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1 Overview

We trace the evolution of quantization conditions from Max Planck’s intro-
duction of a new fundamental constant (h) in his treatment of blackbody
radiation in 1900 to Werner Heisenberg’s interpretation of the commutation
relations of modern quantum mechanics in terms of his uncertainty principle
in 1927.

In the most general sense, quantum conditions are relations between
classical theory and quantum theory that enable us to construct a quantum
theory from a classical theory. We can distinguish two stages in the use of
such conditions. In the first stage, the idea was to take classical mechanics
and modify it with an additional quantum structure. This was done by cut-
ting up classical phase space. This idea first arose in the period 1900–1910 in
the context of new theories for black-body radiation and specific heats that
involved the statistics of large collections of simple harmonic oscillators. In
this context, the structure added to classical phase space was used to select
equiprobable states in phase space. With the arrival of Bohr’s model of the
atom in 1913, the main focus in the development of quantum theory shifted
from the statistics of large numbers of oscillators or modes of the electro-
magnetic field to the detailed structure of individual atoms and molecules
and the spectra they produce. In that context, the additional structure
of phase space was used to select a discrete subset of classically possible
motions. In the second stage, after the transition to modern quantum quan-
tum mechanics in 1925–1926, quantum theory was completely divorced from
its classical substratum and quantum conditions became a means of con-
trolling the symbolic translation of classical relations into relations between
quantum-theoretical quantities, represented by matrices or operators and no
longer referring to orbits in classical phase space.1

More specifically, the development we trace in this essay can be summa-
rized as follows. In late 1900 and early 1901, Planck used discrete energy
units ε = hν in his statistical treatment of radiating charged harmonic os-
cillators with resonance frequency ν. However, he still allowed the energy

1. Cf. the concise account of the emergence of quantum mechanics by Darrigol (2009).
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of these oscillators to take on the full continuum of values. It was not until
more than five years later that Albert Einstein first showed that one only
arrives at the Planck law for blackbody radiation if the energy of Planck’s
oscillators is restricted to integral multiples of hν.

This Planck-Einstein condition was inextricably tied to a particular me-
chanical system, i.e., a one-dimensional simple harmonic oscillator. In his
lectures on radiation theory, published in 1906, Planck suggested a more gen-
eral condition for one-dimensional bound periodic systems by carving up the
phase space of such systems into areas of size h. In late 1915, he generalized
this idea to systems with several degrees of freedom (by a slicing procedure
in the multidimensional phase space). By that time, Arnold Sommerfeld had
independently found a procedure to quantize phase space that turned out
to be equivalent to Planck’s. Using this procedure, Sommerfeld was able to
generalize the circular orbits of Niels Bohr’s hydrogen atom (selected through
quantization of the orbital angular momentum of the electron) to a larger
set of Keplerian orbits of varying size and eccentricity, selected on the basis
of the quantization of phase integrals such as

∮
pdq = nh, where p is the

momentum conjugate to some generalized coordinate q and the integral is to
be taken over one period of the motion. Bohr’s angular momentum quantum
number gave the value of just one such an integral, for the angular coordi-
nate. Quantized orbits with different eccentricities became possible once the
phase integral for the radial coordinate was similarly subjected to quanti-
zation. It was soon realized by the astronomer Karl Schwarzschild that the
procedures of Planck and Sommerfeld are equivalent and that they amount
to treating the classical problem in action-angle variables (pi, qi), familiar
from celestial mechanics, with the action variables restricted to multiples of
h, Ji =

∮
pidqi = nih.

