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Abstract

We conjecture that in N = 1 supersymmetric 4d string vacua with non-vanishing

gravitino mass, the limit m3/2 → 0 is at infinite distance. In particular one can write

Mtower ' mδ
3/2 so that as the gravitino mass goes to zero, a tower of KK states as well

as emergent strings become tensionless. This conjecture may be motivated from the

Weak Gravity Conjecture as applied to strings and membranes and implies in turn

the AdS distance conjecture. We test this proposal in classical 4d type IIA orientifold

vacua in which one obtains a range of values 1
3
≤ δ ≤ 1. The parameter δ is related

to the scale decoupling exponent in AdS vacua and to the α exponent in the SDC for

the type IIA complex structure. We present a general analysis of the gravitino mass

in the limits of moduli space in terms of limiting Mixed Hodge Structures and study

in some detail the case of two moduli F-theory settings, which yield a lower bound

δ > 1/4. The conjecture has important phenomenological implications. In particular

we argue that low-energy supersymmetry of order 1 TeV is only obtained if there is

a tower of KK states at an intermediate scale, of order 108-1013 GeV. One also has

an upper bound for the Hubble constant upon inflation H . mδ
3/2M

(1−δ)
P .
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1 Introduction

In recent years important efforts have been made in order to identify the crucial prop-

erties of the effective field theories (EFT) which may be UV-completed in a consistent

theory of Quantum Gravity (QG). This is the purpose of the Swampland Program [1–5],

whose objective is to extract general properties which may be tested in terms of string

theory or well understood semiclassical properties of black holes. These general proper-

ties are often stated in terms of Swampland Conjectures which try to capture essential

properties coming from QG. One of the most studied Swampland conjectures is the

Swampland Distance Conjecture (SDC) [6]. It states that for large moduli an infinite

tower of states becomes massless at an exponential rate m ∼ e−αd, with d the advanced

geodesic distance. In some N = 2 examples this tower has been shown to be populated

by charged states saturating BPS bounds which become massless [7–12]. The value of

the constant α has been computed. in different N = 2 systems and has been shown

to be related to the corresponding charges of the towers of states. Certain ranges for

the possible values of α have been found [7,8,11–13]. In some limits it is strings which

become tensionless as an infinite distance limit is approached [14–23].

A seemingly different statement is given by the AdS distance conjecture [24]. This

applies to theories in which changing (flux) parameters one can obtain families of

AdS vacua with vacuum energy going to zero, |Λ| → 0. The statement is that an

infinite tower of massless states must appear in this limit, with m ∼ Λλ. In a strong

version λ was conjectured to be 1/2 for supersymmetric theories and larger for non-

supersymmetric theories. In many AdS string theory examples the existence of these

massless towers has been checked [24–28]. The situation concerning the allowed values

of λ is less clear, with some existing counterexamples.

The connection of the SDC with towers of charged states allows for an understand-

ing of the very existence of that tower. For large moduli some gauge symmetry becomes

global, and to avoid conflict with QG, a tower of charged states appears. This is in

agreement with the magnetic Weak Gravity Conjecture (WGC). In the case of the AdS

distance conjecture the situation is less clear. What precisely goes wrong when Λ→ 0?

No obvious direct connection with a WGC argument is apparent in this case. Also, it

is not yet clear the range of possible values for the exponent might be. More generally,

a disappointing feature of both distance conjectures is that, although they may provide

interesting tests of Swampland ideas, they do not seem to give us information on the

EFT which could be used in phenomenological applications.

From the point of view of the Swampland distance or the AdS distance conjectures
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there is no particular moduli direction which should be studied better than any other.

Any infinite limit may be of interest to test the conjectures. In this paper we argue

that there is a natural limit which plays a special role, namely the limit in which

the gravitino mass goes to zero. There are several reasons for this to be the case.

Unlike other possible asymptotic field directions, this limit is associated to a unique

physical particle, the gravitino, which is the (super)partner of the graviton. Only

along certain field limits the gravitino may become massless and hence the existence of

a gravitino naturally selects particular classes of moduli directions. Furthermore, the

m3/2 → 0 limit corresponds to theories with small supersymmetry breaking which may

have direct phenomenological implications both for particle physics and cosmology.

Thus the possibility of having low-scale supersymmetry breaking rests on the existence

of such moduli directions and whether an EFT in which the gravitino scale is well

separated from the UV scales exists.

