31

Appendices C.1–2 include my statistical justifications for choosing these
mathematical standards in this study.

2. When the division of sexagesimal numbers is an intermediate part of
a computation, the result of the division is rounded to seconds before
proceeding further. Effectively, this implies that,
– while calculating the solar declination in Section 3.3, Sin δ = Sin λ×

Sin 24◦/60 is computed as a sexagesimal number (rounded to seconds)
before proceeding to find δ as the inverse arc of Sin δ;

– while calculating the shadow lengths in Section 3.5, Cos a◦/Sin a◦ is
computed as a sexagesimal number (rounded to seconds) before mul-
tiplying it by the different gnomon heights h to determine the value
of their respective shadow lengths; and

30 For a sexagesimal number a; b, c, d with a, b, c, d ∈ [0, 59], systematic rounding results in
either a; b, c for d < 29 or a; b, c+ 1 for d ≥ 30. All calculations in this study follow this
standard of systematic rounding. In contrast, truncation ignores the final (third) sexagesimal
digit d and simply takes the result as a; b, c for any value of d.

31 Sines are required for recomputing the solar declinations (in Table VI.B), the shadow
lengths for gnomons of various heights (in Tables VI.C1–VI.C3), and lunar latitudes (in Ta-
ble VI.D).
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– while calculating the lunar latitude in Section 3.7, Sin β= 4;42,25×
Sin ω/60 is computed as a sexagesimal number (rounded to seconds)
before proceeding to find β as the inverse arc of Sin β.

3. In addition to this:
(a) the lunar latitudes (in Table VI.D) are recomputed using an exact

expression in lieu of an approximate one, and
(b) the lunar latitude recomputations use Sin 4◦30′ = 4;45,25.
Appendices C.3–4 include my statistical justifications for these choices.

3. Recomputation strategies and analyses of differences for Tables VI.A–D

Following the general methodology described above, my recomputation strate-
gies for each of the six tables from the selected corpus, along with an analyses
of the differences between the attested values and my recomputed results, are
presented below in separate subsections.

3.1. Table of Sines (kramajyā): Recomputation strategy

The Sine table of the Amṛtalaharī (in MS Tk) is computed for every degree
of arc from 1◦ to 90◦ and has a maximum value (sinus totus R) of 60;0,0.
I recompute the Sines following a sequence of interdependent mathematical
operations based on arithmetical, geometrical, and trigonometric arguments.
My recomputed table of Sines for the first ninety degrees of arc is presented
in Table VI.A on page 233.
The Amṛtalaharī (in particular, MS Tk) does not describe any method

to compute the Sines; however, Nityānanda’s Sarvasiddhāntarāja (1639 c)
includes a detailed discussion on Sine computations (sixty verses including
several diagrams in six sections) in the spaṣṭādhikāra of the gaṇitādhyāya,
I.3: 19–85. A critical edition, English translation, and technical commen-
tary of the verses from the first five sections can be found in Montelle
et al., ‘Computation of Sines’, and those from the sixth section can be
found in Montelle and Ramasubramanian, ‘Determining the Sine’. Consid-
ering the Amṛtalaharī was composed almost contemporaneously with the
Sarvasiddhāntarāja (i.e. around the first half of the seventeenth century), it is
reasonable to assume that Nityānanda used analogous geometrical arguments
and trigonometric formulae (including the iterative algorithm for calculating
the Sine of 1◦) to construct the Sine tables of the Sarvasiddhāntarāja and
the Amṛtalaharī.32

32 See Van Brummelen, The Mathematics of the Heavens and Plofker, Mathematics in India
for a more detailed discussion on the history and development of trigonometry in India.
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3.1.1. Recomputing the Sines of the elementary arcs based on geometrical arguments
I first compute the Sines of 90◦, 72◦, 60◦, 54◦, 45◦, 36◦, 30◦, and 18◦. In
the Sarvasiddhāntarāja I.3: 24–54, Nityānanda computes these Sines using
(a) geometrical arguments in a circle of radius 60, (b) the half-arc and
double-arc formulae for Sines, and (c) the sum and difference laws for Sines.
I list below the different expressions for calculating these Sines. All of these
expressions can be derived using simple geometrical arguments; readers may
refer to Montelle et al., ‘Computation of Sines’ where Nityānanda’s deriva-
tions from the Sarvasiddhāntarāja are described in greater detail.
1. Sin 90◦ corresponds to the radius (vyāsa-khaṇḍa) of a circle, i.e. we have
Sin 90◦ ≡R= 60;0,0,0 (Sarvasiddhāntarāja I.3: 24).33

2. Sin 45◦ can be expressed as 1√
2

√
R2 ≈ 42;25,35,3 (Sarvasiddhāntarāja

I.3: 28). This expression is derived using the Pythagorean theorem in an
inscribed right triangle at the centre of a circle of radius R.34

3. Sin 30◦ can be expressed as 1
2R= 30;0,0,0 (Sarvasiddhāntarāja I.3: 24).

An equilateral triangle subtended at the centre of a circle of radius R
has sides measuring Crd 60◦ ≡ R. The Sine (jyārdha ‘half the chord’)
corresponding to an arc (cāpa) of 30◦ is ‘half the chord of double the
arc’, i.e. 12 Crd 60

◦.35

4. Sin 60◦ is approximately 51;57,41,29. This value is computed using
Nityānanda’s procedure for the Sine of double the arc (Sarvasiddhānta-
rāja I.3: 37) for an arc of 30◦. Montelle et al., ‘Computation of Sines’,
pp. 28–29 discuss the two-step procedure for this calculation as well as
Nityānanda’s Sanskrit expressions of the formula for the Sine of double
the arc.

5. Sin 18◦ can be expressed as
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≈ 18;32,27,40

(Sarvasiddhāntarāja I.3: 24), where the diameter D ≡ 2R = 120.
Nityānanda’s geometrical demonstration for this expression (in the
Sarvasiddhāntarāja I.3: 25–27), and its equivalence to Bhāskara II’s ex-
pression 1

4(
√
5R2−R) stated in terms of the radius R (in his Jyotpatti:

9, 1150 c) is discussed in Montelle et al., ‘Computation of Sines’,
pp. 18–22.36

33 Montelle et al., ‘Computation of Sines’, p. 18.
34 ibid., pp. 22–23.
35 ibid., p. 18.
36 Bhāskara II does not derive this equation; Munīśvara (fl. 1638 c), in his commentary

Marīci-ṭīkā on the Jyotpatti, offers a geometrical explanation for it. In fact, Munīśvara proposes
the lemma dasāśra-bhujā-vargo’yaṃ bhuja-trijyā-vadhena yuk trijyāvargo bhavet ‘The square of
a side of a regular decagon together with the product of the side and the radius (of the
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6. Sin 36◦ is approximately 35;16,1,36. Like Sin 60◦, this value is also
computed using Nityānanda’s procedure for the Sine of double the arc
(Sarvasiddhāntarāja I.3: 37) for an arc of 18◦.37

7. Sin 54◦ is approximately 48;32,27,40. This value is computed using
Nityānanda’s procedure for the Sine of the difference of two arcs (Sarva-
siddhāntarāja I.3: 49) for two arcs measuring 90◦ and 36◦, with Sin 90◦
= 60 and Sin 36◦ = 35;16,1,36. Nityānanda’s geometrical demonstration
of this expression (in the Sarvasiddhāntarāja I.3: 50–54) is discussed in
Montelle et al., ‘Computation of Sines’, pp. 38–41.

8. And finally, Sin 72◦ is approximately 57;3,48,12, also using Nityānanda’s
procedure for the Sine of the difference of two arcs (Sarvasiddhāntarāja
I.3: 49) for two arcs measuring 90◦ and 18◦, with Sin 90◦ = 60 and
Sin 18◦ = 18;32,27,40.38

3.1.2. Recomputing the Sines for multiples of 3◦ of arc
Next, I compute the Sines of multiples of 3◦ of arc (in a circle of radius 60).
These values are calculated by successively applying the trigonometric formulae
for (a) the Sine of half the arc and (b) the Sine of the sum and differences
of arcs.
In his Sarvasiddhāntarāja I.3: 31–32 and 36, Nityānanda gives two expres-

sions to determine the Sine of half the arc. The first method calculates the
Sine in terms of the Versine (utkramajyā), while the second method com-
putes it iteratively. See Montelle et al., ‘Computation of Sines’, pp. 23–27 for
a more detailed description of these methods, including their derivations and
equivalence.
As an example, Sin 27◦ is calculated from Sin 54◦ ≈ 48;32,27,40 (with the

first method) as

Sin 27◦ = Sin
Å
54◦

2

ã
=

 Å
Vers 54◦

2

ã2
+

Å
Sin 54◦

2

ã2

(where Vers 54◦ =R−Cos 54◦)
⇒ Sin 27◦ ≈ 27;14,21,56.

In the Sarvasiddhāntarāja I.3: 41 and 49, Nityānanda also gives the ex-
pressions for the Sine of the addition of (or the subtraction between) two
arcs; see Montelle et al., ‘Computation of Sines’, pp. 29–46 for Nityānanda’s

circumscribing circle) is equal to the square of the radius’ to derive an expression for Sin 18◦,
see Gupta, ‘Sine of Eighteen Degrees’.

37 Montelle et al., ‘Computation of Sines’, pp. 28–29.
38 ibid., pp. 38–41.
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3.1.1. Recomputing the Sines of the elementary arcs based on geometrical arguments
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tions from the Sarvasiddhāntarāja are described in greater detail.
1. Sin 90◦ corresponds to the radius (vyāsa-khaṇḍa) of a circle, i.e. we have
Sin 90◦ ≡R= 60;0,0,0 (Sarvasiddhāntarāja I.3: 24).33

2. Sin 45◦ can be expressed as 1√
2

√
R2 ≈ 42;25,35,3 (Sarvasiddhāntarāja
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geometrical arguments to derive these expressions. Essentially, these formulae
help calculate new Sines using previously determined Sines (and correspond-
ing Cosines). For example, Sin 48◦ is calculated from Sin 30◦ = 30;0,0,0 and
Sin 18◦ ≈ 18;32,27,40 as

Sin 48◦ = 1
60 Sin (30

◦ + 18◦)
= 1

60(Sin 30
◦Cos 18◦ +Cos 30◦ Sin 18◦)≈ 44;35,19,16.

Similarly, the Sine of the difference between two arcs is calculated using the
Sines (and corresponding Cosines) of the two arcs. For example, Sin 6◦ is
calculated from Sin 36◦ = 35;16,1,36 and Sin 30◦ = 30;0,0,0 as

Sin 6◦ ≡ 1
60 Sin (36

◦ − 30◦)
= 1

60(Sin 36
◦Cos 30◦ −Cos 36◦ Sin 30◦)≈ 6;16,18,8.

I calculate the Sines for the thirty arguments that are multiples of 3◦ of arc
by successively applying the formulae for the Sine of half the arc and the
Sine of the sums and differences of arcs.

3.1.3. Recomputing the Sine of 1◦ of arc

To calculate the remaining Sines, in particular, the Sines for arguments that
are multiples of 2◦ (distinct from the multiples of 3◦), e.g. Sin 4◦ or Sin 56◦,
the value of Sine of 1◦ is essential.
Typically, in the Indian tradition, the Sines were tabulated in 24 blocks of

3◦45′ (or 225′) for the first 90◦ (the first quadrant) of a circle of specified
radius (identified as the trijyā or sinus totus).39 The Sine of a non-tabulated
argument was calculated by interpolating between appropriate (successive) val-
ues using different interpolation (and iterative) schemes.40

39 Bag, ‘Sine Table’ describes the different sine tables in the Indian tradition. Also, Sub-
barayappa and Sarma, Indian Astronomy, pp. 62–73 present translations and analyses of the
verses (from primary sources) that discuss Sine computations from major Sanskrit texts.

40 For example, see Hayashi, ‘Āryabhaṭa’s Rule’ for Āryabhaṭa’s rule of differences for com-
puting Sines in his Āryabhaṭīya (c. 499 c); Gupta, ‘Second Order Interpolation’, p. 88 for
Brahmagupta’s second-order finite-difference interpolation scheme for approximating Sines in
his Dhyānagraha (c. early 7th century)—a technique also repeated in his later and more famous
work Khaṇḍakhādyaka (665 c); Plofker, ‘An Example of the Secant Method’ for Parame-
śvara’s fixed-point iterations to compute Sines in his Siddhāntadīpikā (c. 14th century); Rama-
subramanian and Sriram, Tantrasaṅgraha, pp. 52–68 for Āryabhaṭa’s commentator Nīlakaṇṭha
Somayājī’s interpolation techniques to compute desired Sines in his Tantrasaṅgraha (1501 c);
and Sarma et al., Gaṇita-yukti-bhāṣā, pp. 90–102 for Jyeṣṭhadeva’s demonstrations of the sine
and cosine series approximations—attributed to the famous Kerala astronomer Mādhava of
Saṅgamagrāma (fl. c. 1380/1420 c)—in his Gaṇitayuktibhāṣā (c. 16th century).
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In his Sarvasiddhāntarāja I.3: 60–66, Nityānanda gives three different it-
erative algorithms to determine the Sine of one degree as a solution to a
cubic equation. Montelle and Ramasubramanian, ‘Determining the Sine’ dis-
cuss, in detail, Nityānanda’s algebraic and geometrical rationales in using a
cubic equation, his derivation of the Sine of one degree as a recursive solu-
tion of a cubic equation, as well as the historical and technical context of this
derivation—including its origin in al-Kāshī’s method from the 15th century.
I describe below the main steps in calculating Sin 1◦ following Nityānanda’s

first iterative method described in his Sarvasiddhāntarāja I.3: 60–63.41
1. Calculate Sin 3◦. In the Sarvasiddhāntarāja I.3: 66, Nityānanda expressly
mentions the value of Sin 3◦ as 3;8,24,33,59,34,28,14,50; however, for
the present purpose, a recomputed value (to thirds) provides an identical
estimate of Sin 1◦ up to the fourth fractional place in this algorithm.
The formula for the Sine of half the arc for an arc of 6◦ (with Sin 6◦
≈ 6;16,18,8) gives Sin 3◦ ≈ 3;8,24,33.

2. Solve a cubic equation in X (with X ≡ 2× Sin 1◦) of the form (in
modern notation)

X=
2× Sin 3◦

3
+

X3

3R2
or Sin 1◦ =

Sin 3◦

3
+

(Sin 1◦)3

3R2
.

By treating the number X as a sequence of successive sexagesimal digits
p0, p1, p2, . . . , pn (up to the nth level of precision), Nityānanda’s first it-
erative method (Sarvasiddhāntarāja I.3: 60–63) generates the individual
digits pi for i ∈ Nn recursively in n iterations. Essentially, this method
uses successive divisions of remainders to determine a progressively more
accurate root of the cubic equation in Sin 1◦. According to Montelle
and Ramasubramanian, ‘Determining the Sine’, pp. 15–16, this algo-
rithm gives Sin 1◦ = 1;2;49,43,11 (calculated up to the fourth fractional
place).