The transition from the old to the new quantum theory began in 1924
with the transcription (inspired by Bohr’s correspondence principle) of the
classical action derivative d/dJ as a discrete difference quotient, (1/h)∆/∆n,
by Hans Kramers, John Van Vleck, Max Born, and others. This transcrip-
tion procedure was critical in the development of Kramers’s dispersion the-
ory for the elastic scattering of light. It led to the introduction of complex
coordinate amplitudes depending on a pair of states linked by a quantum
transition. In his famous Umdeutung (i.e., reinterpretation) paper, Heisen-
berg reinterpreted these amplitudes as two-index arrays with a specific non-
commutative multiplication rule. Applying the transcription procedure to
the Sommerfeld phase integral itself, he arrived at a nonlinear quantiza-
tion constraint on these amplitudes. He showed that this constraint is just
the high-frequency limit of the Kramers dispersion formula, known as the
Thomas-Kuhn sum rule. Born quickly recognized that Heisenberg’s two-
index arrays are nothing but matrices and that the multiplication rule is
simply the rule for matrix multiplication. Rewriting Heisenberg’s quantiza-
tion condition in matrix language, Born and Pascual Jordan arrived at the
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familiar commutation relation [pk, ql] ≡ pk ql − ql pk = (h̄/i)δkl of modern
quantum mechanics (with h̄ ≡ h/2π and δkl the Kronecker delta). Around
the same time and independently of Born and Jordan, Paul Dirac showed
that this commutation relation is the exact analogue of Poisson brackets in
classical mechanics. The commutation relation for position and momentum
was also found to be satisfied by the operators representing these quantities
and acting on wave functions in the alternative form of quantum mechanics
developed by Erwin Schrödinger in late 1925 and early 1926. This com-
mutation relation represents the central locus for the injection of Planck’s
constant into the new quantum theory. In 1927, Heisenberg interpreted it in
terms of his uncertainty principle.

In the balance of this chapter, we examine the developments sketched
above in more detail.2

2 The earliest quantum conditions

In December 1900, Planck introduced the relation ε = hν to provide a deriva-
tion of the empirically successful new formula he had first presented a couple
of months earlier for the spectral distribution of the energy in blackbody ra-
diation. Unlike Einstein and, independently, Paul Ehrenfest, Planck did not
apply the relation ε = hν to the energy of the radiation itself but to the
energy of tiny charged harmonic oscillators (which he called “resonators”),
spread throughout the cavity and interacting with the radiation in it. Planck
used the relation ε = hν to count the number of possible microstates of a
collection of such resonators. He then inserted this number into Boltzmann’s
formula relating the entropy of a macrostate to the number of microstates re-
alizing it. The formula Planck thus found for the entropy of a resonator leads
directly to the law for blackbody radiation now named after him. Planck did
not restrict the possible values of the resonator energy to integral multiples
nhν (where n is an integer), he only assumed that energies between succes-
sive values of n should be lumped together when counting microstates. It
was not until six years later that Einstein finally showed that Planck’s deriva-
tion only works if the resonator energies are, in fact, restricted to integral
multiples of hν.3

2. For much more detailed accounts, see Jammer (1966), Mehra and Rechenberg (1982–
2001), Darrigol (1992), and Duncan and Janssen (2019–2022).

3. Planck (1900a, 1900b, 1901), Einstein (1905), Ehrenfest (1906), Einstein (1906).
Following the publication of Kuhn’s (1978) revisionist account of the origins of quantum
theory, historians have reevaluated Planck’s work and its early reception. Some of the most
prominent contributions to this reevaluation are (in roughly chronological order): Klein’s
review of Kuhn’s book (Klein, Shimony, and Pinch 1979, pp. 430–434), Kuhn’s (1984)
response to his critics, Needell (1980, 1988), Darrigol (1992, 2000, 2001) and Gearhart
(2002). This debate informed our discussion of the early history of quantum theory in
Duncan and Janssen (2019–2022, Vol. 1, Chs. 2–3).
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That same year, 1906, Planck published his lectures on radiation theory,
in which he reworked his own discretization of resonator energy by dividing
the phase space of a resonator, spanned by its position and momentum, into
cells of size h. In 1908, he finally accepted that the energy of a resonator
is quantized: a resonator is only allowed to be at the edges of the cells in
phase space. In 1911, he once again changed his mind in what came to be
known as “Planck’s second theory”. He now proposed that a resonator can
absorb energy from the ambient radiation continuously but release energy
only when its own energy is an integral multiple of hν and then only in
integral multiples nhν.4