In field theory one can have theories with gravitino masses as small as we wish with

no apparent contradiction. In this paper we make the conjecture that this is not the

case in an EFT coming from a consistent theory of QG. In particular we argue that

the limit m3/2 → 0 in quantum gravity is at infinite distance. We thus formulate a

Gravitino Distance Conjecture (GDC):

In a theory of quantum gravity, in the limit m3/2 → 0, an infinite tower of massless

states appears with lightest mass scale

m ∼ mδ
3/2 . (1.1)

Hence for δ > 0 the scale of the gravitino cannot be arbitrarily separated from the

UV scale. Note that in the case of supersymmetric AdS vacua this directly implies

the AdS distance conjecture, since in that case Λ = −3m2
3/2. However we propose

this conjecture to be true also in non-supersymmetric AdS, Minkowski and dS vacua.

Although all our discussion will concentrate in 4d theories, we expect the conjecture

to be true also in higher dimensions with a massive gravitino. In the main text we will

test this conjecture using as a laboratory N = 1, Calabi–Yau (CY) type II orientifolds

as well as F-theory flux vacua.

A first question with this proposal is precisely what goes wrong when the gravitino

mass goes to zero, forcing a tower of states to appear. We find that, in the context of

flux type II orientifold vacua, in such a limit a set of strings and domain walls become

tensionless and the corresponding gauge coupling of the 2-forms and 3-forms goes to

zero, in conflict with general Swampland ideas. In particular, axionic shift symmetries

become continuous. Moreover, in the m3/2 → 0 limit the KK scale is in general lighter

3



than the scale of those extended objects and it is this scale which becomes lightest

first. Thus in eq.(1.1) m will typically be the KK scale in specific examples.

One can also see that the gravitino mass in general type IIA(B) N = 1 orientifold

AdS and Minkowski minima depends only on the complex structure (Kähler moduli

and dilaton). Thus in limits of large complex structure (in IIA) a gravitino mass

becomes massless and in general earlier than any other state in the theory. Thus one

expects that the tower of massless states associated to the gravitino will be related to

the towers of states becoming light (according to the SDC) at large complex structure.

Still, large Kähler moduli are also in general required to remain within the perturbative

regime in a consistent EFT. The parameters δ for the gravitino and α for the SDC are

thus expected in general to be related.

For general CY orientifolds one finds a lower bound δ > 1/3. To gain more informa-

tion we use a class of Z2×Z2 type IIA toroidal orientifolds with fluxes as a laboratory

and explore the relationship between the gravitino mass and the KK-towers along dif-

ferent directions in the space of moduli, i.e. the range of values for δ. In the case of

AdS vacua that means along directions determined by the fluxes whereas in Minkowski

we deal with no-scale vacua in which some of the moduli are undetermined. One find

values in the range 2
3
≤ δ ≤ 1. Since m3/2 → 0 limits happen for large complex struc-

ture, one can directly connect the values of α in the SDC of the C.S. to the values of

δ. We observe that the range of δ we find matches with the range of values for α found

in the literature for N = 2 systems [11, 13]. In the case of examples of dS runaway

potentials, there is no minima but one can study the behavior of the field dependent

gravitino mass, m3/2 = eK/2|W |, which now may depend on all complex structure and

Kähhler moduli. The connection of the gravitino mass with the tension of membranes

is now very direct and, as the gravitino mass goes to zero, so does the tension of the

membranes. Still for large moduli a tower of KK states also becomes massless. The

potentials one finds are consistent with the asymptotic dS conjecture.

Some more general properties for any CY orientifold may be studied using the for-

malism of limiting Hodge structures [7–10,12,29–32]. We present a general study of the

m3/2 → 0 limit in terms of that formulation within a F-theory general setting. Focusing

on the two moduli class of examples, we show general constraints for the exponents δ

which are associated to the towers of tensionless strings. In particular one obtains again

δ ≥ 1/3 for CY orientifolds and δ ≥ 1/4 for F-theory flux compactifications. One finds

consistency with the toroidal orientifold models systematically analyzed. Furthermore,

the precise relation between the GDC and the SDC for the case of Minkowski no-scale
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vacua is generalized using this mathematical machinery and a explicit expression for

δ in terms of the SDC α is given. Matching with the explicitly studied models in this

paper is also found.