3.1.4. Recomputing the Sines of the remaining arcs

The Sines for all remaining integer-valued arcs between 1◦ and 90◦ can be
easily recomputed with Sin 1◦ and the formulae for Sines of half the arc
and the sums and differences of arcs. For example, Sin 2◦ is calculated from
Sin 3◦ ≈ 3;8,24,33 and Sin 1◦ ≈ 1;2;49,43 as

Sin 2◦ ≡ Sin (3◦ − 1◦) = 1
60 (Sin 3

◦Cos 1◦ −Cos 3◦ Sin 1◦)≈ 2;5,38,17.

41 See Montelle and Ramasubramanian, ‘Determining the Sine’, pp. 13–14.
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3.2. Table of Sines (kramajyā): Analysis of differences

List of proposed emendations to the attested Sines in MS Tk:42

Based on inadvertent copying oversights
1. Sin 1◦m: 5→ 2 and Sin 2◦m: 0→ 5. The value of Sin 1◦ is an impor-
tant part of the recomputation of Sines, and hence, an error in the
minutes place of Sin 1◦ suggests an unintentional copying mistake rather
than an irregular recomputation. The digits ‘5’ and ‘0’ in Sin 1◦m and
Sin 2◦m could have been mistakenly transposed during copying; however,
Sin 1◦m = 0 is still a significant error.

2. Sin 17◦m: 33→ 32. Suspected alteration of homoglyphic digits ‘2’ and
‘3’ in handwritten Devanāgarī. Also, Sin 16◦m, Sin 17◦m, Sin 18◦m, and
Sin 19◦m appear in the sequence ‘32’, ‘33’, ‘32’, and ‘32’ respectively so
a mistranscription is just as likely.

3. Sin 37◦m: 16→ 6. Suspected dittography. Sin 36◦m and Sin 37◦m appear
in the sequence ‘16’ and ‘16’ respectively.

4. Sin 50◦u: 46 → 45. Suspected mistranscription. Sin 49◦u, Sin 50◦u, and
Sin 51◦u appear in the sequence ‘45’, ‘46’, and ‘46’ respectively.

5. Sin 75◦s: 30 → 20. Suspected alteration of homoglyphic digits ‘2’ and
‘3’ in handwritten Devanāgarī.

Based on intentional interventions
6. Sin 88◦m,s: 59,27 → 57,48. Suspected contamination. Adjacent entries
Sin 88◦ and Sin 89◦ are both 59;59,27. This could also suggest a dittog-
raphy; however, the entries for all six functions corresponding to the
88th and 89th arguments are identical in MS Tk. (Pages 230–31 show
the printed reproduction and a diplomatic transcription of f. 50v from
MS Tk.) I suspect a table author intentionally copied the entire column
of (correct) entries corresponding to the 89th argument (from a parent
manuscript) to replace a corrupted/illegible/missing column of entries
for the 88th argument.

Remarks on Table VI.A

1. On f. 49v of MS Tk, the digits ‘2’ and ‘0’ (of the number 20) in
Sin 57◦m have overhead marks: , 2̌0̈. This could suggest a correction

42 The subscripts ‘u’, ‘d’, ‘m’, and ‘s’ are used to indicate digits in the units, degrees, minutes,
and seconds place respectively. I use ‘→’ to represent a change between digits, in other words,
the digits to the left of ‘→’ are emended to the ones on its right. I follow these conventions
to indicate my proposed emendations for the rest of this chapter.
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to the (digits in the) number 20; however, there are no marginal cor-
rections visible on the folio and hence I simply record this entry as 20
in my transcription.

2. The attested and recomputed Sin 46◦, Sin 49◦, Sin 50◦, Sin 52◦, Sin 53◦,
Sin 54◦, and Sin 57◦ differ as ±1′. My recomputations (including irreg-
ular ones) have been unsuccessful in removing this difference, and there
are no discernible copying mistakes or scribal corrections in any of these
instances. Therefore, I present the attested digits (in the minutes place)
of these Sines in Table VI.A without suggesting any emendations.
However, looking at Nityānanda’s Sine table from his Sarvasiddhānta-

rāja,43 we find:44

Sin 46◦ = 43; 9, 37,23,49
Sin 49◦ = 45; 16, 57,16,10 Sin 50◦ = 45; 57, 45,35,59
Sin 52◦ = 47; 16, 50,19,22 Sin 53◦ = 47; 55, 5,16,13
Sin 54◦ = 48; 32, 27,40,15 Sin 57◦ = 50; 19, 12,50,34

The underlined digits (in the minutes place) of these values are identi-
cal to the corresponding digits of my recomputed Sines in Table VI.A.
The similarity between these Sines in the Sarvasiddhāntarāja and the
Amṛtalaharī alludes to a common computational nuance, or perhaps a
common textual ancestor.

3. Sin 14◦s, Sin 21◦s, Sin 45◦s, and Sin 65◦s have a difference of +1 be-
tween the attested values (from MS Tk) and the recomputed results.
This difference appears to be the result of an unknown (and possibly,
irregular) arithmetical calculation by a table author. I leave the digits
(in the seconds place) of these Sines unchanged in Table VI.A.

3.3. Table of solar declinations (krānti): Recomputation strategy
The table of solar declination (krānti) of the Amṛtalaharī (in MS Tk) is
computed for every degree of celestial (tropical or sāyana) longitude λ from
1◦ to 90◦ and has a maximum value (equal to the obliquity of the ecliptic
ε) of 24◦0′0′′. The solar declination δ is related to the celestial longitude λ
with the expression

Sin δ = Sin λ× Sin ε
R

≡ Sin λ× Sin 24◦

60
∵ Sin 90◦ =R= 60.

43 MS Sans γ550, f. 19r, from the Wellcome Institute for the History of Medicine and
MS Reel No. B 354/15, f. 15r, from the National Archive Kathmandu.

44 The fifth digit ‘49’ of Sin 46◦ is illegible in MS B 354/15. Also, Sin 54◦s resembles ‘20’
in MS B 354/15.
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This expression is commonly found in most Sanskrit siddhāntas from very
early times, e.g. Brahmagupta’s Brāhmasphuṭasiddhānta (628 c): II.55. See
Plofker, ‘An Example of the Secant Method’, pp. 91–92 for a simple geomet-
ric derivation of this expression applying the ‘rule of three’ to similar right
triangles inscribed between the ecliptic and the equator. Having calculated
the Sine of the declination, the method to find the arc of declination cor-
responding to it involves estimating the inverse arc of Sine. Several Sanskrit
texts describe the method to find the inverse Sine, i.e. the arc measure (cāpa
or dhanus, ‘bow’) corresponding to a particular Sine (kramajyā) value.45
Typically, the unknown arc θ for a given Sin θ is linearly interpolated using

localised Sine differences. The general algorithm of this method (in modern
notation) is as follows:
1. Identify the interval Sin θi < Sin θ < Sin θi+1 for i ∈ Z+

90 in the table of
Sines. The Sine function is a monotonic function that increases from 0
to R in the interval [0◦, 90◦], and therefore, the corresponding interval
of the argument θ can be identified as θi < θ < θi+1 for i ∈ Z+

90.

2. Compute δθ, where δθ def= θ− θi and hence θ = θi + δθ. The increment
δθ can be computed from a linear incremental ratio in the unit interval
[θi, θi+1] as

Sin θ− Sin θi
θ− θi

=
Sin θi+1− Sin θi

1

⇒ θ− θi =
Sin θ− Sin θi
Sin θi+1− Sin θi

⇒ δθ =
δSin θ
ΔiSin θ

.

3. Calculate θ from θi and δθ with θ = θi+ δθ.
It is worth noting that table authors are not as systematic in linearly in-
terpolating between successive values as described above. Sometimes, certain
(re)computational irregularities are easy to identify, e.g. choosing Sin θi+2 −
Sin θi+1 instead of Sin θi+1− Sin θi in calculating δθ. However, in other in-
stances, table authors make intuitive choices like approximating the argument
instead of interpolating it (for smaller values), making it difficult to explain
an anomalous entry. My recomputations of the solar declinations attested in
MS Tk admit to this level of uncertainty in a few instances.

3.3.1. Worked example
Calculating the solar declination δ corresponding to a celestial longitude λ of
52◦:

45 For example, see Bhāskara II’s Karaṇakutūhala (1183 c): II.8 (Rao and Uma, Karaṇa-
kutūhalam, p. S19) or Nilakaṇṭha’s Tantrasaṅgraha (1501 c): II.7 (Ramasubramanian and
Sriram, Tantrasaṅgraha, pp. 68–70).
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1. For the celestial longitude λ = 52◦, using the recomputed results
Sin 52◦ = 47;16,50 and Sin 24◦ = 24;24,15 from Table VI.A,

Sin δ(52◦) = Sin 52◦ × Sin 24◦

60
≈ 19;13,50,33.

2. To determine the arc δ(52◦) corresponding to a Sine of 19;13,51
(rounded to seconds), observe from Table VI.A that Sin 18◦ ≡
18;32,28< Sin δ(52◦)< Sin 19◦ ≡ 19;32,3. Therefore,

δ(52◦) = 18◦ +
Sin δ(52◦)− Sin 18◦

Sin 19◦ − Sin 18◦

= 18◦ +
ï
19;13,51− 18;32,28
19;32,3− 18;32,28

ò

in degrees
= 18◦ +

ï
0;41,23
0;59,35

ò

in degrees

= 18◦ + 0◦41′40′′ (rounded to seconds)≈ 18◦41′40′′

The recomputed solar declination corresponding to a celestial longitude
of 52◦ is 18◦41′40′′.

Table VI.B on page 234 presents the recomputed solar declinations for every
degree of celestial longitude from 1◦ to 90◦. Most of these recomputations
follow the algorithm described above; however, a few entries are calculated
irregularly as described below.

3.3.2. Recomputational irregularities in solar declination calculations
1. Recomputing the solar declination for a celestial longitude of 28◦. For
λ = 28◦, Sin δ(28◦) = Sin 28◦ × Sin 24◦/60. With Sin 28◦ = 28;10,6 and
Sin 24◦ = 24;24,15, Sin δ(28◦) = 11.45707836 ≈ 11;27,25. A regular
interval to determine the inverse arc of this Sine (by interpolation) is

Sin 11◦ < Sin δ(28◦)< Sin 12◦

⇒ 11;26,55< Sin δ(28◦)≈ 11;27,25< 12;28,29,

which gives δ ≈ 11;0,30 (rounded to seconds). However, the irregular
interval

Sin 10◦ < Sin δ(28◦)< Sin 12◦

⇒ 10;25,8< Sin δ(28◦)≈ 11;27,25< 12;28,29

gives

δ(28◦) = 10◦ +
Sin δ(28◦)− Sin 10◦

Sin 12◦ − Sin 11◦

≈ 10◦ + 1◦0′41′′54′′′ ≈ 11◦0′41′′54′′′.

The truncated value δ(28◦) = 11◦0′41′′ is identical to the attested value
in MS Tk.
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This expression is commonly found in most Sanskrit siddhāntas from very
early times, e.g. Brahmagupta’s Brāhmasphuṭasiddhānta (628 c): II.55. See
Plofker, ‘An Example of the Secant Method’, pp. 91–92 for a simple geomet-
ric derivation of this expression applying the ‘rule of three’ to similar right
triangles inscribed between the ecliptic and the equator. Having calculated
the Sine of the declination, the method to find the arc of declination cor-
responding to it involves estimating the inverse arc of Sine. Several Sanskrit
texts describe the method to find the inverse Sine, i.e. the arc measure (cāpa
or dhanus, ‘bow’) corresponding to a particular Sine (kramajyā) value.45
Typically, the unknown arc θ for a given Sin θ is linearly interpolated using

localised Sine differences. The general algorithm of this method (in modern
notation) is as follows:
1. Identify the interval Sin θi < Sin θ < Sin θi+1 for i ∈ Z+

90 in the table of
Sines. The Sine function is a monotonic function that increases from 0
to R in the interval [0◦, 90◦], and therefore, the corresponding interval
of the argument θ can be identified as θi < θ < θi+1 for i ∈ Z+

90.

2. Compute δθ, where δθ def= θ− θi and hence θ = θi + δθ. The increment
δθ can be computed from a linear incremental ratio in the unit interval
[θi, θi+1] as

Sin θ− Sin θi
θ− θi

=
Sin θi+1− Sin θi

1

⇒ θ− θi =
Sin θ− Sin θi
Sin θi+1− Sin θi

⇒ δθ =
δSin θ
ΔiSin θ

.

3. Calculate θ from θi and δθ with θ = θi+ δθ.
It is worth noting that table authors are not as systematic in linearly in-
terpolating between successive values as described above. Sometimes, certain
(re)computational irregularities are easy to identify, e.g. choosing Sin θi+2 −
Sin θi+1 instead of Sin θi+1− Sin θi in calculating δθ. However, in other in-
stances, table authors make intuitive choices like approximating the argument
instead of interpolating it (for smaller values), making it difficult to explain
an anomalous entry. My recomputations of the solar declinations attested in
MS Tk admit to this level of uncertainty in a few instances.

3.3.1. Worked example
Calculating the solar declination δ corresponding to a celestial longitude λ of
52◦:

45 For example, see Bhāskara II’s Karaṇakutūhala (1183 c): II.8 (Rao and Uma, Karaṇa-
kutūhalam, p. S19) or Nilakaṇṭha’s Tantrasaṅgraha (1501 c): II.7 (Ramasubramanian and
Sriram, Tantrasaṅgraha, pp. 68–70).
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2. Recomputing the solar declinations for the celestial longitudes 2◦, 7◦,
12◦, 15◦, 18◦, 37◦, 43◦, 45◦, 49◦, 53◦, 55◦, 61◦, 64◦, 72◦, 74◦, 78◦, 80◦,
and 82◦. The recomputed values match the attested values in MS Tk
when the final results are truncated to seconds (instead of systematically
rounding them to seconds), e.g.

δ (recomputed, up to thirds) δ (attested in MS Tk)
δ(2◦) = 0◦48′47′′44′′′ ←→ δ(2◦) = 0◦48′47′′

δ(18◦) = 7◦13′14′′45′′′ ←→ δ(18◦) = 7◦13′14′′

The truncated versions of these recomputed values are not suggested
as emendations; instead, the third row of differences between the at-
tested and recomputed values (corresponding to these arguments) in
Table VI.B registers them as a difference of ‘−1’.

3.4. Table of solar declinations (krānti): Analysis of differences
List of proposed emendations to the attested solar declinations in MS Tk:

Based on inadvertent copying oversights
1. δ(23◦)d: 8 → 9. Suspected mistranscription. δ(22◦)d, δ(23◦)d, and
δ(24◦)d appear in the sequence ‘8’, ‘8’, and ‘9’ respectively.

2. δ(67◦)s: 25→ 15. Suspected alteration of homoglyphic digits ‘1’ and ‘2’
in handwritten Devanāgarī.

3. δ(70◦)m: 29 → 28. Suspected mistranscription. δ(68◦)m, δ(69◦)m, and
δ(70◦)m appear in the sequence ‘9’, ‘19’, and ‘29’ respectively.

4. δ(77◦)s: 44→ 55. Suspected alteration of homoglyphic digits ‘4’ and ‘5’
in handwritten Devanāgarī.

Based on intentional interventions
5. δ(88◦)s: 46→ 4. Suspected contamination. Adjacent entries δ(88◦) and
δ(89◦) are both 23◦59′46′′. All six functions corresponding to the 88th

and 89th arguments are identical in MS Tk. See note 6 on page 204.