In 1913, drawing both on the quantum theory of blackbody radiation
and on the British tradition of atomic modeling, Bohr, in the first part of
his famous trilogy, proposed a quantum model of the hydrogen atom. He
showed that this model gives the correct formula for the Balmer lines with a
value for the Rydberg constant in excellent agreement with the spectroscopic
data. Bohr quantized the energy of the electron in the hydrogen atom but
eventually settled on quantizing its angular momentum instead, restricting
its value to integer multiples of h/2π (or, in modern notation, h̄). Although
he allowed elliptical orbits, Bohr did most of his calculations for circular
orbits. This did not affect his results as he only used one quantization
condition. In the second and third parts of his trilogy, he used this same
quantization condition for planar models of more complicated atoms and
molecules.5

3 Quantization conditions in the old quantum the-
ory

Bohr’s success in accounting for the most prominent features of the hydrogen
spectrum led to a shift in work on quantum theory. Instead of dealing with
large collections of harmonic oscillators, physicists began to focus on indi-
vidual atoms and tried to account for their spectra with or without external
electric or magnetic fields on the basis of models similar to Bohr’s. These ef-
forts resulted in what, after the transition to modern quantum mechanics in
the mid-1920s, came to be known as the old quantum theory. Its undisputed
leader, besides Bohr in Copenhagen, was Sommerfeld in Munich. The devel-
opment of the old quantum theory can be followed in successive editions of
his book Atomic Structure and Spectral Lines (Atombau und Spektrallinien),
which became known as the bible of atomic theory. Ehrenfest referred to its

4. Planck (1906), Planck to Lorentz, October 7, 1908 (Lorentz 2008, Doc. 197; for
discussion of this letter, see Kuhn 1987, p. 198). For “Planck’s second theory” see the
second edition of his lectures on radiation theory (Planck 1913).

5. Bohr (1913). On the genesis and reception of the Bohr model, see Heilbron and
Kuhn (1969) and Kragh (2012).
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author (though not as a compliment) as the theory’s pope.6

In two papers presented to the Munich Academy in December 1915
and January 1916, Sommerfeld rephrased Bohr’s quantization condition in
terms of Planck’s phase-space quantization, with the understanding that only
states at the edge of Planck’s cells are allowed. Sommerfeld elaborated on
these ideas in a paper published in two installments in Annalen der Physik.
In one dimension, this phase-space quantization rule restricts the values of
what were called phase integrals, the integral of the conjugate momentum
p of some generalized coordinate q over one period of the motion, to inte-
ger multiples of h:

∮
p dq = nh. This allowed Sommerfeld to subsume the

quantized oscillators of Planck and Einstein and Bohr’s model of the hy-
drogen atom under one quantization rule. Moreover, he generalized Bohr’s
model by allowing elliptical as well as circular orbits. He accomplished this
by applying his phase-space quantization rule both to the radial coordinate
and to the angular coordinate and their conjugate momenta. He recovered
Bohr’s quantum number n as the sum of the two quantum numbers nr and
nϕ that he had introduced to quantize the orbits in a hydrogen atom in
polar coordinates. The energy levels Bohr had identified thus correspond
to multiple orbits with different combinations of Sommerfeld’s radial and
angular quantum numbers. This degeneracy is lifted, Sommerfeld showed,
when the relativistic dependence of the mass of the electron on its velocity is
taken into account. Sommerfeld thus found a formula for the fine structure
of the hydrogen spectrum. This formula survives to this day even though,
compared to modern quantum mechanics, Sommerfeld’s quantum numbers
for angular momentum are all off by 1. Even more baffling, he derived it
without any knowledge of electron spin.7