The posible values for m3/2 have phenomenological implications. Depending on the

value of δ, the gravitino mass decouples from the KK tower or not. As we said, in AdS

and no-scale Minkowski examples one finds 1
3
≤ δ ≤ 1 and maximum decoupling occurrs

for δ = 1/3. Phenomenologically interesting values for m3/2 require, if the GDC holds,

values for the UV thresholds well below the standard unification scales. Thus, assuming

e.g. m3/2 = 10 TeV, just above LHC reach, it must be that MKK ∼ 109 GeV. Hence

a large desert fom the electro-weak and the unification scale is not possible. If on the

other hand we set m3/2 at an intermediate scale m3/2 ∼ 1010 GeV, as in certain classes

of phenomenologically interesting models, one obtains MKK = 1013 GeV. Cosmology

is also affected by these lower values of UV scales since the Hubble parameter is then

forced to obey H . mδ
3/2 M

(1−δ)
P .

The structure of this paper is as follows. In the next section we review the SDC and

the AdS SDC, which are intimately connected with the GDC proposed here. In section

3 we define the Gravitino SDC and how it implies the AdS SDC. We also explain how

in the m3/2 → 0 limit tensionless membranes arise, giving a WGC interpretation to

its singular behaviour. In section 4 we present explicit classes of type IIA toroidal

orientifolds in which the GDC is tested, indicating how in AdS and Minkowski vacua

the m3/2 → 0 limit is controlled by the dilaton and complex structure moduli. However,

remaining in the perturbative regime generically requires also large Kähler moduli. A

general bound δ > 1/3 is obtained, although toroidal orientifolds are restricted to

2/3 < δ < 1. We additionally show how the GDS and the SDC are connected and

the exponent δ is proportional to the exponent α in the SDC. We also describe how

towers of strings also appear in that limit. Chapter 5 is devoted to the study of the

GDC for general CY and F-theory compactifications, using the formalism of Mixed

Hodge Structures, which is also briefly introduced. Constraints on the exponents δ are

obtained for this general case, showing how the results obtained for toroidal orientifolds

are generalized. The phenomenological implications of the GDC are studied in section

6, where some implications on the scale of supersymmetry breaking and cosmology are

briefly discussed. We leave section 7 for some final comments and conclusions.

As we were submitting this paper to the arXives, the paper [33] appeared with some

partial overlap with this one.
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2 The Swampland Distance Conjecture and the Anti-

de Sitter Distance Conjecture

In order to set the stage, we review in this section the Swampland Distance Conjecture

(SDC) [6] and the Anti-de Sitter Distance Conjecture (ADC) [24], as they turn to be

closely related to our Gravitino Distance Conjecture (GDC), that we present in the

next section. Roughly speaking, both conjectures state that the regime of validity of

any Effecive Field Theory (EFT) which arises as a low energy limit of Quantum Gravity

(QG) is limited. They predict that any particular EFT description breaks down by

the appearance of a infinite tower of states that become light if we insist in describing

configurations which are very far from the original one.

To be precise, consider a gravitational theory with a moduli space whose metric is

given by the kinetic terms. The SDC then states that starting at a point P in moduli

space, and moving towards a point Q an infinite geodesic distance away from P , one

encounters a tower of states whose masses (in Planck units) become exponentially light

as
Mtower(Q)

MP(Q)
∼ Mtower(P )

MP(P )
e−αd(P,Q) , (2.1)

where MP(·) is the EFT Planck Mass at the point · in moduli space, and d(P, Q) is

the geodesic distance between the points P and Q.

The SDC is one of the most studied Swampland Conjectures and it has passed

numerous non-trivial checks. It has been thoroughly studied at the limits of moduli

space of type II compactifications on CY threefolds, where towers of light BPS states

have been identified [7–9]. Moreover, its relation with extended objects (and instanton

corrections) becoming light at infinite distance points has been an essential ingredient

since its original formulation and it has been thoroughly explored in [10, 11, 14–22,

34]. In fact, tensionless strings seem to play a special role, as emphasized by the

Emergent String Conjecture [18], which states that any infinite distance point is either a

decompactification limit or a limit in which a string becomes tensionless. More recently,

the special role of strings has also been revisited in the language of 4d supersymmetric

EFTs with the Distant Axionic String Conjecture [22], which states that all infinite

distance points of a 4d EFT correspond to a tensionless axionic string.1

The ADC can be seen as a particular case of a generalized version of the SDC,

1It is interesting to note that whereas the Emergent String Conjecture deals with strings in any

number of dimensions, the relevant objects for the Distant Axionic String Conjecture are codimension-