Remarks on Table VI.B
The digits in the seconds place of the attested and recomputed solar decli-
nations for several degrees of celestial longitudes vary by ±1. A few entries
differ by up to ±4′′, with one instance of a +5′′ variation. I suspect these
differences are a result of irregular arithmetic calculations, or selecting incor-
rect interpolation intervals. However, I have not been able to explain these
differences mathematically (or justify them as interventions/oversights), and
therefore, I do not emend the attested digits (in the seconds places) of the
solar declinations corresponding to these longitudes in Table VI.B.
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3.5. Tables of shadow lengths (śaṅkuchāyā): Recomputation strategy
The tables of lengths of shadows (chāyā) of gnomons (śaṅku) of the Amṛta-
laharī (in MS Tk) are computed for every degree of solar altitude (lam-
baka)46 from 1◦ to 90◦ for gnomons of heights 60 digits, 12 digits, and 7
digits.47 The shadow length (śaṅkuchāyā) of a gnomon of height h digits,
hereafter abbreviated as Chāyāh , is related to the solar altitude a with the
expression

Chāyāh a= h× Cos a
Sin a

,

where a ≡ solar altitude and h ≡ gnomon height (in digits). A simple geo-
metric derivation for this expression (for a 12 digit gnomon, a typical mea-
sure in Indian astronomy) is described in Ramasubramanian and Sriram,
Tantrasaṅgraha, p. 135. Another way to interpret the shadow length is to
consider the argument as the terrestrial latitude ϕ of an observer. The tab-
ulated shadow lengths then represent the length of the equinoctial noon
shadow cast by the gnomon (of a particular height h). On the day of the
equinox, the declination of the Sun is zero and hence the diurnal path of the
Sun (almost) traces the celestial equator in the sky. At midday on this day,
the local zenith crossing of the Sun corresponds to the local terrestrial lat-
itude (measured from the local zenith). Thus, the equinoctial noon shadow
of the gnomon (viṣuvatchāyā) can be expressed as a function of the local
terrestrial latitude, i.e. h× Sin ϕ/Cos ϕ.48 Several Sanskrit texts, beginning from
very early times, describe how the shadow lengths of gnomons (for known
heights) are computed, e.g. Kauṭilīya’s Arthaśāstra (2nd century–3rd century
c) or Āryabhaṭa’s Āryabhaṭīya (c. 499 c).49

3.5.1. Worked example
Calculating the shadow length Chāyāh corresponding to a solar altitude a of
52◦ for gnomons of heights h= 60 digits, 12 digits, and 7 digits:
1. For the solar altitude a = 52◦ and gnomon height h = 60, Sin a ≡
Sin 52◦ ≈ 47;16,50 and Cos a≡ Cos 52◦ = Sin (38◦)≈ 36;56,23 (using
recomputed Sines from Table VI.A). Thus,

Chāyā 60 52
◦ = h× Cos 52◦

Sin 52◦
≡ 60× 36;56,23

47;16,50
≈ 46;52,38

46 The solar altitude (lambaka) (above the horizon) is the complement of the zenith dis-
tance (natāṃśa) of the Sun.

47 A digit or aṅgula is a unit of linear measure of a finger breadth, approximately, (1/24)th

part of a cubit (hasta).
48 Ramasubramanian and Sriram, Tantrasaṅgraha, p. 140.
49 See, respectively, Abraham, ‘The Gnomon’ and Shukla and Sarma, Āryabhaṭīya.
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2. Recomputing the solar declinations for the celestial longitudes 2◦, 7◦,
12◦, 15◦, 18◦, 37◦, 43◦, 45◦, 49◦, 53◦, 55◦, 61◦, 64◦, 72◦, 74◦, 78◦, 80◦,
and 82◦. The recomputed values match the attested values in MS Tk
when the final results are truncated to seconds (instead of systematically
rounding them to seconds), e.g.

δ (recomputed, up to thirds) δ (attested in MS Tk)
δ(2◦) = 0◦48′47′′44′′′ ←→ δ(2◦) = 0◦48′47′′

δ(18◦) = 7◦13′14′′45′′′ ←→ δ(18◦) = 7◦13′14′′

The truncated versions of these recomputed values are not suggested
as emendations; instead, the third row of differences between the at-
tested and recomputed values (corresponding to these arguments) in
Table VI.B registers them as a difference of ‘−1’.

3.4. Table of solar declinations (krānti): Analysis of differences
List of proposed emendations to the attested solar declinations in MS Tk:

Based on inadvertent copying oversights
1. δ(23◦)d: 8 → 9. Suspected mistranscription. δ(22◦)d, δ(23◦)d, and
δ(24◦)d appear in the sequence ‘8’, ‘8’, and ‘9’ respectively.

2. δ(67◦)s: 25→ 15. Suspected alteration of homoglyphic digits ‘1’ and ‘2’
in handwritten Devanāgarī.

3. δ(70◦)m: 29 → 28. Suspected mistranscription. δ(68◦)m, δ(69◦)m, and
δ(70◦)m appear in the sequence ‘9’, ‘19’, and ‘29’ respectively.

4. δ(77◦)s: 44→ 55. Suspected alteration of homoglyphic digits ‘4’ and ‘5’
in handwritten Devanāgarī.

Based on intentional interventions
5. δ(88◦)s: 46→ 4. Suspected contamination. Adjacent entries δ(88◦) and
δ(89◦) are both 23◦59′46′′. All six functions corresponding to the 88th

and 89th arguments are identical in MS Tk. See note 6 on page 204.

Remarks on Table VI.B
The digits in the seconds place of the attested and recomputed solar decli-
nations for several degrees of celestial longitudes vary by ±1. A few entries
differ by up to ±4′′, with one instance of a +5′′ variation. I suspect these
differences are a result of irregular arithmetic calculations, or selecting incor-
rect interpolation intervals. However, I have not been able to explain these
differences mathematically (or justify them as interventions/oversights), and
therefore, I do not emend the attested digits (in the seconds places) of the
solar declinations corresponding to these longitudes in Table VI.B.
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(rounded to seconds). The recomputed shadow length for a gnomon
of height 60 digits and corresponding to a solar altitude of 52◦ is
46;52,38.

2. Similarly, for h = 12 and h = 7: Chāyā 12 52
◦ ≡ 12× 36;56,23

47;16,50 ≈ 9;22,32
and Chāyā 7 52

◦ ≡ 7× 36;56,23
47;16,50 ≈ 5;28,8. The recomputed shadow lengths

for gnomons of height 12 digits and 7 digits corresponding to a so-
lar altitude of 52◦ are 9;22,32 and 5;28,8 respectively. Both values are
rounded to the second fractional place.

Tables VI.C1 (page 235), VI.C2 (page 236), and VI.C3 (page 237) present
the recomputed shadow lengths for every degree of solar altitude from 1◦ to
90◦ for gnomon lengths 60 digits, 12 digits, and 7 digits respectively. Most
of these recomputations follow the algorithm described above; however, a few
entries are calculated irregularly as described below.

3.5.2. Recomputational irregularities in shadow-length calculations:
60-digit gnomon (Table VI.C1)

1. Recomputing the shadow length for a solar altitude of 14◦. Using
the attested value Sin 14◦ = 14;30,56 from MS Tk (see Table VI.A)
gives Chāyā 60 (14

◦) = 60× Cos 14◦
Sin 14◦ = 60× 58;13,4

14;30,56 ≈ 60×4;0,38,34,45≈
240;38,34,45 (truncated to seconds). This value is identical to the at-
tested value in MS Tk. The shadow length value with the recomputed
Sin 14◦ as 14;30,55 is 240;38,51 (rounded to seconds).

2. The recomputations of the shadow lengths for the following arguments
agree with their attested values in MS Tk if irregular Sine (or Co-
sine) values are considered. These recomputational scenarios are seem-
ingly random; nevertheless, I list them below for completeness. The at-
tested or recomputed Sines stated below can be found in Table VI.A.
(a) With the recomputed Sin 11◦=11;26,55 and an arbitrary Cos 11◦=

Sin 79◦ = 58;53,53, Chāyā 60 (11
◦) ≈ 308;40,25 (rounded to sec-

onds), which agrees with the attested value in MS Tk. The
shadow length with the attested/recomputed Cos 11◦ as 58;53,51
is 308;40,14 (rounded to seconds).

(b) With the attested Sin 21◦ = 21;30,8 and the recomputed Cos 21◦ =
Sin 69◦ = 56;0,53, Chāyā 60 (21

◦) ≈ 156;18,14 (rounded to sec-
onds), which agrees with the attested value in MS Tk. The shadow
length with the recomputed Sin 21◦ as 21;30,6,59 is 156;18,22
(rounded to seconds).

(c) With an arbitrary Sin 42◦ = 40;8,50 and the recomputed Cos 42◦ =
Sin 48◦ = 44;35,19, Chāyā 60 (42

◦) ≈ 66;38,16 (rounded to sec-



	 RECOMPUTING SANSKRIT ASTRONOMICAL TABLES	 211RECOMPUTING SANSKRIT ASTRONOMICAL TABLES 211

onds), which agrees with the attested value in MS Tk. The shadow
length with the attested/recomputed Sin 42◦ as 40;8,52 is 66;38,12
(rounded to seconds).

(d) With an arbitrary Sin 43◦=40;55,16 and the recomputed Cos 43◦=
Sin 47◦ = 43;52,52, Chāyā 60 (43

◦) ≈ 64;20,24 (rounded to sec-
onds), which agrees with the attested value in MS Tk. The
shadow length with the attested/recomputed Sin 43◦ as 40;55,12 is
64;20,30 (rounded to seconds).

(e) With an arbitrary Sin 50◦=45;57,47 and the recomputed Cos 50◦=
Sin 40◦ = 38;34 (rounded to minutes), Chāyā 60 (50

◦) ≈ 50;20,41
(rounded to seconds), which agrees with the attested value in MS
Tk. The shadow length with the attested Sin 50◦ as 46;56,46 and
the recomputed Cos 50◦ as 38;34,2 (up to the seconds) is 49;17,29
(rounded to seconds), whereas the shadow length with the recom-
puted Sin 50◦ as 45;57,46,0 and the recomputed Cos 50◦ as 38;34,2
(up to the seconds) is 50;20,45 (rounded to seconds).

3. Recomputing the shadow lengths of a 60-digit gnomon for the solar
altitudes 3◦, 5◦, 23◦, 27◦, 40◦, 41◦, 49◦, 51◦, 59◦, 61◦, 64◦, 68◦, 80◦,
83◦, 86◦, and 87◦. The recomputed values match the attested values
in MS Tk when the final results are truncated to seconds instead of
systematically rounding them to seconds), e.g.

Chāyā 60 (recomputed to thirds) Chāyā 60 (attested value)
Chāyā 60 (3

◦) = 1114;49,27,53 ←→ Chāyā 60 (3
◦) = 1114;49,27

Chāyā 60 (49
◦) = 52;9,26,35 ←→ Chāyā 60 (49

◦) = 52;9,26

The truncated versions of these recomputed values are not suggested
as emendations; instead, the third row of differences between the at-
tested and recomputed values (corresponding to these arguments) in
Table VI.C1 registers them as a difference of ‘−1’.

3.5.3. Recomputational irregularities in shadow length calculations:
12-digit gnomon (Table VI.C2)

1. Recomputing the attested shadow length for a solar altitude of 4◦. The
shadow-lengths of gnomons of heights 60 and 12 digits are related by
Chāyā 12 = 1

5 Chāyā 60 . For a solar altitude of 4
◦, using the attested

value of Chāyā 60 (4
◦) = 859;3,48 from MS Tk (see Table VI.A) gives

Chāyā 12 (4
◦) = 859;3,48

5 ≈ 171;48,45,36 ≈ 171;48,46 (rounded to sec-
onds). This value agrees with the attested value 172; 48,46 in MS Tk
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(rounded to seconds). The recomputed shadow length for a gnomon
of height 60 digits and corresponding to a solar altitude of 52◦ is
46;52,38.

2. Similarly, for h = 12 and h = 7: Chāyā 12 52
◦ ≡ 12× 36;56,23

47;16,50 ≈ 9;22,32
and Chāyā 7 52

◦ ≡ 7× 36;56,23
47;16,50 ≈ 5;28,8. The recomputed shadow lengths

for gnomons of height 12 digits and 7 digits corresponding to a so-
lar altitude of 52◦ are 9;22,32 and 5;28,8 respectively. Both values are
rounded to the second fractional place.

Tables VI.C1 (page 235), VI.C2 (page 236), and VI.C3 (page 237) present
the recomputed shadow lengths for every degree of solar altitude from 1◦ to
90◦ for gnomon lengths 60 digits, 12 digits, and 7 digits respectively. Most
of these recomputations follow the algorithm described above; however, a few
entries are calculated irregularly as described below.

3.5.2. Recomputational irregularities in shadow-length calculations:
60-digit gnomon (Table VI.C1)

1. Recomputing the shadow length for a solar altitude of 14◦. Using
the attested value Sin 14◦ = 14;30,56 from MS Tk (see Table VI.A)
gives Chāyā 60 (14

◦) = 60× Cos 14◦
Sin 14◦ = 60× 58;13,4

14;30,56 ≈ 60×4;0,38,34,45≈
240;38,34,45 (truncated to seconds). This value is identical to the at-
tested value in MS Tk. The shadow length value with the recomputed
Sin 14◦ as 14;30,55 is 240;38,51 (rounded to seconds).

2. The recomputations of the shadow lengths for the following arguments
agree with their attested values in MS Tk if irregular Sine (or Co-
sine) values are considered. These recomputational scenarios are seem-
ingly random; nevertheless, I list them below for completeness. The at-
tested or recomputed Sines stated below can be found in Table VI.A.
(a) With the recomputed Sin 11◦=11;26,55 and an arbitrary Cos 11◦=

Sin 79◦ = 58;53,53, Chāyā 60 (11
◦) ≈ 308;40,25 (rounded to sec-

onds), which agrees with the attested value in MS Tk. The
shadow length with the attested/recomputed Cos 11◦ as 58;53,51
is 308;40,14 (rounded to seconds).

(b) With the attested Sin 21◦ = 21;30,8 and the recomputed Cos 21◦ =
Sin 69◦ = 56;0,53, Chāyā 60 (21

◦) ≈ 156;18,14 (rounded to sec-
onds), which agrees with the attested value in MS Tk. The shadow
length with the recomputed Sin 21◦ as 21;30,6,59 is 156;18,22
(rounded to seconds).

(c) With an arbitrary Sin 42◦ = 40;8,50 and the recomputed Cos 42◦ =
Sin 48◦ = 44;35,19, Chāyā 60 (42

◦) ≈ 66;38,16 (rounded to sec-
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if the digits ‘172’ in the units place are considered a copying over-
sight for ‘171’. (The digits ‘1’ and ‘2’ are homoglyphic in handwrit-
ten Devanāgarī.) Using the recomputed value Chāyā 60 (4

◦) as 858;3,48,
Chāyā 12 (4

◦)≈ 171;36,46 (rounded to seconds).
2. Recomputing the shadow length for a solar altitude of 24◦. With the

arbitrary shadow length Chāyā 60 (24
◦) = 134;45,5, Chāyā 12 (24

◦) =
1
5 × 134;45,5 = 26;57,1, which agrees with the attested value in MS
Tk. The shadow length Chāyā 12 (24

◦) with the attested/recomputed
Chāyā 60 (24

◦) as 134;45,45 is 26;57,9.
3. Recomputing the shadow length for a solar altitude of 87◦. The regu-
lar expression for Chāyā 12 87

◦ is 12× Cos 87◦
Sin 87◦ . However, using Cos 88

◦ =
Sin 2◦ = 2;0,38 (the attested value in MS Tk) instead of Cos (87◦) gives
Chāyā 12 (87

◦) = 12× Cos 88◦
Sin 87◦ = 12× 2;0,38

59;55,4 = 0;24,9,35≈ 0;24,9 (trun-
cated to seconds), which agrees with the attested value in MS Tk. A
regular recomputation of Chāyā 12 (87

◦) (using recomputed Sin 87◦ and
Cos 87◦ = Sin 3◦) gives 0;37,44 (rounded to seconds).