As Sommerfeld was adapting Bohr’s quantization condition to Planck’s
phase space ideas, Planck himself, in two presentations to the German Phys-
ical Society in November and December 1915, tried to generalize the phase-
space slicing he had introduced for one-dimensional oscillators to systems of
multiple degrees of freedom. In a system described by n independent canoni-
cal coordinates q1, . . . , qn and n conjugate momenta p1, . . . , pn, the 2n dimen-
sional phase-space was to be sliced into cells of equal phase-space volume hn.
The surfaces producing this slicing were prescribed by n functions gi(qj , pk)
(with i, j, k = 1, . . . , n), subject to the quantization conditions gi = nih at
the boundaries of the cells. Planck placed two requirements on these func-
tions. First, during the completely classical motion of the system in between
the quantum jumps characteristic of transitions between stationary states

6. Sommerfeld (1919). An English translation of the third edition appeared shortly after
the publication of the German original (Sommerfeld 1923). Sommerfeld’s contributions
are discussed in Eckert (2013a, 2013b, 2013c, 2014).

7. Sommerfeld (1915a, 1915b, 1916). For discussion of the fortuitous character of Som-
merfeld’s derivation of the fine-structure formula, see Yourgrau and Mandelstam (1979)
and Biedenharn (1983).
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in the Bohr picture, the system should either stay between the boundaries
of two cells or move along one of these boundaries. The simplest way to
enforce this is the one adopted by Planck: choose phase-space functions gi
that are constants of the motion. Second, the requirement that cells take up
equal volumes of phase space entails a factorization of the phase-space mea-
sure: the functions gi had to be chosen so that the multidimensional volume
dq1 . . . dqndp1 . . . dpn could be rewritten as dg1 . . . dgn. Planck’s procedure
could only be implemented on a case-by-case basis—and rather awkwardly at
that. Planck applied his method to a number of cases (two-dimensional os-
cillators, Coulomb problem, three-dimensional rigid body) but did not find
the correct quantized energy levels in all cases. The basic idea, however,
was correct. In the action-angle formalism, developed in the context of ce-
lestial mechanics and transferred to atomic physics a few months later by
Schwarzschild, the two conditions that Planck imposed on the slicing func-
tions gi are automatically satisfied by the action variables Ji in cases where
such variables exist. Had Planck been au courant with the action-angle for-
malism, he might well have recognized this and anticipated Schwarzschild’s
seminal work a few months later.8

The Planck-Sommerfeld rule for quantizing phase integrals was found
independently by William Wilson and Jun Ishiwara. It was left to Schwarz-
schild, however, to make the connection between phase integrals and ac-
tion variables, well-known to astronomers knowledgeable about celestial me-
chanics and the techniques of Hamilton-Jacobi theory. In a letter of March
1916, Schwarzschild alerted Sommerfeld to this connection. Combining these
techniques from celestial mechanics with Sommerfeld’s quantum condition,
Schwarzschild in short order derived a formula for the Stark effect in hydro-
gen, the splitting of its spectral lines in an external electric field. Sommer-
feld’s former student Paul Epstein arrived at essentially the same result at
essentially the same time.9

What made action variables natural candidates for quantization was that
they were so-called adiabatic invariants. As early as 1913, as can be gathered
from a letter to Joffe of February that year, Ehrenfest had realized the im-
portance for quantum theory of a theorem found independently by Kalman
Szily, Rudolf Clausius, and Ehrenfest’s teacher Ludwig Boltzmann. This
theorem asserts that under slow changes of the parameters of a mechanical
system undergoing periodic motion, the integral of its kinetic energy over a
single period is time invariant. For a harmonic oscillator with its total energy
restricted to integral multiples of hν, Ehrenfest realized, this means that the

8. Planck (1916).
9. Wilson (1915), Ishiwara (1915), Schwarzschild to Sommerfeld, March 1, 1916 (Som-

merfeld 2000, Doc. 240), Schwarzschild (1916), Epstein (1916a, 1916b). On the history
of action-angle variables, see Nakane (2015). On Schwarzschild alerting Sommerfeld to
action-angle variables, see Eckert (2013a, 2014). For the explanation of the Stark effect
in the old (and the new) quantum theory, see Duncan and Janssen (2014, 2015).
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adiabatic invariant Ekin/ν, the ratio of its average kinetic energy and its
characteristic frequency, has to be set equal to 1

2nh. Around the same time
and independently of Bohr, Ehrenfest used an adiabatic-invariance argument
to quantize the angular momentum of diatomic molecules: L = nh̄. As soon
as he saw Sommerfeld’s phase integral quantization, as he explained in a
letter to his Munich colleague of May 1916, Ehrenfest made the connection
with adiabatic invariants. He formally introduced what came to be known
as the adiabatic principle, one of the pillars of the old quantum theory, in a
paper published later that year, first in the Proceedings of the Amsterdam
Academy and, shortly thereafter, in Annalen der Physik. In the latter paper,
he formulated his “adiabatic hypothesis” in a particularly concise way: “Un-
der reversible adiabatic transformation of a system, (quantum-theoretically)
‘allowed’ motions are always changed into ‘allowed’ motions.” The following
year, Jan Burgers, one of Ehrenfest’s students in Leiden, supplied the proof
that individual action variables are adiabatic invariants.10

The application of the action-angle formalism by Schwarzschild and Ep-
stein to the Stark effect was seen as a major success for the old quantum
theory, on par with Sommerfeld’s elucidation of the fine structure. It also
illustrates, however, a fundamental problem that would become an impor-
tant factor in the eventual demise the old quantum theory. Given the basic
picture of atoms as miniature solar systems and the use of techniques bor-
rowed from celestial mechanics to calculate the allowed energy levels, it was
only natural to think of electrons as orbiting the nucleus on classical orbits.
The Stark effect formed one example—its magnetic counterpart, the Zeeman
effect, would provide a more dramatic one—where this picture turned out to
be highly problematic. As Bohr, Sommerfeld, and Epstein realized, it makes
a difference in which coordinates the quantum conditions are imposed. Even
though the choice of coordinates does not affect the energy levels found, it
does affect the shape of the orbits.11

4 The transition to quantum mechanics and the ap-
pearance of the modern commutation relations

A more serious problem for the picture of orbits arose in attempts to adapt
the classical theory of optical dispersion of Hermann von Helmholtz, Hendrik
Antoon Lorentz, and Paul Drude to the quantum theory of Bohr and Som-
merfeld. The classical theory was developed to deal with the phenomenon of

10. Ehrenfest to Joffe, February 20, 1913, quoted and discussed by Klein (1970, p. 261),
Ehrenfest (1913a; 1913b; 1916a; 1916b, the passage we quoted from this last paper can be
found on p. 328), Ehrenfest to Sommerfeld, May 1916 (Sommerfeld 2000, Doc. 254; quoted
in Klein 1970, p. 286), Burgers (1917a, 1917b). For further discussion of the adiabatic
principle, see Navarro and Pérez (2004, 2006), Pérez (2009), and Duncan and Pérez (2016).
11. Duncan and Janssen (2014, 2015).
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anomalous dispersion, the effect that the index of refraction decreases rather
than increases with frequency in ranges around the absorption frequencies
of the material under study. This phenomenon could be explained on the
assumption that matter contains large numbers of charged oscillators with
resonance frequencies at these absorption frequencies.12

These oscillating charges could not simply be replaced by the orbiting
electrons of the Bohr-Sommerfeld model of the atom. To recover the Balmer
formula, Bohr had been forced to sever the relation between the orbital fre-
quency of the electron circling the nucleus in the hydrogen atom and the
frequency of the radiation emitted or absorbed upon quantum jumps of the
electron from one orbit to another, a frequency given by the Bohr frequency
condition hν = |Ei − Ef | (where the subscripts i and f refer to initial and
final orbit). Only in the limit of high quantum numbers do these transition
frequencies merge with orbital frequencies. In 1913, Bohr had actually used
the requirement that these two frequencies merge in this limit to put the
quantum condition he needed to recover the Balmer formula on a more se-
cure footing. In the limit of high quantum numbers, Bohr’s quantum theory
thus merged with classical electrodynamics according to which the frequen-
cies of radiation are always (overtones of) the frequencies of the oscillations
generating the radiation. Over the next few years, Bohr greatly expanded
the use of analogies with classical electrodynamics to develop his own quan-
tum theory. He eventually introduced the term “correspondence principle” to
characterize this approach. Severing radiation and orbital frequencies mean-
while was widely seen as the most radical aspect of Bohr’s model. It also
meant that dispersion becomes anomalous at frequencies that differ sharply
from the orbital frequencies of the electrons. Dispersion thus posed a serious
problem for the old quantum theory.13