4. Recomputing the shadow lengths of a 12-digit gnomon for the solar
altitudes 3◦, 17◦, 20◦, 39◦, 46◦, 47◦, 56◦, 58◦, 65◦, and 86◦. The re-
computed values match the attested values in MS Tk when final results
are truncated to seconds (instead of systematically rounding them to
seconds), e.g.

Chāyā 12 (recomputed to thirds) Chāyā 12 (attested value)
Chāyā 12 (3

◦) = 228;57,53,34 ←→ Chāyā 12 (3
◦) = 228;57,53

Chāyā 12 (39
◦) = 14;49,7,47 ←→ Chāyā 12 (39

◦) = 14;49,7

The truncated versions of these recomputed values are not suggested
as emendations; instead, the third row of differences between the at-
tested and recomputed values (corresponding to these arguments) in
Table VI.C2 registers them as a difference of ‘−1’.

3.5.4. Recomputational irregularities in shadow length calculations:
7 digits (Table VI.C3)

1. Recomputing the shadow length for a solar altitude of 4◦. The
shadow-lengths of gnomons of heights 60 and 7 digits are related by
Chāyā 7 = 7

60 Chāyā 60 . For a solar altitude of 4
◦, using the attested

value Chāyā 60 (4
◦) = 859;3,48 from MS Tk (see Table VI.A) gives

Chāyā 7 (4
◦) = 7×859;3,48

60 ≈ 100;13,26,36 ≈ 100;13,27 (rounded to sec-
onds). This value agrees with the attested value in MS Tk. Using the re-
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computed value Chāyā 60 (4
◦) as 858;3,48 gives Chāyā 7 (4

◦)≈ 100;6,27
(rounded to seconds).

2. Recomputing the shadow length for a solar altitude of 12◦. For an ar-
bitrary value of Sin 12◦ = 12;28,30, Chāyā 7 (12

◦) = 32;55,54, which
agrees with the attested value in MS Tk. The recomputed Sin 12◦ as
12;28,28,55 gives 32;55,57 (rounded to seconds).

3. Recomputing the shadow length for a solar altitude of 37◦. With the
recomputed Sin 37◦ = 36;6,32 and an arbitrary Cos 37◦ = Sin 53◦ =
47;56,50, Chāyā 7 (37

◦) ≈ 9;17,42 (rounded to seconds), which agrees
with the attested value in MS Tk. The shadow length with the recom-
puted Sin 37◦ as 36;6,32 and the attested Cos 37◦ as 47;56,5 is 9;17,33
(rounded to seconds), whereas the shadow length with the recomputed
Sin 37◦ as 36;6,32 and the recomputed Cos 37◦ as 47;55,5 is 9;17,21
(rounded to seconds).

4. Recomputing the shadow lengths of a 7-digit gnomon for the solar al-
titudes 39◦, 42◦, and 59◦. The recomputed values match the attested
values in MS Tk when final results are truncated to seconds (instead of
systematically rounding them to seconds), e.g.

Chāyā 7 (recomputed to thirds) Chāyā 7 (attested value)
Chāyā 7 (39

◦) = 8;38,39,40 ←→ Chāyā 7 (39
◦) = 8;38,39

Chāyā 7 (42
◦) = 7;46,27,48 ←→ Chāyā 7 (42

◦) = 7;46,27

The truncated versions of these recomputed values are not suggested
as emendations; instead, the third row of differences between the at-
tested and recomputed values (corresponding to these arguments) in
Table VI.C3 registers them as a difference of ‘−1’.

3.6. Table of shadow lengths (śaṅkuchāyā): Analysis of differences

In the following subsections, I present a list of proposed emendations to the
attested values of shadow lengths for gnomons of heights 60 digits, 12 digits,
and 7 digits respectively.

3.6.1. Shadow length for gnomon of height 60 digits (Table VI.C1)

Based on inadvertent copying oversights
1. Chāyā 60 (10

◦)s: 24→ 34. Suspected alteration of homoglyphic digits ‘2’
and ‘3’ in handwritten Devanāgarī.

2. Chāyā 60 (12
◦)s: 19→ 39. Suspected alteration of homoglyphic digits ‘1’

and ‘3’ in handwritten Devanāgarī.
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if the digits ‘172’ in the units place are considered a copying over-
sight for ‘171’. (The digits ‘1’ and ‘2’ are homoglyphic in handwrit-
ten Devanāgarī.) Using the recomputed value Chāyā 60 (4

◦) as 858;3,48,
Chāyā 12 (4

◦)≈ 171;36,46 (rounded to seconds).
2. Recomputing the shadow length for a solar altitude of 24◦. With the

arbitrary shadow length Chāyā 60 (24
◦) = 134;45,5, Chāyā 12 (24

◦) =
1
5 × 134;45,5 = 26;57,1, which agrees with the attested value in MS
Tk. The shadow length Chāyā 12 (24

◦) with the attested/recomputed
Chāyā 60 (24

◦) as 134;45,45 is 26;57,9.
3. Recomputing the shadow length for a solar altitude of 87◦. The regu-
lar expression for Chāyā 12 87

◦ is 12× Cos 87◦
Sin 87◦ . However, using Cos 88

◦ =
Sin 2◦ = 2;0,38 (the attested value in MS Tk) instead of Cos (87◦) gives
Chāyā 12 (87

◦) = 12× Cos 88◦
Sin 87◦ = 12× 2;0,38

59;55,4 = 0;24,9,35≈ 0;24,9 (trun-
cated to seconds), which agrees with the attested value in MS Tk. A
regular recomputation of Chāyā 12 (87

◦) (using recomputed Sin 87◦ and
Cos 87◦ = Sin 3◦) gives 0;37,44 (rounded to seconds).

4. Recomputing the shadow lengths of a 12-digit gnomon for the solar
altitudes 3◦, 17◦, 20◦, 39◦, 46◦, 47◦, 56◦, 58◦, 65◦, and 86◦. The re-
computed values match the attested values in MS Tk when final results
are truncated to seconds (instead of systematically rounding them to
seconds), e.g.

Chāyā 12 (recomputed to thirds) Chāyā 12 (attested value)
Chāyā 12 (3

◦) = 228;57,53,34 ←→ Chāyā 12 (3
◦) = 228;57,53

Chāyā 12 (39
◦) = 14;49,7,47 ←→ Chāyā 12 (39

◦) = 14;49,7

The truncated versions of these recomputed values are not suggested
as emendations; instead, the third row of differences between the at-
tested and recomputed values (corresponding to these arguments) in
Table VI.C2 registers them as a difference of ‘−1’.

3.5.4. Recomputational irregularities in shadow length calculations:
7 digits (Table VI.C3)

1. Recomputing the shadow length for a solar altitude of 4◦. The
shadow-lengths of gnomons of heights 60 and 7 digits are related by
Chāyā 7 = 7

60 Chāyā 60 . For a solar altitude of 4
◦, using the attested

value Chāyā 60 (4
◦) = 859;3,48 from MS Tk (see Table VI.A) gives

Chāyā 7 (4
◦) = 7×859;3,48

60 ≈ 100;13,26,36 ≈ 100;13,27 (rounded to sec-
onds). This value agrees with the attested value in MS Tk. Using the re-
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3. Chāyā 60 (67
◦)s: 0 → 7. Suspected alteration of homoglyphic digits ‘0’

and ‘7’ in handwritten Devanāgarī.

Based on intentional interventions
5. Chāyā 60 (88

◦): 1;2,50→ 2;5,43. Suspected contamination. Adjacent en-
tries Chāyā 60 (88

◦) and Chāyā 60 (89
◦) are both 1;2,50. All six functions

corresponding to the 88th and 89th arguments are identical in MS Tk.
See note 6 on page 204.

Remarks on Table VI.C1

1. The attested entry ‘859’ for Chāyā 60 (4
◦)u could be emended to ‘858’ as

a suspected mistranscription by a table author (or scribe). This emenda-
tion would agree with the recomputed result, and also avoid the differ-
ence of 1 integer unit between the attested and recomputed entries (a
significant statistical anomaly). However, the attested shadow lengths of
the 60-digit and 12-digit gnomons corresponding to 4◦ of solar altitude
in MS Tk are computationally interrelated. The irregular recomputation
of Chāyā 12 (4

◦) uses 859;3,48 as the attested value of Chāyā 60 (4
◦) (see

note 1 in Section 3.5.3).
2. On f. 49v of MS Tk, the digit ‘0’ (of the number 30) in Chāyā 60 (23

◦)s
had a dot under it: , 3

˙
0. An underdot is sometimes used as a signe

de renvoi (cancellation mark) in Sanskrit, and the recomputational ev-
idence also suggests Chāyā (23◦)s = 3. Hence, I record the value of
Chāyā 60 (23

◦)s as 3 in my transcription.
3. The digits in the seconds place of the attested and recomputed shadow
lengths of a 60-digit gnomon for certain degrees of solar altitudes
(e.g. 38◦, 56◦, or 65◦) vary by up to ±3. I have not been able to justify
these differences mathematically (or as obvious interventions/oversights),
and therefore, I do not propose any emendations in Table VI.C1 to
change the attested digits (in the seconds place) of the shadow lengths
corresponding to these arguments.

3.6.2. Shadow length for gnomon of height 12 digits (Table VI.C2)

Based on inadvertent copying oversights
1. Chāyā 12 (4

◦)u: 172→ 171. Suspected alteration of homoglyphic digits
‘1’ and ‘2’ in handwritten Devanāgarī.

2. Chāyā 12 (19
◦)m: 1 → 51. Suspected mistranscription. Chāyā 12 (18

◦)m,
Chāyā 12 (19

◦)m, and Chāyā 12 (20
◦)m appear in the sequence ‘55’, ‘1’,

and ‘58’ respectively.
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3. Chāyā 12 (23
◦)s: 23→ 13. Suspected alteration of homoglyphic digits ‘1’

and ‘2’ in handwritten Devanāgarī.

4. Chāyā 12 (25
◦)s: 12 → 2. Suspected mistranscription. Chāyā 12 (24

◦)s,
Chāyā 12 (25

◦)s and Chāyā 12 (26
◦)s appear in the sequence ‘1’, ‘12’, and

‘14’ respectively.

5. Chāyā 12 (33
◦)m: 48→ 28. Suspected mistranscription. Chāyā 12 (32

◦)m,
Chāyā 12 (33

◦)m and Chāyā 12 (34
◦)m appear in the sequence ‘12’, ‘48’,

and ‘47’ respectively.

6. Chāyā 12 (43
◦)m: 55→ 52. Suspected mistranscription. Chāyā 12 (42

◦)m,
Chāyā 12 43

◦, and Chāyā (44◦)m appear in the sequence ‘19’, ‘55’, and
‘25’ respectively.

7. Chāyā 12 (53
◦)s: 34→ 14. Suspected alteration of homoglyphic digits ‘1’

and ‘3’ in handwritten Devanāgarī.

8. Chāyā 12 (68
◦)s: 4→ 54. Suspected mistranscription (perhaps, an inad-

vertent omission of the digit ‘5’ in ‘54’).

9. Chāyā 12 (86
◦)s: 29→ 21. Suspected alteration of homoglyphic digits ‘1’

and ‘9’ in handwritten Devanāgarī.

10. Chāyā 12 89
◦
m: 32 → 12 and Chāyā 12 89

◦
s: 24 → 34. Suspected alter-

ation of homoglyphic digits ‘1’, ‘2’, and ‘3’ in handwritten Devanāgarī.

Based on intentional interventions

11. Chāyā 12 (88
◦) : 0;32,24 → 0;25,9. Suspected contamination. Adjacent

entries Chāyā 12 (88
◦) and Chāyā 12 (89

◦) are both 0;32,24. All six func-
tions corresponding to the 88th and 89th arguments are identical in
MS Tk. See note 6 on page 204.

Remarks on Table VI.C2

The digits in the seconds place of the attested and recomputed shadow
lengths of a 12-digit gnomon for several degrees of solar altitudes vary by
±1. For a few entries, the values differ by up to +3′′ or −4′′. I suspect these
differences are a result of irregular sexagesimal divisions. However, I have not
been able to justify these differences mathematically (or observe inadvertent
or intentional scribal discrepancies). Therefore, I present the attested digits (in
the seconds place) of the shadow lengths corresponding to these arguments
in Table VI.C2 without suggesting any emendations.
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3. Chāyā 60 (67
◦)s: 0 → 7. Suspected alteration of homoglyphic digits ‘0’

and ‘7’ in handwritten Devanāgarī.

Based on intentional interventions
5. Chāyā 60 (88

◦): 1;2,50→ 2;5,43. Suspected contamination. Adjacent en-
tries Chāyā 60 (88

◦) and Chāyā 60 (89
◦) are both 1;2,50. All six functions

corresponding to the 88th and 89th arguments are identical in MS Tk.
See note 6 on page 204.

Remarks on Table VI.C1

1. The attested entry ‘859’ for Chāyā 60 (4
◦)u could be emended to ‘858’ as

a suspected mistranscription by a table author (or scribe). This emenda-
tion would agree with the recomputed result, and also avoid the differ-
ence of 1 integer unit between the attested and recomputed entries (a
significant statistical anomaly). However, the attested shadow lengths of
the 60-digit and 12-digit gnomons corresponding to 4◦ of solar altitude
in MS Tk are computationally interrelated. The irregular recomputation
of Chāyā 12 (4

◦) uses 859;3,48 as the attested value of Chāyā 60 (4
◦) (see

note 1 in Section 3.5.3).
2. On f. 49v of MS Tk, the digit ‘0’ (of the number 30) in Chāyā 60 (23

◦)s
had a dot under it: , 3

˙
0. An underdot is sometimes used as a signe

de renvoi (cancellation mark) in Sanskrit, and the recomputational ev-
idence also suggests Chāyā (23◦)s = 3. Hence, I record the value of
Chāyā 60 (23

◦)s as 3 in my transcription.
3. The digits in the seconds place of the attested and recomputed shadow
lengths of a 60-digit gnomon for certain degrees of solar altitudes
(e.g. 38◦, 56◦, or 65◦) vary by up to ±3. I have not been able to justify
these differences mathematically (or as obvious interventions/oversights),
and therefore, I do not propose any emendations in Table VI.C1 to
change the attested digits (in the seconds place) of the shadow lengths
corresponding to these arguments.

3.6.2. Shadow length for gnomon of height 12 digits (Table VI.C2)

Based on inadvertent copying oversights
1. Chāyā 12 (4

◦)u: 172→ 171. Suspected alteration of homoglyphic digits
‘1’ and ‘2’ in handwritten Devanāgarī.