In 1921, Rudolf Ladenburg, an experimental physicist in Breslau, ad-
dressed a problem for the classical dispersion theory. The number of “dis-
persion electrons” one found by fitting the dispersion formula to the experi-
mental data was much lower than one would expect. Drawing on Einstein’s
quantum theory of radiation to replace amplitudes of radiation by proba-
bilities of emission or absorption, Ladenburg replaced numbers of electrons
by numbers of electron jumps and thus arrived at a formula that at least to
some extent takes care of this problem. Ladenburg had no solution, how-
ever, for the problem that dispersion appears to be anomalous at the wrong

12. On dispersion in classical theory and the old quantum theory, see Jordi Taltavull
(2017).
13. The term “correspondence principle” does not occur in the main body of Bohr (1918,

Parts I and II). It does appear, however, in an appendix to Part III, which finally saw
the light of day in November 1922, although a manuscript existed already in 1918 as the
first two parts went to press. For further discussion of the correspondence principle, see,
e.g., Darrigol (1992), Fedak and Prentis (2002), Bokulich (2008), Rynasiewicz (2015), and
Jähnert (2019).
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frequencies in the old quantum theory. He just replaced orbital frequencies
with transition frequencies in the classical formula without any theoretical
justification because this was clearly what the experimental evidence indi-
cated. Another limitation of Ladenburg’s formula was that it only applied
to the ground state of an atom.14

Ladenburg’s work drew the attention of Bohr and, in 1924, his assistant
Kramers found a generalization of Ladenburg’s formula that removed its lim-
itations. Kramers combined the sophisticated techniques the old quantum
theory had borrowed from celestial mechanics with Bohr’s correspondence-
principle approach. He considered the scattering of an electromagnetic wave
by some generic mechanical system with one electron and derived a classi-
cal dispersion formula for such a system that has the form of a derivative
with respect to an action variable of an expression containing amplitudes
and frequencies of the oscillations induced in that system by an electro-
magnetic wave. To turn this into a quantum formula, Kramers replaced
amplitudes by transition probabilities (as Ladenburg had done before him),
orbital frequencies by transition frequencies, and—and this was Kramers’s
main innovation—derivatives by difference quotients. The construction of
this quantum formula guaranteed that it merges with classical theory in the
limit of high quantum numbers. In this limit, after all, transition frequencies
and orbital frequencies can be used interchangeably and the difference be-
tween successive integers in the allowed values of the action variable (which,
as Schwarzschild had first shown, was just Sommerfeld’s phase integral) be-
comes so small that derivatives can be replaced by difference quotients. In
the spirit of Bohr’s correspondence principle, Kramers now took the leap of
faith that this formula would continue to hold all the way down to the lowest
quantum numbers.15

Kramers initially only published his formula in two short notes in Na-
ture. Over the Christmas break of 1924–1925, however, he teamed up with
Heisenberg, a former student of Sommerfeld’s who was visiting Copenhagen,
to write a paper providing a detailed exposition and further extension of
the results he had found before. This paper played a central role in the
train of thought that led to the famous Umdeutung (reinterpretation) paper
with which Heisenberg laid the foundation for matrix mechanics. One of the
striking features of the Kramers dispersion formula is that it only depends
on transitions between the orbits used in its derivation. It no longer refers
to individual orbits. This seems to have given Heisenberg the key idea of
setting up a new framework for all of physics in which any quantity that
used to be represented by a number connected to one particular orbit is rep-
resented instead by an array of numbers connected to all possible transitions