2. Chāyā 12 (19
◦)m: 1 → 51. Suspected mistranscription. Chāyā 12 (18

◦)m,
Chāyā 12 (19

◦)m, and Chāyā 12 (20
◦)m appear in the sequence ‘55’, ‘1’,

and ‘58’ respectively.
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3.6.3. Shadow length for gnomon of height 7 digits (Table VI.C3)

Based on inadvertent copying oversights
1. Chāyā 7 (1

◦)u: 410 → 400. Suspected mistranscription. Also, the digits
‘0’ and ‘1 can (sometimes) appear homoglyphic in handwritten Deva-
nāgarī suggesting a possible unwitting alteration.

2. Chāyā 7 (67
◦)m: 59 → 58. Suspected mistranscription. Chāyā 7 (67

◦)m
and Chāyā 7 (68

◦)m appear in the sequence ‘59’ and ‘49’ respectively.
Also, the digits ‘8’ and ‘9’ can (sometimes) appear homoglyphic in hand-
written Devanāgarī suggesting a possible alteration.

3. Chāyā 7 (81
◦)u: 16→ 6. Suspected mistranscription. Chāyā 7 (80

◦)u and
Chāyā 7 (81

◦)u appear in the sequence ‘14’ and ‘16’ respectively.
4. Chāyā 7 (82

◦)u: 34 → 2. Suspected mistranscription. Chāyā 7 (82
◦),

Chāyā 7 (83
◦), and Chāyā 7 (84

◦) appear in the sequence ‘34’, ‘34’, and
‘34’ respectively.

5. Chāyā 7 (84
◦)u: 34 → 9. Suspected mistranscription. Chāyā 7 (82

◦),
Chāyā 7 (83

◦), and Chāyā 7 (84
◦) appear in the sequence ‘34’, ‘34’, and

‘34’ respectively.
6. Chāyā 7 (89

◦)s: 10→ 20. Suspected alteration of homoglyphic digits ‘1’
and ‘2’ in handwritten Devanāgarī.

Based on intentional interventions
7. Chāyā 7 (87

◦): 0;14,40→ 0;22,1. Suspected contamination. The recom-
puted value of Chāyā 7 (88

◦) is 0;14,40; this value appears under the
87th argument as a dislocated or displaced entry (perhaps, to replace a
corrupted/illegible/missing entry; however, this could also be an unin-
tentional mistranscription).

8. Chāyā 7 (88
◦) : 0;7,20 → 0;14,40. Suspected contamination. Adjacent

entries Chāyā 7 (88
◦) and Chāyā 7 (89

◦) are both 0;7,20. All six func-
tions corresponding to the 88th and 89th arguments are identical in
MS Tk. See note 6 on page 204.

Remarks on Table VI.C3

The digits in the seconds place of the attested and recomputed shadow
lengths of a 7-digit gnomon for the solar altitudes of 18◦, 25◦, 34◦, 38◦,
43◦, 51◦, and 77◦ vary by +1. Without any mathematical justification for
these differences (or any evidence to suggest scribal interventions/oversights),
I leave digits (in the seconds place) of these shadow lengths in Table VI.C3
unemended.
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3.7. Table of lunar latitudes (śara): Recomputation strategy
The table of lunar latitude (śara) of the Amṛtalaharī (in MS Tk) is computed
for every degree of the lunar-nodal elongation50 from 1◦ to 90◦ and has a
maximum value (equal to the inclination i of the lunar orbit) of 4◦30′. The
lunar latitude β is related to the lunar-nodal elongation (also known as the
argument of lunar latitude) ω with the expression

Sin β= Sin i× Sin ω
R

≡ Sin 4◦30′ × Sin ω
60

∵ i= 4◦30′ and R= 60.

1. Most Sanskrit siddhāntas approximate the lunar latitude β as 4;30×
Sin ω/R (in degrees), e.g. Lalla’s Śiṣyadhīvṛddhidatantra (c. early 9th cen-
tury): V.11.51 However, MS Tk uses the exact form of the expres-
sion to calculate the lunar latitude.52 Appendix C.3 includes a statistical
analysis of the differences between the attested lunar latitudes (from
MS Tk) and the recomputed results when the approximate expression
(4;30× Sin ω/R) or the exact equation (Sin 4◦30′ × Sin ω/R) are used
separately.

2. The value of the parameter Sin 4◦30′ can be calculated in two different
ways:
(a) by linear interpolation using the recomputed values of Sin 4◦ and

Sin 5◦ as 4;11,17 and 5;13,46 (from Table VI.A) respectively, or
(b) by using the formula for the Sine of half the arc for an arc of

9◦ and the recomputed value Cos 9◦ = Sin 81◦ = 59;15,41 (from
Table VI.A).

The method of linear interpolation gives 4;42,26,29,59 (with all sub-
sequent fractions greater than 30), or 4;42,27 (successively rounded to
seconds). Using the trigonometric formula gives 4;42,26,8,59, or ap-
proximately 4;42,26 (rounded to seconds). My recomputations, however,
indicate that the lunar latitude calculations in MS Tk use Sin 4◦30′ =
4;42,25. I select the value 4;42,25 by statistically testing the differences
between the attested values in MS Tk and my recomputed results (us-
ing all three values of the parameter Sin 4◦30′ separately) to find the
parametric estimate that minimises these differences, see Appendix C.4.

50 The lunar-nodal elongation is the difference between the celestial longitude of the orbital
lunar node (☊ or ☋) and the orb of the Moon, i.e. ω = λMoon − λ☊ or☋. The lunar-nodal
elongation ranges from 0◦ to ±180◦ depending on the position of the Moon (along its orbit)
and the lunar node.

51 Chatterjee, Śiṣyadhīvṛddhida Tantra, pp. 113–14, includes a derivation of Lalla’s method
to compute the lunar latitude using the approximate expression.

52 The maximum value of β (at ω = 90◦) is equal to the inclination of the lunar orbit,
i.e. 4◦30′. As Sin 4◦30′ ≈ 4;30, most Sanskrit texts take Sin β≈ β for all 0◦ ≤ β≤ 4◦30′.
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3.6.3. Shadow length for gnomon of height 7 digits (Table VI.C3)

Based on inadvertent copying oversights
1. Chāyā 7 (1

◦)u: 410 → 400. Suspected mistranscription. Also, the digits
‘0’ and ‘1 can (sometimes) appear homoglyphic in handwritten Deva-
nāgarī suggesting a possible unwitting alteration.

2. Chāyā 7 (67
◦)m: 59 → 58. Suspected mistranscription. Chāyā 7 (67

◦)m
and Chāyā 7 (68

◦)m appear in the sequence ‘59’ and ‘49’ respectively.
Also, the digits ‘8’ and ‘9’ can (sometimes) appear homoglyphic in hand-
written Devanāgarī suggesting a possible alteration.

3. Chāyā 7 (81
◦)u: 16→ 6. Suspected mistranscription. Chāyā 7 (80

◦)u and
Chāyā 7 (81

◦)u appear in the sequence ‘14’ and ‘16’ respectively.
4. Chāyā 7 (82

◦)u: 34 → 2. Suspected mistranscription. Chāyā 7 (82
◦),

Chāyā 7 (83
◦), and Chāyā 7 (84

◦) appear in the sequence ‘34’, ‘34’, and
‘34’ respectively.

5. Chāyā 7 (84
◦)u: 34 → 9. Suspected mistranscription. Chāyā 7 (82

◦),
Chāyā 7 (83

◦), and Chāyā 7 (84
◦) appear in the sequence ‘34’, ‘34’, and

‘34’ respectively.
6. Chāyā 7 (89

◦)s: 10→ 20. Suspected alteration of homoglyphic digits ‘1’
and ‘2’ in handwritten Devanāgarī.

Based on intentional interventions
7. Chāyā 7 (87

◦): 0;14,40→ 0;22,1. Suspected contamination. The recom-
puted value of Chāyā 7 (88

◦) is 0;14,40; this value appears under the
87th argument as a dislocated or displaced entry (perhaps, to replace a
corrupted/illegible/missing entry; however, this could also be an unin-
tentional mistranscription).

8. Chāyā 7 (88
◦) : 0;7,20 → 0;14,40. Suspected contamination. Adjacent

entries Chāyā 7 (88
◦) and Chāyā 7 (89

◦) are both 0;7,20. All six func-
tions corresponding to the 88th and 89th arguments are identical in
MS Tk. See note 6 on page 204.

Remarks on Table VI.C3

The digits in the seconds place of the attested and recomputed shadow
lengths of a 7-digit gnomon for the solar altitudes of 18◦, 25◦, 34◦, 38◦,
43◦, 51◦, and 77◦ vary by +1. Without any mathematical justification for
these differences (or any evidence to suggest scribal interventions/oversights),
I leave digits (in the seconds place) of these shadow lengths in Table VI.C3
unemended.
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The method of determining the lunar latitude (from its Sine) is similar to
that of the solar declination. Having calculated the Sine of the lunar latitude,
the corresponding latitude (in degrees) is determined by finding the inverse
arc of Sine. See Section 3.3 for the algorithm to inversely interpolate the
measure of arc corresponding to a particular Sine.

3.7.1. Worked example
Calculating the lunar latitude β corresponding to a lunar-nodal elongation ω
of 52◦:
1. For a lunar-nodal elongation ω = 52◦, using the recomputed Sin 52◦ =
47;16,50 from Table VI.A, Sin β(52◦) = 4;42,25× Sin 52◦/60 ≈ 3;42,33
(rounded to seconds).

2. To determine the lunar latitude β(52◦) corresponding to a Sine of
3;42,33, observe from Table VI.A that Sin 3◦ ≡ 3;8,25 < Sin β(52◦) <
Sin 4◦ ≡ 4;11,7. Therefore,

β(52◦) = 3◦ +
Sin β(52◦)− Sin 3◦

Sin 4◦ − Sin 3◦

= 3◦ +
ï
3;42,33− 3;8,25
4;11,7− 3;8,25

ò

in degrees
= 3◦ +

ï
0;34,9
1;2,42

ò

in degrees

= 3◦ + 0◦32′40′′ (rounded to seconds)≈ 3◦32′40′′.

The recomputed lunar latitude corresponding to a lunar-nodal elonga-
tion of 52◦ is 3◦32′40′′.

Table VI.D on page 238 presents the recomputed lunar latitudes for every de-
gree of lunar-nodal elongation from 1◦ to 90◦. Most of these recomputations
follow the algorithm described above; however, a few entries are calculated
irregularly as described below.

3.7.2. Recomputational irregularities in lunar latitude calculations
1. Recomputing the lunar latitude β for a lunar-nodal elongation of ω =
90◦. For ω = 90◦, Sin β(90◦) = Sin 4◦30′ as Sin ω = Sin 90◦ = R.
Hence, β(90◦) is simply 4◦30′ (the inclination of the lunar orbit).
Alternatively, with Sin (4◦30′) ≈ 4;42,25, β(90◦) ≡ arcSin (4;42,25) ≈
4◦29′59′′ (rounded to seconds). This value is inversely interpolated us-
ing the recomputed values Sin 4◦ = 4;11,7 and Sin 5◦ = 5;13,46 from
Table VI.A. The attested value of 4;30′ in MS Tk agrees with this in-
terpolated value (rounded to minutes).

2. Recomputing the lunar latitudes for the lunar-nodal elongations 4◦, 7◦,
24◦, 25◦, 26◦, 42◦, 48◦, 50◦, 62◦, and 79◦. The recomputed values
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match the attested values in MS Tk when the final results are trun-
cated to seconds (instead of systematically rounding them to seconds),
e.g.

β (recomputed, up to thirds) β (attested in MS Tk)
β(4◦) = 0◦18′48′′42′′′ ←→ β(4◦) = 0◦18′48′′

β(24◦) = 1◦49′42′′48′′′ ←→ β(24◦) = 1◦49′42′′

The truncated versions of these recomputed values are not suggested
as emendations; instead, the third row of differences between the at-
tested and recomputed values (corresponding to these arguments) in
Table VI.D registers them as a difference of ‘−1’.

3.8. Table of lunar latitudes (śara): Analysis of differences
List of proposed emendations to the attested lunar latitudes in MS Tk:

Based on inadvertent copying oversights
1. β(12◦)d: 1→ 0. Suspected mistranscription. β(10◦)d, β(11◦)d, β(12◦)d,
and β(13◦)d appear in the sequence ‘0’, ‘0’, ‘1’, and ‘1’ respectively.

2. β(44◦)s: 36→ 26. Suspected alteration of homoglyphic digits ‘2’ and ‘3’
in handwritten Devanāgarī.

Based on intentional interventions
3. β(85◦)s: 20→ 57. Suspected contamination. The recomputed value of
β(86◦)s is ‘19’; the number ‘20’ (∼ ‘19’ at the level of arithmetical
noise) appears under the 85th argument as a dislocated or displaced
entry, perhaps, to replace a corrupted/illegible/missing entry. However,
this could also be an unintentional mistranscription by a scribe/table
author.

4. β(86◦)s: 37→ 20. Suspected contamination. The recomputed value of
β(87◦)s is ‘37’; this value appears under the 86th argument as a dislo-
cated or displaced entry (perhaps, to replace a corrupted/illegible/miss-
ing entry or a perpetuated mistranscription).

5. β(87◦)s: 50 → 37 Suspected contamination. The recomputed value of
β(88◦)s is ‘50’; the number ‘49’ (∼ ‘50’ at the level of arithmetical
noise) appears under the 87th argument as a dislocated or displaced en-
try (perhaps, to replace a corrupted/illegible/missing entry or a perpet-
uated mistranscription).

6. β(88◦)s: 57 → 50. Suspected contamination. Adjacent entries β(88◦)s
and β(89◦)s are ‘57’. All six functions corresponding to the 88th and
89th arguments are identical in MS Tk. See note 6 on page 204.

218 ANUJMISRA

The method of determining the lunar latitude (from its Sine) is similar to
that of the solar declination. Having calculated the Sine of the lunar latitude,
the corresponding latitude (in degrees) is determined by finding the inverse
arc of Sine. See Section 3.3 for the algorithm to inversely interpolate the
measure of arc corresponding to a particular Sine.

3.7.1. Worked example
Calculating the lunar latitude β corresponding to a lunar-nodal elongation ω
of 52◦:
1. For a lunar-nodal elongation ω = 52◦, using the recomputed Sin 52◦ =
47;16,50 from Table VI.A, Sin β(52◦) = 4;42,25× Sin 52◦/60 ≈ 3;42,33
(rounded to seconds).

2. To determine the lunar latitude β(52◦) corresponding to a Sine of
3;42,33, observe from Table VI.A that Sin 3◦ ≡ 3;8,25 < Sin β(52◦) <
Sin 4◦ ≡ 4;11,7. Therefore,

β(52◦) = 3◦ +
Sin β(52◦)− Sin 3◦

Sin 4◦ − Sin 3◦

= 3◦ +
ï
3;42,33− 3;8,25
4;11,7− 3;8,25

ò

in degrees
= 3◦ +

ï
0;34,9
1;2,42

ò

in degrees

= 3◦ + 0◦32′40′′ (rounded to seconds)≈ 3◦32′40′′.

The recomputed lunar latitude corresponding to a lunar-nodal elonga-
tion of 52◦ is 3◦32′40′′.