14. Ladenburg (1921), Einstein (1917).
15. Kramers (1924a, 1924b). Full derivations of the Kramers dispersion formula were

first published by Born (1924) and Van Vleck (1924a, 1924b).
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between orbits. The reason Heisenberg referred to this as Umdeutung is that
he retained the laws of classical mechanics relating these quantities. He only
reinterpreted the nature of the quantities related by these laws. Heisenberg
emphasized that all observable quantities (frequencies, intensities, and polar-
izations of radiation) correspond not to individual orbits but to transitions
between them. He hoped to eliminate the increasingly problematic orbits
altogether by focusing on transitions between stationary states.16

To achieve this goal, Heisenberg also needed to replace the basic Bohr-
Sommerfeld quantization condition, which, after all, gave the allowed values
of the action variable for individual orbits. In keeping with his Umdeutung
program, Heisenberg looked at the change in values of these action variables
in transitions between orbits. Transcribing the classical formula for such
changes into a quantum one, in a manner analogous to what Kramers had
done in dispersion theory, Heisenberg arrived at a formula he had encoun-
tered before. Right around that time and independently of one another,
Werner Kuhn in Copenhagen and Willy Thomas in Breslau had derived an
expression for the high-frequency limit of the Kramers dispersion formula
that has come to be known as the Thomas-(Reiche-)Kuhn sum rule. This
is what Heisenberg used as his quantization condition in the Umdeutung
paper.17

Heisenberg had not just studied with Sommerfeld in Munich and spent
time in Bohr’s institute in Copenhagen, he had also co-authored a paper with
Born in Göttingen. In the early 1920s and under Born’s leadership, Göttin-
gen had emerged alongside Copenhagen and Munich as a third leading center
for work on the old quantum theory. When Born read the Umdeutung pa-
per, he immediately recognized that the arrays of quantities Heisenberg had
introduced were nothing but matrices and that Heisenberg’s peculiar non-
commutative multiplication was nothing but the standard rule for matrix
multiplication. He also realized that Heisenberg’s quantization condition,
the Thomas-Kuhn rule, is equivalent to the diagonal elements of the com-
mutation relation q̂ p̂−p̂ q̂ = i h̄ (where hats indicate that these quantities are
matrices). His student, Jordan, showed that the off-diagonal elements van-
ish. They reported these results in a joint paper elaborating on Heisenberg’s
Umdeutung paper. Heisenberg generalized this commutation relation from
one to multiple degrees of freedom. The resulting commutation relations,
[q̂k, p̂l] = i h̄ δkl, are central to the first authoritative exposition of matrix
mechanics, the Dreimännerarbeit of Born, Heisenberg, and Jordan.18

Around the same time and independently of the work of Born and Jor-

16. Kramers and Heisenberg (1925). On the path leading from Kramers’s dispersion
theory to Heisenberg’s (1925) Umdeutung paper, see, e.g., Dresden (1987) and Duncan
and Janssen (2007).
17. Kuhn (1925), Thomas (1925), Reiche and Thomas (1925).
18. Born and Heisenberg (1923), Born and Jordan (1925), Born, Heisenberg, and Jordan

(1926).
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dan, Dirac, using arguments from dispersion theory, derived a precise cor-
respondence between classical Poisson brackets and the commutator of the
corresponding quantum variables. Dirac’s procedure precisely imitates the
methodology of the Kramers-Heisenberg derivation of the dispersion formula
for inelastic (Raman) light scattering, in which the amplitude for a transition
between two quantum states a and b was expressed as a sum of amplitudes
for transitions via two distinct intermediate states c and d (i.e., as a sum of
the amplitudes for the sequential transitions a → c → b and a → d → b).
The transition between classical formulas involving derivatives with respect
to the action and quantum ones involving discrete differences of amplitudes
with varying quantum numbers was accomplished via the transcription pro-
cedure d/dJ → 1/h ∆/∆n by now familiar from the work of Kramers, Born,
Van Vleck, and Heisenberg. Dirac’s beautiful derivation shows that the com-
mutator of any two kinematical variables (divided by Planck’s constant h),
interpreted according to Heisenberg’s matrix reinterpretation, corresponds
precisely to the Poisson bracket of the associated classical quantities in the
limit of large quantum numbers.19