Table VI.D on page 238 presents the recomputed lunar latitudes for every de-
gree of lunar-nodal elongation from 1◦ to 90◦. Most of these recomputations
follow the algorithm described above; however, a few entries are calculated
irregularly as described below.

3.7.2. Recomputational irregularities in lunar latitude calculations
1. Recomputing the lunar latitude β for a lunar-nodal elongation of ω =
90◦. For ω = 90◦, Sin β(90◦) = Sin 4◦30′ as Sin ω = Sin 90◦ = R.
Hence, β(90◦) is simply 4◦30′ (the inclination of the lunar orbit).
Alternatively, with Sin (4◦30′) ≈ 4;42,25, β(90◦) ≡ arcSin (4;42,25) ≈
4◦29′59′′ (rounded to seconds). This value is inversely interpolated us-
ing the recomputed values Sin 4◦ = 4;11,7 and Sin 5◦ = 5;13,46 from
Table VI.A. The attested value of 4;30′ in MS Tk agrees with this in-
terpolated value (rounded to minutes).

2. Recomputing the lunar latitudes for the lunar-nodal elongations 4◦, 7◦,
24◦, 25◦, 26◦, 42◦, 48◦, 50◦, 62◦, and 79◦. The recomputed values
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Remarks on Table VI.D

1. The lunar latitudes for 57◦ to 60◦ of lunar-nodal elongation are illegible
in the minutes and seconds places in MS Tk. I represent these illegible
entries, the differences between the corresponding sexagesimal digits, and
their proposed emendations as ‘[--]’ in Table VI.D.

2. The attested and recomputed lunar latitudes for 70◦, 71◦, 74◦, 75◦, 76◦,
77◦, 81◦, and 82◦ of lunar-nodal elongation differ by ±1′. My recom-
putations (including irregular ones) have been unsuccessful in removing
this difference, and there are no discernible copying mistakes or scribal
corrections in any of these instances. Therefore, I present the attested
digits (in the minutes place) of these lunar latitudes in Table VI.D with-
out suggesting any emendations.

3. Also, the digits in the seconds place of the attested and recomputed lu-
nar latitudes for several degrees of lunar-nodal elongations vary by up to
±3. I suspect these differences are a result of irregular arithmetic calcu-
lations or selecting incorrect interpolation intervals. However, I have not
been able to explain these differences mathematically (or justify them
as interventions/oversights), and therefore, I do not emend the attested
digits (in the seconds place) for these arguments in Table VI.D.

4. Conclusion and Discussion

In this study, I recomputed a selection of six tables from Nityānanda’s Amṛta-
laharī to understand the algorithms, the irregularities, and the interdependen-
cies that capture the mathematics of these tables. I also analysed the differ-
ences between the attested values (in a single witness MS Tk) and my re-
computed results to identify plausible scribal discrepancies (inadvertent copy-
ing oversights or intentional interventions), which then allowed to propose a
few emendations to the attested values. The process of recomputing attested
tables not only reveals the subtle mathematical decisions that table authors
make as they recalculate or rectify entries, but also indicates patterns of er-
rors and oversights that get transmitted as the tables are recopied over time.
This study brings to light the challenges in applying this process when work-
ing with a single manuscript witness. I summarise below the main observa-
tions of my study, and the ensuing questions they pose as we begin to build
modern digital tools to understand better the historical process of computing
astronomical tables.
1. The attested values corresponding to the 88th and 89th arguments are
identical for all six functions tabulated on the manuscript. The digital
surrogates (of ff. 49v–50v) of MS Tk show faint vertical rules separating
thirty columns of arguments on each folio, with corresponding six sets
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of functions vertically stacked below them and mutually separated by
horizontal rules. This formatted (grid-like) presentation of the six tables
on MS Tk suggests that a professional scribe could have copied the
entries from a parent manuscript, column by column, and while doing
so, inadvertently duplicated all six sets of values for the 88th and 89th
arguments as they populated the grid.
However, there are other instances where individual digits (in the

sexagesimal places of the value of a function) appear to be shifted hor-
izontally into adjacent cells, e.g. the leftwards displacement of the dig-
its (in the seconds place) for lunar latitudes corresponding to the 86th,
87th, and 88th arguments. These horizontal shifts suggest that the tables
(or certain parts of the tables) were perhaps copied cell by cell along
each row. Certain mathematical aspects of a function (e.g. monotonic-
ity) become evident when copying the values progressively, and hence,
table authors may have found it intuitive to copy the sexagesimal digits
(of the value of a function) row-wise. The various patterns of compu-
tational irregularities or scribal discrepancies noted in this study suggest
different directions in which the tables were possibly copied. The extent
to which anomalous entries can expose the direction of copying, and
perhaps, the intention of the copyist themselves, is a challenging ques-
tion that requires more advanced methods of analysis applied to larger
selections of tables from a manuscript.

2. While the identical sets of values for the 88th and 89th arguments on
f. 50v of MS Tk could be the result of an inadvertent copying oversight,
it is just as likely the result of an intentional change. At some point in
the transmission of the tables, a diligent scribe (or a table author) may
have simply copied the six sets of values for the 89th argument into
the column of the 88th argument to rectify a corrupted, illegible, or
missing column in a parent manuscript (perhaps, treating the small dif-
ferences between these values to be mathematically insignificant). These
speculations indicate how inadvertent or intentional choices of succes-
sive historical actors (scribes or table authors) modify a particular table,
and separate each subsequent copy from the previous one (and the orig-
inal) by an added degree of uncertainty.

3. In this study, there are some cases where irregular recomputations elim-
inate the differences between the attested values (in MS Tk) and my
recomputed results. In other instances, inadvertent or intentional scribal
changes are evident enough to justify emending the attested values, and
by doing so, reduce or remove the differences. Nevertheless, there are
still several (small) differences between the attested and recomputed val-
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ues in every table that cannot be justified as anomalous calculations or
scribal discrepancies. Perhaps, in some measure, these differences are the
result of historical actors making tacit decisions ad libitum. Most his-
torical recomputations of astronomical tables, including those presented
here, admit to this level of residual noise.

4. In my study of the selected corpus, I found a single instance where an
attested Sine from MS Tk (different from my recomputed Sine) repro-
duces an attested value (of another function) identically and exclusively.
With Cos 88◦ = Sin 2◦ = 2;0,38, the recomputed shadow length of a
12-digit gnomon for a solar altitude of 87◦ is identical to its attested
value in MS Tk. Mathematically, this recomputation is highly irregular
as it not only enters a wrong Cosine in the algorithm (Cos 88◦ instead
of the regular Cos 87◦ = Sin 3◦), but also uses an inaccurate Sine (Sin 2◦
should be 2;5,38) in the calculation that follows. Accordingly, this at-
tested (or irregularly recomputed) shadow length for the 87th argument
makes the sequence Chāyā 12 (86

◦) = 0;50,20, Chāyā 12 (87
◦) = 0;24,9,

and Chāyā 12 (88
◦) = 0;32,24 in MS Tk mathematically inconsistent.

(The shadow length is a monotonically decreasing function for the first
ninety degrees of the argument.) The recomputational irregularities that
involve interdependencies between attested values from different tables
are a strong indication of secondary interventions. In this case, it is very
likely that a (later) table author (mis)calculated the shadow length for
a corrupted/illegible/missing entry corresponding to the 87th argument
by simply using the attested value of Sine (in the parent manuscript).

5. The three tables of shadow lengths in MS Tk reveal further interde-
pendencies between their entries, e.g. the shadow lengths Chāyā 7 (4

◦)
and Chāyā 60 (4

◦), Chāyā 12 (4
◦) and Chāyā 60 (4

◦), or Chāyā 12 (24
◦) and

Chāyā 60 (24
◦). These computational interdependencies also indicate that

historical actors (presumably, different from the original author) regu-
larly modified tables by recomputing certain entries using attested values
from a parent manuscript.

The observations of this study show how historical actors carelessly or con-
sciously modify a table as they copy it. Their modifications increasingly dis-
tance earlier versions of the table from what is attested in a present witness.
Essentially, each witness is a mathematical artefact from a particular time that
contains an aggregated picture of the changes made (and unmade) by previous
actors. Our modern recomputations simulate historical procedures, identify
computational irregularities, and analyse scribal discrepancies to help us trace
the mathematical practices of these actors. As more advanced tools from data
sciences (in particular, knowledge discovery processes and machine learning)
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are adapted to analyse and predict patterns in these table entries, method-
ological questions become important for designing meaningful algorithms. For
instance, how do table authors modify theoretical (canonical) formulae for
practical computations? What combinations of arithmetical operations repro-
duce the anomalous values attested in a table? Do residual differences follow
a behavioural trend for a selected corpus? What is a sensible taxonomy of
recomputational irregularities and scribal discrepancies? How can competing
recomputational strategies be statistically chosen? This study addresses some
of these questions by examining a few selected tables of the Amṛtalaharī.
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Appendix A: Diplomatic transcription of the table on ff. 49v–50v of MS Tk
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serve the attested (landscape) layout of the tables. The orthography of the at-
tested text is transcribed without modifying any erroneous or missing letters.
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Appendix B: Recomputation and analysis of Tables VI.A–D

Conventions for representing the tables

The six tables (Tables VI.A, VI.B, VI.C1–3, and VI.D) from the selected cor-
pus are presented on pp. 233–38.
1. Each table has four separate rows of (sexagesimal) entries, placed one
below the other, in three argument blocks 1◦ to 30◦, 31◦ to 60◦, and
61◦ to 90◦. The arguments (in degrees) represent the following different
quantities for the respective tables:
(a) Table of Sines (VI.A): measure of arc;
(b) Table of solar declinations (VI.B): celestial longitude;
(c) Table of shadow lengths of gnomons of 60-digit (VI.C1), 12-digit

(VI.C2), and 7-digit heights (VI.C3): solar altitude; and
(d) Table of lunar latitudes (VI.D): lunar-nodal elongation.

2. The sexagesimal values of the table entries are written vertically. The
digits at the top of a vertical stack represent the integer part (i.e. units
or degrees) of the number, those in the middle indicate the first frac-
tional part (i.e. minutes), and the digits at the bottom of a stack signify
the second fractional part (i.e. seconds).

3. In each argument block of thirty degrees,
(a) the first row lists the attested values from MS Tk;
(b) the second row presents the recomputed values with

– the digits (in individual sexagesimal places) that result from ir-
regular recomputations enclosed in a rectangular box;

(c) the third row shows the difference in digits between corresponding
sexagesimal places of the attested and recomputed values (from the
previous two rows) with
– all non-zero differences enclosed in shaded grey boxes; and

(d) the fourth row lists the proposed emendation to the attested values
where
– any modified entries (in individual sexagesimal places) are en-
closed in circles.

These conventions allow (a) recomputational irregularities (digits in rectan-
gular boxes), (b) non-zero revised differences (digits in grey cells), and (c)
proposed emendations (encircled digits) to be clearly identified. For a collec-
tion of tables from a single manuscript, this visual representation allows the
recomputational and the text-critical versions of individual tables to be seen
concurrently.
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Appendix B: Recomputation and analysis of Tables VI.A–D

Conventions for representing the tables

The six tables (Tables VI.A, VI.B, VI.C1–3, and VI.D) from the selected cor-
pus are presented on pp. 233–38.
1. Each table has four separate rows of (sexagesimal) entries, placed one
below the other, in three argument blocks 1◦ to 30◦, 31◦ to 60◦, and
61◦ to 90◦. The arguments (in degrees) represent the following different
quantities for the respective tables:
(a) Table of Sines (VI.A): measure of arc;
(b) Table of solar declinations (VI.B): celestial longitude;
(c) Table of shadow lengths of gnomons of 60-digit (VI.C1), 12-digit

(VI.C2), and 7-digit heights (VI.C3): solar altitude; and
(d) Table of lunar latitudes (VI.D): lunar-nodal elongation.

2. The sexagesimal values of the table entries are written vertically. The
digits at the top of a vertical stack represent the integer part (i.e. units
or degrees) of the number, those in the middle indicate the first frac-
tional part (i.e. minutes), and the digits at the bottom of a stack signify
the second fractional part (i.e. seconds).

3. In each argument block of thirty degrees,
(a) the first row lists the attested values from MS Tk;
(b) the second row presents the recomputed values with

– the digits (in individual sexagesimal places) that result from ir-
regular recomputations enclosed in a rectangular box;

(c) the third row shows the difference in digits between corresponding
sexagesimal places of the attested and recomputed values (from the
previous two rows) with
– all non-zero differences enclosed in shaded grey boxes; and

(d) the fourth row lists the proposed emendation to the attested values
where
– any modified entries (in individual sexagesimal places) are en-
closed in circles.

These conventions allow (a) recomputational irregularities (digits in rectan-
gular boxes), (b) non-zero revised differences (digits in grey cells), and (c)
proposed emendations (encircled digits) to be clearly identified. For a collec-
tion of tables from a single manuscript, this visual representation allows the
recomputational and the text-critical versions of individual tables to be seen
concurrently.
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Appendix C: Statistical Analysis

C.1. Choosing systematic rounding over truncation

All regular recomputations in this study express sexagesimal numbers up to
the second fractional place. To reduce a sexagesimal number in the final re-
sult of a recomputation, I chose to systematically round the number to the
seconds place instead of truncating it; in other words, for a number of the
form a; b, c, d, I round the number to a; b, c when d< 30 or a; b, c+1 when
d ≥ 30 (instead of truncating it to a; b, c for any value of d). To validate
this choice, I statistically test the proportion of differences between the at-
tested and recomputed values when two mutually independent strategies are
used to reduce the final result, namely, systematic rounding and truncation.
In both reduction strategies, computing the differences between the attested
values and the recomputed results are considered as binary events, i.e. they
generate zero (0-state) or non-zero values (1-state) of the differences. The z-
test for two population proportions is then used to test the efficacy of these
two strategies in minimising the proportion of the differences for every ta-
ble from the selected corpus. The parameters, hypotheses, and test statistic in
implementing this test are described below.
1. The ninety reduced entries (i.e. the final results) using systematic round-
ing and those using truncation are considered as two independent pop-
ulations with a common size. The total number of determinate events
n det is selected as the common sample size from both populations. The
determinate events are those instances where a clear distinction can be
made between the choice of sexagesimal reduction.53 For every table, the
reduced sample size n det is large enough (i.e. greater than thirty) to as-
sume normality, and the individual events (in the 0-state or 1-state) in
the sample are mutually independent.

2. In the two samples of size n det, x
sys.rnd
det indicates the number of 1-state

events (i.e. those producing non-zero differences between the attested
and recomputed values) generated by the first population (systematic
rounding) and x truncdet indicates the 1-state events generated by the second
population (truncation). With these values, the sample proportions for
the two populations are computed as

53 For a sexagesimal result a; b, c, d with d ≤ 29, systematic rounding or truncation reduce
the number to a; b, c identically. Such instances are called indeterminate events n indet as the two
reduction strategies are indistinguishable. The present analysis only includes determinate events
n det where the reduction strategies can be clearly identified from one another; in other words,
cases where the recomputed results are a; b, c, d with d ≥ 30 (and hence reduced to a; b, c+ 1 by
systematic rounding or a; b, c by truncation). For every table, n det+ n indet = 90.
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p̂ sys.rnddet =
x sys.rnddet

n det
and p̂ truncdet =

x truncdet

n det
.

3. To statistically test:

the null hypothesis H0: p̂
sys.rnd
det ≤ p̂ truncdet against

the alternative hypothesis Ha: p̂
sys.rnd
det > p̂ truncdet .

The null hypothesis maintains that the proportion of 1-state events in
the first population is lower or equal to those in the second population,
whereas the alternative hypothesis claims the converse. In other words,
the null hypothesis expresses the belief that systematic rounding is sta-
tistically better (or at least, equivalent to) truncating the digits when
the two reduction strategies are compared. The alternative hypothesis, if
true, shows that truncating the digits, instead of systematically round-
ing them, is significantly better at minimising the non-zero differences
between the attested and recomputed results.

4. The test statistic based on the pooled sample proportion is:

z-statistic: z=
p̂ sys.rnddet − p̂ truncdet√

p̂ det× (1− p̂ det)×
Ä

2
n det

ä ,

where

p̂ det ≡
p̂ sys.rnddet × n det+ p̂ truncdet × n det

n det+ n det
=

x sys.rnddet + x truncdet

2n det
is the pooled proportion. For every table, n det is large enough to ensure
p̂ det× n det ≥ 5 and (1− p̂ det)× n det ≥ 5. This allows the z-statistic to
be validly applied.

5. The hypothesis is tested at a 5% level of significance α using the right-
tailed z-test for two population proportions. For α = 0.05, the decision
rule is:

Reject H0 ∀ z ∈ R, where the rejection region R := {z : z> 1.645}.
The critical value of the right-tailed z-test is taken as zc ≡ zα = 1.645.

As Table 3 shows, the calculated z-statistic lies outside the rejection region
for all six tables of the selected corpus, and therefore, the null hypothesis H0
is retained and the alternative Ha is rejected. At a 5% level of significance,
the proportion of non-zero differences between the attested and recomputed
values using systematic rounding is lower (or at the very least, equal to) the
proportion when truncation is used. The recomputations in this study, in
particular, the final results of a calculation, are reduced to seconds by system-
atically rounding the digits based on this statistical inference.
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Type of
recomputation

Sexagesimal reduction strategies

Systematic rounding Truncation

Sines
Table VI.A

n det = 46 and n indet = 44

x sys.rnddet = 3, p̂ sys.rnddet ≈ 0.065 x truncdet = 46, p̂ truncdet = 1

p̂ det = 49/92≈ 0.533 and z≈ − 0.935/0.104≈−8.985< zc = 1.645
∵ z /∈ R⇒ Accept H0 and reject Ha

statistically preferred statistically rejected

Solar declinations
Table VI.B

n det = 45 and n indet = 45

x sys.rnddet = 26, p̂ sys.rnddet = 0.578 x truncdet = 26, p̂ truncdet ≈ 0.578

p̂ det = 52/90≈ 0.578 and z≈ 0/0.104= 0< zc = 1.645
∵ z /∈ R⇒ Accept H0 and reject Ha

statistically preferred statistically rejected

Shadow lengths:
60-digit gnomon
Table VI.C1

n det = 42 and n indet = 48

x sys.rnddet = 19, p̂ sys.rnddet ≈ 0.452 x truncdet = 23, p̂ truncdet ≈ 0.548

p̂ det = 42/84= 0.5 and z≈ − 0.096/0.109≈−0.881< zc = 1.645
∵ z /∈ R⇒ Accept H0 and reject Ha

statistically preferred statistically rejected

Shadow lengths:
12-digit gnomon
Table VI.C2

n det = 48 and n indet = 42

x sys.rnddet = 13, p̂ sys.rnddet ≈ 0.271 x truncdet = 37, p̂ truncdet = 0.771

p̂ det = 50/96≈ 0.521 and z≈ − 0.5/0.102≈−4.903< zc = 1.645
∵ z /∈ R⇒ Accept H0 and reject Ha

statistically preferred statistically rejected

Shadow lengths:
7-digit gnomon
Table VI.C3

n det = 41 and n indet = 49

x sys.rnddet = 5, p̂ sys.rnddet = 0.122 x truncdet = 38, p̂ truncdet = 0.927

p̂ det = 43/82≈ 0.524 and z≈ − 0.805/0.110≈−7.297< zc = 1.645
∵ z /∈ R⇒ Accept H0 and reject Ha

statistically preferred statistically rejected

Lunar latitudes
Table VI.D

n det = 49 and n indet = 41

x sys.rnddet = 29, p̂ sys.rnddet ≈ 0.592 x truncdet = 36, p̂ truncdet ≈ 0.735

p̂ det = 65/98≈ 0.663 and z≈ − 0.143/0.095≈−1.496< zc = 1.645
∵ z /∈ R⇒ Accept H0 and reject Ha

statistically preferred statistically rejected

Table 3: Statistical test (right-tailed z-test for two population proportions) to select between sys-
tematic rounding or truncation (two mutually independent reduction strategies) to reduce the final
results of the recomputations to the second fractional place for the six tables from MS Tk.
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C.2. Choosing recomputed Sines over the attested Sines in MS Tk

The solar declinations, shadow lengths of gnomons of various heights, and
lunar latitudes in this study are calculated using the recomputed Sines (Sin r)
instead of the attested Sines (Sin a) in MS Tk.54 I justify this choice on the
basis of the following two statistical measures:
1. The first measure compares the differences di s between the attested val-
ues of these functions (from MS Tk) and their recomputed values using
Sin r and Sin a separately, i.e.

d Sin a
i = |Value recompi [Sin a]−Value attesti | and

d Sin r
i = |Value recompi [Sin r]−Value attesti |∀ i ∈ N90

Similar to the 0-state and 1-state described in Appendix C.1, these dif-
ferences (i.e. d Sin a

i and d Sin r
i ) are considered as binary events. Accord-

ingly, I consider

– x Sin a
sim and x Sin r

sim as the number of 0-states (i.e. instances when the
differences di s are similar or zero) using the attested and recomputed
Sines respectively, and

– x Sin a
diss and x Sin r

diss as the number of 1-states (i.e. instances when the
differences di s are dissimilar or non-zero) using the attested and re-
computed Sines respectively.

For a total of n= 90 entries for each function, the proportion of 0 and
1 states using Sin r and Sin a separately can be expressed as

p Sinasim =
x Sinasim

n
, p Sinrsim =

x Sinrsim

n
, p Sinadiss =

x Sinadiss

n
, and p Sinrdiss =

x Sinrdiss

n
.

Table 4 presents these four proportions (in percentages) for the recom-
putations of the solar declinations, shadow lengths of gnomons of var-
ious heights, and lunar latitudes in 2×2 contingency tables. For lunar
latitudes, the attested values for 57◦, 58◦, 59 ◦, and 60◦ are illegible
in MS Tk, and accordingly, n = 86 for calculating these proportions.
The percentage proportion of dissimilar (non-zero) differences between
the attested and recomputed function values are typically lower (or, at
the very least, comparably equal) when recomputed Sines are used in-
stead of the attested Sines from MS Tk. Equivalently, the percentage

54 I use the attested Sine values with my proposed emendations (to correct for scribal discrep-
ancies) in this analysis. For example, the attested Sin a1◦ is taken as 1;2,50 instead of 1;5,50 (seen
inMS Tk).Without these emendation, the recomputed function values based on the attested Sines
become highly irregular and statistically superfluous. Also, for all calculations in this analysis, the
final sexagesimal results are systematically rounded to the second fractional place.
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Solar declinations

Sines

Differences 0-state
(similar or zero)

1-state
(dissimilar or non-zero)

Attested p Sinasim = 50/90≈ 55.56% p Sinadiss = 40/90≈ 44.44%

Recomputed p Sinrsim = 50/90≈ 55.56% p Sinrdiss = 40/90≈ 44.44%

Shadow lengths: 60-digit gnomon

Sines

Differences 0-state
(similar or zero)

1-state
(dissimilar or non-zero)

Attested p Sinasim = 49/90≈ 54.44% p Sinadiss = 41/90≈ 45.56%

Recomputed p Sinrsim = 58/90≈ 64.44% p Sinrdiss = 32/90≈ 35.56%

Shadow lengths: 12-digit gnomon

Sines

Differences 0-state
(similar or zero)

1-state
(dissimilar or non-zero)

Attested p Sinasim = 52/90≈ 57.78% p Sinadiss = 38/90≈ 42.22%

Recomputed p Sinrsim = 63/90= 70% p Sinrdiss = 27/90= 30%

Shadow lengths: 7-digit gnomon

Sines

Differences 0-state
(similar or zero)

1-state
(dissimilar or non-zero)

Attested p Sinasim = 67/90≈ 74.44% p Sinadiss = 23/90≈ 25.56%

Recomputed p Sinrsim = 80/90≈ 88.89% p Sinrdiss = 10/90≈ 11.11%

Lunar latitudes

Sines

Differences 0-state
(similar or zero)

1-state
(dissimilar or non-zero)

Attested p Sinasim = 14/86≈ 16.28% p Sinadiss = 72/86≈ 83.72%

Recomputed p Sinrsim = 34/86≈ 39.53% p Sinrdiss = 52/86≈ 60.47%

Table 4: 2×2 contingency tables showing the proportions of differences (in percentages) between
the attested and recomputed values of solar declinations, shadow lengths for gnomons of various
heights, and lunar latitudes calculated using the attested Sines (in MS Tk) and the recomputed
Sines separately.
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differences di s are similar or zero) using the attested and recomputed
Sines respectively, and

– x Sin a
diss and x Sin r

diss as the number of 1-states (i.e. instances when the
differences di s are dissimilar or non-zero) using the attested and re-
computed Sines respectively.

For a total of n= 90 entries for each function, the proportion of 0 and
1 states using Sin r and Sin a separately can be expressed as

p Sinasim =
x Sinasim

n
, p Sinrsim =

x Sinrsim

n
, p Sinadiss =

x Sinadiss

n
, and p Sinrdiss =

x Sinrdiss

n
.

Table 4 presents these four proportions (in percentages) for the recom-
putations of the solar declinations, shadow lengths of gnomons of var-
ious heights, and lunar latitudes in 2×2 contingency tables. For lunar
latitudes, the attested values for 57◦, 58◦, 59 ◦, and 60◦ are illegible
in MS Tk, and accordingly, n = 86 for calculating these proportions.
The percentage proportion of dissimilar (non-zero) differences between
the attested and recomputed function values are typically lower (or, at
the very least, comparably equal) when recomputed Sines are used in-
stead of the attested Sines from MS Tk. Equivalently, the percentage

54 I use the attested Sine values with my proposed emendations (to correct for scribal discrep-
ancies) in this analysis. For example, the attested Sin a1◦ is taken as 1;2,50 instead of 1;5,50 (seen
inMS Tk).Without these emendation, the recomputed function values based on the attested Sines
become highly irregular and statistically superfluous. Also, for all calculations in this analysis, the
final sexagesimal results are systematically rounded to the second fractional place.



244	 ANUJ MISRA244 ANUJMISRA

Type of Recomputation
Sines

Attested Recomputed

Solar declinations
s≈ 7.258s

≈ 2.779s
s≈ 1.265s

≈ 0.689s

Shadow lengths: 60-digit gnomon
s≈ 380.840s

= 52.7s
s≈ 379.528s

≈ 41.067s

Shadow lengths: 12-digit gnomon
s≈ 6.536s

≈ 2.811s
s≈ 0.767s

= 0.367s

Shadow lengths: 7-digit gnomon
s≈ 3.485s

≈ 1.367s
s≈ 0.333s

≈ 0.111s

Lunar latitudes
s≈ 18.161s

≈ 6.779s
s≈ 18.219s

≈ 6.256s

Table 5: Table comparing the Root Mean Square Deviation (s) and Average Absolute Devi-
ation () (both measures in seconds) in recomputing the solar declinations, shadow lengths of
gnomons of various heights, and lunar latitudes using the attested Sines (in MS Tk) and the re-
computed Sines separately.

of similar (zero) differences between the attested and recomputed func-
tion values are typically higher (or comparably equal) when recomputed
Sines are used. This provides the first measure of validation for using the
recomputed Sines in calculating the other functions in this study.

2. In addition to the percentage proportions of differences, I calculate the
Root Mean Square Deviation (s) and the Average Absolute De-
viation () for an Ordinary Least Squares (OLS) regression model
as a second statistical measure to validate my choice. For each recom-
puted function, treating the attested Value attesti as the predicted value
yi and the recomputed Value

recomp
i [Sin a] or Value

recomp
i [Sin r] as the ob-

served value ŷ αi (α being Sin a or Sin r, and i ∈ N90), the i th residual is
e αi = ŷ αi − yi (among the total n= 90 residuals). With this

s=

∑n
i (e

α
i )

2

n
≡

∑n
i (ŷ

α
i − yi)

2

n
and

=

∑n
i |e αi |
n

≡
∑n

i |̂y αi − yi|
n

.

The s measures the square root of the variance of the residual; in
other words, it indicates the standard deviation of the unexplained vari-
ance between the prediction and the observation. The  indicates the
absolute average value of the residual, i.e. the average difference between
the attested and recomputed values of the functions. Both measures of



	 RECOMPUTING SANSKRIT ASTRONOMICAL TABLES	 245RECOMPUTING SANSKRIT ASTRONOMICAL TABLES 245

fit are absolute measures (in the units of the entries themselves) with
lower values indicating a better fit. In OLS regression models, s
and  are used to indicate how accurately a model predicts the re-
sponse. Table 5 lists the s and  values (in seconds) for my
recomputations of the solar declinations, shadow lengths of gnomons of
various heights, and lunar latitudes using the attested and recomputed
Sines. (The lunar latitude calculations use n = 86 as four attested en-
tries in MS Tk are illegible.) The s and  values are lower in
most recomputations when recomputed Sines are used (instead of the
attested Sines in MS Tk), and thus, provide a second reason to choose
recomputed Sines to calculate the other functions in this study.55

C.3. Choosing the exact expression of lunar latitude over the approximate one

In this study, the lunar latitude β is recomputed for each degree of lunar-
nodal elongation ω using the exact expression Sin β = Sin 4◦30′ × Sin ω/60 in-
stead of the approximate expression β ≈ 4◦30′ × Sin ω/60. I justify this choice
based on the following two statistical measures:
1. The first measure compares the proportion of differences between the
attested and recomputed lunar latitudes when the two expressions are
used separately. Similar to the first statistical measure in Appendix C.2
(note 1), the proportions of the 0-state (similar or zero) and 1-state
(dissimilar or non-zero) differences using the exact and approximate ex-
pressions of lunar latitudes separately can be calculated as

p exactsim =
x exactsim

n
, p approxsim =

x approxsim

n
, p exactdiss =

x exactdiss

n
, and p approxdiss =

x approxdiss

n
.

where x exactsim and x approxsim are the number of 0-states using the respective
expressions; x exactdiss and x approxdiss are the number of 1-states using the re-
spective expressions; and n= 86 (since four entries corresponding to the
arguments 57◦ to 60◦ are illegible in MS Tk). Table 6 presents these
four proportions (in percentages) for the lunar latitude recomputations
in a 2×2 contingency table. Following previous calculations, the final
sexagesimal results are systematically rounded to the second fractional
place, and recomputed Sines (instead of the attested Sines in MS Tk)
are used. The percentage proportion of dissimilar (non-zero) differences
between the attested and recomputed lunar latitudes is lower when the
exact expression is used instead of the approximate one. Or equivalently,

55 The s is sensitive to outliers as the effect of each residual is proportional to the size of
its squared value. On account of this, the s value for the lunar latitude recomputations using
recomputed Sines is slightly larger than the corresponding value using attested Sines in Table 5.
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Type of Recomputation
Sines

Attested Recomputed

Solar declinations
s≈ 7.258s

≈ 2.779s
s≈ 1.265s

≈ 0.689s

Shadow lengths: 60-digit gnomon
s≈ 380.840s

= 52.7s
s≈ 379.528s

≈ 41.067s

Shadow lengths: 12-digit gnomon
s≈ 6.536s

≈ 2.811s
s≈ 0.767s

= 0.367s

Shadow lengths: 7-digit gnomon
s≈ 3.485s

≈ 1.367s
s≈ 0.333s

≈ 0.111s

Lunar latitudes
s≈ 18.161s

≈ 6.779s
s≈ 18.219s

≈ 6.256s

Table 5: Table comparing the Root Mean Square Deviation (s) and Average Absolute Devi-
ation () (both measures in seconds) in recomputing the solar declinations, shadow lengths of
gnomons of various heights, and lunar latitudes using the attested Sines (in MS Tk) and the re-
computed Sines separately.

of similar (zero) differences between the attested and recomputed func-
tion values are typically higher (or comparably equal) when recomputed
Sines are used. This provides the first measure of validation for using the
recomputed Sines in calculating the other functions in this study.