Completely independently of the work of the Göttingen group, and of
Dirac in Cambridge, a formulation of quantum theory based on a contin-
uum wave theory was developed in late 1925 and early 1926 by Schrödinger,
working in Zurich. The theory, inspired by the work of Louis de Broglie
on matter waves (via Einstein’s second paper on the quantum theory of the
ideal gas), and by the analogies already discovered almost a century ear-
lier by William Rowan Hamilton between geometrical optics and particle
mechanics, posited the existence of a well-defined solution ψ(~r) to a wave
equation associated in some way with the dynamics of a single particle. In his
first paper on wave mechanics published in January 1926, this wave equation
was obtained as the solution of a variational problem based on the classical
Hamilton-Jacobi equation, and the appearance of energy quantization—for
the bound states, with negative energy, of the hydrogen atom—is a conse-
quence of the imposition of regularity and finiteness conditions on the wave
function ψ. Once the wave function ψ(~r) is required to remain finite as
r → ∞, the Bohr-Balmer quantization of the bound states of the hydrogen
atom follows immediately. A few months later, Schrödinger (and indepen-
dently, Wolfgang Pauli in Hamburg and Carl Eckart at Caltech) established
the connection between his wave functions and the matrices of Heisenberg et
al., at which point it became clear that the matrices so defined would also
satisfy the commutation relation which served as the point of departure of
matrix mechanics.20

19. Dirac (1926a, 1926b). For analysis, see Darrigol (1992) and Kragh (1990).
20. De Broglie (1924, 1925), Einstein (1925), Schrödinger (1926a, 1926b), Eckart (1926),

Pauli to Jordan, April 12, 1926 (Pauli 1979, pp. 315–320; translated and discussed by van
der Waerden 1973). For discussion of Schrödinger’s use of the optical-mechanical analogy,
see Joas and Lehner (2009); for discussion of his equivalence proof, see Muller (1997–1999).
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In late 1926, Jordan and Dirac independently of one another found es-
sentially the same formalism, now known as the Dirac-Jordan statistical
transformation theory, unifying matrix mechanics, wave mechanics, Dirac’s
q-number theory and yet another version of the new quantum theory, the
operator calculus of Born and Norbert Wiener. A few months later, drawing
on Jordan’s work, Heisenberg showed that the commutation relations central
to the new theory express what we now know as the uncertainty principle.
Around the same time, John von Neumann introduced the Hilbert space
formalism of quantum mechanics and showed that matrix mechanics and
wave mechanics correspond to two different incarnations of Hilbert space, the
space l2 of square-summable sequences and the space L2 of square-integrable
functions, respectively.21

5 Conclusion

As this brief overview shows, the canonical commutation relations q̂i p̂j −
p̂j q̂i = i h̄δij at the heart of modern quantum mechanics can be traced
back to Heisenberg’s use of the Thomas-Kuhn sum rule, a corollary of the
Kramers dispersion formula, as the quantization condition in his Umdeutung
paper. Heisenberg was led to this quantization condition by transcribing (in
a manner analogous to how Kramers arrived at his dispersion formula) the
phase-integral quantization condition

∮
p dq = nh of the old quantum theory

found by Sommerfeld, Wilson, Ishiwara and clarified by Schwarzschild and
Epstein, who identified and exploited the connection of these phase integrals
to the action variables familiar from celestial mechanics. What, in turn, had
inspired Sommerfeld to adopt the phase-integral quantization condition was
Planck’s reworking of the condition ε = hν central to the derivation of his
blackbody radiation law.
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