2. In addition to the percentage proportions of differences, I calculate the
Root Mean Square Deviation (s) and the Average Absolute De-
viation () for an Ordinary Least Squares (OLS) regression model
as a second statistical measure to validate my choice. For each recom-
puted function, treating the attested Value attesti as the predicted value
yi and the recomputed Value

recomp
i [Sin a] or Value

recomp
i [Sin r] as the ob-

served value ŷ αi (α being Sin a or Sin r, and i ∈ N90), the i th residual is
e αi = ŷ αi − yi (among the total n= 90 residuals). With this

s=

∑n
i (e

α
i )

2

n
≡

∑n
i (ŷ

α
i − yi)

2

n
and

=

∑n
i |e αi |
n

≡
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i |̂y αi − yi|
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.

The s measures the square root of the variance of the residual; in
other words, it indicates the standard deviation of the unexplained vari-
ance between the prediction and the observation. The  indicates the
absolute average value of the residual, i.e. the average difference between
the attested and recomputed values of the functions. Both measures of
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Expressions

Differences 0 state
(similar or zero)

1 state
(dissimilar or non-zero)

Exact p exactsim = 34/86≈ 39.53% p exactdiss = 52/86≈ 60.47%

Approximate p approxsim = 10/86≈ 11.63% p approxdiss = 80/86≈ 93.02%

Table 6: 2×2 contingency table showing the proportions of differences (in percentages) between
the attested and recomputed values of lunar latitudes calculated using the exact and approximate
expressions separately.

the percentage of similar (zero) differences between the attested and re-
computed lunar latitudes is higher when the exact expression is used.
This provides the first measure of validation for using the exact expres-
sion to recompute lunar latitudes.

2. I calculate the Median Absolute Deviation () of the differences
between the attested and recomputed lunar latitudes using the exact
and approximate expressions separately to establish the second statistical
measure. With the i th difference di = Value recompi [α̃]−Value attesti where
α̃ is the exact or approximate expression and i ∈ N86,

=Median (|di−Median(di)|) .
 provides a robust measure of the variability of the differences
with non-normal distributions.56 With it, a median-centred interval
[ν− 2, ν+ 2] can be constructed to identify statistical outliers
that lie outside the limits. Table 7 provides the descriptive statistics for
86 entries of di s using the exact and approximate expressions of lunar
latitude. When the exact expression is used,
– 75 entries (out of 86) are within ±2 of the median, in other
words, a set of 75 differences d correctedi ∈ [−2, 2] are statistically rele-
vant; while

– 78 entries (out of 86) are within ±2 of the median when the
appropriate expression is used, i.e. 78 differences d correctedi ∈ [−7, 17]
are statistically relevant.

Among these outlier-corrected differences d correctedi ,
– there are 41 dissimilar (non-zero) differences out of 75, i.e. around
54.67%, when the exact expression is used, and

– there are 72 dissimilar (non-zero) differences out of 78, i.e. around
92.03%, when the approximate expression is used.

56 Typically, a normal distribution has skewness ς ∼ 0 and kurtosis κ ∼ 3, with the mean μ ∼
median ν. As Table 7 shows, the differences between the attested and recomputed lunar latitudes
using the exact and approximate expressions are not normally distributed.
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Type of Recomputation
Expressions of lunar latitude
Exact Approximate

Median Absolute Deviation () 1 6
Median ν≡Median(di) 0 5

Mean μ ≈−2.442 ≈ 1.953
Standard Deviation σ ≈ 18.055 ≈ 18.578

Skewness ς(di) ≈−1.279 ≈−1.509
Kurtosis κ(di) ≈ 7.275 ≈ 6.789

Table 7: Table showing the descriptive statistics, including the Median Absolute Deviation ()
of the differences between the attested and recomputed lunar latitudes calculated using the exact
and approximate expressions separately.

The lower percentage of outlier-corrected dissimilar (non-zero) differ-
ences between the attested and recomputed lunar latitudes using the
exact expression (compared to the approximate one) validates its choice
in this study.

C.4. Choosing the parameter Sin 4◦30′ = 4;45,25 for lunar latitude recomputa-
tions

In this study, the lunar latitude β is recomputed for each degree of lunar-
nodal elongation ω using the exact expression with the parameter Sin 4◦30′ =
4;42,25 instead of 4;42,26 or 4;42,27.57 I justify this choice based on the
following two statistical measures:
1. The first measure compares the proportion of differences between the
attested and recomputed values when the three estimates of the param-
eter Sin 4◦30′ are used separately. Similar to the first statistical measures
in Appendices C.2–3 (note 1), the proportion of the 0-state (similar or
zero) and 1-state (dissimilar or non-zero) differences can be separately
calculated using 4;42,25, 4;42,26, and 4;42,27 as

p 25
s

sim =
x 25ssim

n
, p 26

s

sim =
x 26ssim

n
, p 26

s

sim =
x 27ssim

n
,

p 25
s

diss =
x 25sdiss

n
, p 26

s

diss =
x 26sdiss

n
, and p 26

s

diss =
x 27sdiss

n
,

where x 25ssim, x 26
s

sim, and x 27ssim are the 0-states using 4;42,25, 4;42,26, and
4;42,27 respectively; x 25sdiss, x

26s
diss, and x 27sdiss are the 1-states using the same

57 The different estimates of the parameter Sin 4◦30′ are derived using different methods, see
Section 3.7 (note 2).
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Expressions

Differences 0 state
(similar or zero)

1 state
(dissimilar or non-zero)

Exact p exactsim = 34/86≈ 39.53% p exactdiss = 52/86≈ 60.47%

Approximate p approxsim = 10/86≈ 11.63% p approxdiss = 80/86≈ 93.02%

Table 6: 2×2 contingency table showing the proportions of differences (in percentages) between
the attested and recomputed values of lunar latitudes calculated using the exact and approximate
expressions separately.

the percentage of similar (zero) differences between the attested and re-
computed lunar latitudes is higher when the exact expression is used.
This provides the first measure of validation for using the exact expres-
sion to recompute lunar latitudes.

2. I calculate the Median Absolute Deviation () of the differences
between the attested and recomputed lunar latitudes using the exact
and approximate expressions separately to establish the second statistical
measure. With the i th difference di = Value recompi [α̃]−Value attesti where
α̃ is the exact or approximate expression and i ∈ N86,

=Median (|di−Median(di)|) .
 provides a robust measure of the variability of the differences
with non-normal distributions.56 With it, a median-centred interval
[ν− 2, ν+ 2] can be constructed to identify statistical outliers
that lie outside the limits. Table 7 provides the descriptive statistics for
86 entries of di s using the exact and approximate expressions of lunar
latitude. When the exact expression is used,
– 75 entries (out of 86) are within ±2 of the median, in other
words, a set of 75 differences d correctedi ∈ [−2, 2] are statistically rele-
vant; while

– 78 entries (out of 86) are within ±2 of the median when the
appropriate expression is used, i.e. 78 differences d correctedi ∈ [−7, 17]
are statistically relevant.

Among these outlier-corrected differences d correctedi ,
– there are 41 dissimilar (non-zero) differences out of 75, i.e. around
54.67%, when the exact expression is used, and

– there are 72 dissimilar (non-zero) differences out of 78, i.e. around
92.03%, when the approximate expression is used.

56 Typically, a normal distribution has skewness ς ∼ 0 and kurtosis κ ∼ 3, with the mean μ ∼
median ν. As Table 7 shows, the differences between the attested and recomputed lunar latitudes
using the exact and approximate expressions are not normally distributed.
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Sin 4◦30′
Differences 0 state

(similar or zero)
1 state

(dissimilar or non-zero)

4;42,25 p 25
s

sim = 38/86≈ 39.53% p 25
s

diss = 52/86≈ 60.47%

4;42,26 p 26
s

sim = 30/86≈ 34.88% p 26
s

diss = 60/86≈ 69.77%

4;42,27 p 27
s

sim = 14/86≈ 16.28% p 27
s

diss = 76/86≈ 88.37%

Table 8: 3×2 contingency table showing the proportions of differences (in percentages) between the
attested and recomputed values of lunar latitudes calculated with the parametric estimates 4;42,25,
4;42,26, and 4;42,27 separately.

parametric estimates respectively; and n = 86 (since four entries cor-
responding to the arguments 57◦ to 60◦ are illegible in MS Tk). Ta-
ble 8 presents these six proportions (in percentages) for the lunar lat-
itude recomputations in a 3×2 contingency table. Like the previous
calculations, the final sexagesimal results are systematically rounded to
the second fractional place, and recomputed Sines (instead of those at-
tested in MS Tk) are used. The percentage proportions of dissimilar
(non-zero) differences between the attested and recomputed lunar lati-
tudes is lower with the parametric estimate 4;42,25 instead of 4;42,26
or 4;42,27. Or equivalently, the percentage of similar (zero) differences
between the attested and recomputed lunar latitudes is higher when
4;42,25 is used. This provides the first measure to statistically validate
using Sin 4◦30′ = 4;42,25 to recompute the lunar latitudes.

2. The second statistical measure uses the Median Absolute Deviation
() calculated for the three parametric estimates separately. As de-
scribed in note 2 of Appendix C.3, the  values determines a
median-centred interval [ν− 2, ν+ 2] of differences di s be-
tween the attested and recomputed lunar latitudes for each of the three
parametric estimates. Table 9 provides the descriptive statistics for 86
entries of di s calculated with the parametric estimates 4;42,25, 4;42,26,
and 4;42,27 separately.

– Using 4;42,25, 75 entries (out of 86) are within ±2 of the
median, i.e. 75 differences d correctedi ∈ [−2, 2] are statistically relevant;

– using 4;42,26, 77 entries (out of 86) are within ±2 of the me-
dian, i.e. 77 differences d correctedi ∈ [−1, 3] are statistically relevant;
and

– using 4;42,27, 78 entries (out of 86) are within ±2 of the me-
dian, i.e. 78 differences d correctedi ∈ [−2, 4] are statistically relevant.
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Type of Recomputation
Sin 4◦30′

4;42,25 4;42,26 4;42,27

Median Absolute Deviation () 1 1 1.5

Median ν≡Median(di) 0 1 1

Mean μ ≈−2.442 ≈−1.930 ≈−1.291
Standard Deviation σ ≈ 18.055 ≈ 18.086 ≈ 18.072

Skewness ς(di) ≈−1.279 ≈−1.741 ≈−1.638
Kurtosis κ(di) ≈ 7.275 ≈ 7.64 ≈ 7.690

Table 9: Table showing the descriptive statistics, including theMedianAbsoluteDeviation () of
the differences between the attested and recomputed lunar latitudes calculated with the parametric
estimates 4;42,25, 4;42,26, and 4;42,27 separately.

Among these outlier-corrected differences d correctedi ,
– there are 41 dissimilar (non-zero) difference out of 75, i.e. around
54.67%, when Sin 4◦30′ = 4;42,25;

– there are 50 dissimilar (non-zero) difference out of 77, i.e. around
64.94%, when Sin 4◦30′ = 4;42,26; and

– there are 70 dissimilar (non-zero) difference out of 78, i.e. around
89.74%, when Sin 4◦30′ = 4;42,27.

The lower percentage of outlier-corrected dissimilar (non-zero) differ-
ences between the attested and recomputed lunar latitudes calculated
with the parameter Sin 4◦30′ = 4;42,25 (compared to the estimates
4;42,26 and 4;42,27) validates its choice in this study.
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Sin 4◦30′
Differences 0 state

(similar or zero)
1 state

(dissimilar or non-zero)

4;42,25 p 25
s

sim = 38/86≈ 39.53% p 25
s

diss = 52/86≈ 60.47%

4;42,26 p 26
s

sim = 30/86≈ 34.88% p 26
s

diss = 60/86≈ 69.77%

4;42,27 p 27
s

sim = 14/86≈ 16.28% p 27
s

diss = 76/86≈ 88.37%

Table 8: 3×2 contingency table showing the proportions of differences (in percentages) between the
attested and recomputed values of lunar latitudes calculated with the parametric estimates 4;42,25,
4;42,26, and 4;42,27 separately.

parametric estimates respectively; and n = 86 (since four entries cor-
responding to the arguments 57◦ to 60◦ are illegible in MS Tk). Ta-
ble 8 presents these six proportions (in percentages) for the lunar lat-
itude recomputations in a 3×2 contingency table. Like the previous
calculations, the final sexagesimal results are systematically rounded to
the second fractional place, and recomputed Sines (instead of those at-
tested in MS Tk) are used. The percentage proportions of dissimilar
(non-zero) differences between the attested and recomputed lunar lati-
tudes is lower with the parametric estimate 4;42,25 instead of 4;42,26
or 4;42,27. Or equivalently, the percentage of similar (zero) differences
between the attested and recomputed lunar latitudes is higher when
4;42,25 is used. This provides the first measure to statistically validate
using Sin 4◦30′ = 4;42,25 to recompute the lunar latitudes.

2. The second statistical measure uses the Median Absolute Deviation
() calculated for the three parametric estimates separately. As de-
scribed in note 2 of Appendix C.3, the  values determines a
median-centred interval [ν− 2, ν+ 2] of differences di s be-
tween the attested and recomputed lunar latitudes for each of the three
parametric estimates. Table 9 provides the descriptive statistics for 86
entries of di s calculated with the parametric estimates 4;42,25, 4;42,26,
and 4;42,27 separately.

– Using 4;42,25, 75 entries (out of 86) are within ±2 of the
median, i.e. 75 differences d correctedi ∈ [−2, 2] are statistically relevant;

– using 4;42,26, 77 entries (out of 86) are within ±2 of the me-
dian, i.e. 77 differences d correctedi ∈ [−1, 3] are statistically relevant;
and

– using 4;42,27, 78 entries (out of 86) are within ±2 of the me-
dian, i.e. 78 differences d correctedi ∈ [−2, 4] are statistically relevant.
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