2 objects, which are strings only in four dimensions.
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namely the Generalized Distance Conjecture [24]. The idea is to generalize the notion

of distance in moduli space to a notion of distance applicable to any (tensor) field

configuration, with a generalized metric given once again by the kinetic terms of the

corresponding tensor fields. The claim is again that an infinite tower of states becomes

light exponentially with the proper distance when the distance diverges. When ap-

plied to families of vacua with different values for the cosmological constant (c.c.), as

explained in [24], this implies the existence of a tower of states becoming light when

the c.c. goes to zero, according to

Mtower

MP

∼ |Λ|α , (2.2)

with α a positive O(1) number. The strong version of the conjecture states that

α = 1/2 for supersymmetric vacua and for the AdS case it implies the absence of

scale separation between the AdS mass and the mass of a KK tower, which is the one

responsible for the breakdown of the corresponding EFT. Moreover it has also been

argued [24] that α ≤ 1/2 for AdS and α > 1/2 for dS.

The weak version of the ADC seems to be supported by all known examples. How-

ever, the strong version is in tension with e.g. the class of type IIA vacua found

in [35, 36], where a family of supersymmetric vacua yields α = 7/9 and therefore ex-

hibits scale separation. It has also been pointed out that the value α = 1/D, with D

the number of dimensions also naturally appears if one imposses stability of the AdS

conjecture under dimensional reduction [37, 38]. The models in [35, 36] have recently

been revisited from a 10d point of view [39,40]2 and no inconsistency has been found,

but a full 10d solution is still missing and it would be required to clarify whether they

are a robust counterexample to the strong ADC.

It is therefore clear that even though the breakdown of gravitational EFTs by

the appearance of light towers of states seems to be ubiquitous in String Theory,

this generality makes it harder to pinpoint the towers that could be more relevant

for connecting this to our Universe. In this regard, we will focus in this article on

a particular limit, namely the one associated with the gravitino mass going to zero.

This is particularly interesting for several reasons. First, the gravitino belongs to the

gravity multiplet in supersymmetric EFTs and it is therefore intrinsically tied to the

gravitational character of the theory, as well as always present in all supersymmetric

EFTs. Second, the gravitino mass gives the scale of supersymmetry breaking in vacua

with spontaneously broken supersymmetry, so it is an interesting quantity to look at

2See also [25,27,28] for related ideas about this issue.
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from a phenomenological point of view. Third, the gravitino mass is typically related to

the tension of a (codimension-1) membrane, and therefore its massless limit corresponds

to a tensionless membrane limit. In this limit a generalized global symmetry would

typically be restored and a tower of states is expected to prevent this from happening.

In some sense, one could say that the Gravitino Distance Conjecture, that we present

in the next section, allows us to unify the SDC and the ADC when the special limits

selected by the vanishing of the gravitino mass are considered. In this sense, not only

are we adding one conjecture to the already rich web of Swampland Conjectures, but

also connecting it to some of the existing ones as well as recovering non-trivial results

for the bounds on their parameters [11–13], as we will explain later.

3 The Gravitino Distance Conjecture

Given the motivations just discussed we propose a Gravitino Distance Conjecture

(GDC):

Consider an N = 1 theory with a non-vanishing gravitino mass m3/2. In the limit

m3/2 → 0, a tower of states becomes light according to

Mtower

MP

∼
(
m3/2

MP

)δ
, 0 < δ ≤ 1 . (3.1)

In the following we will present evidence for the GDC from different perspectives,

as well as several connections to other Swampland Conjectures, but before going into

that, some clarifications are in order. Since the gravitino mass typically depends on

the moduli of the theory, we can think of approaching the limit m3/2 → 0 in two

qualitatively different ways. The first is when some of the moduli on which m3/2

depends remain unfixed and their vevs can be freely adjusted to make the gravitino

mass as small as one desires. The second is to consider families of vacua where all the

scalars on which the gravitino mass depends are fixed (e.g. by fluxes that source a

potential), and by scanning the family (e.g. by changing the fluxes) one can make the

gravitino mass go to zero. These two situations are reminiscent of the SDC and the

ADC, as we will clarify later. Moreover one can also have a mixed situation in which

the space of moduli consists of a discrete part, which includes those moduli that are

fixed and can still vary with fluxes, and a continuous part, which includes the unfixed

moduli (i.e. flat directions). We thus can define a space of moduli Msm (rather than
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a moduli space) which has a direct product structure

Msm = Mdiscrete ⊗ Mcontinuous . (3.2)

We will present examples of all these situations later on. For the moment, let us also

recall a few relevant generalities about the gravitino mass in 4d N = 1 supergravity.

First, given a Kähler potential, K, and a superpotential, W , the mass of the gravitino

(in Planck units) takes the form

m3/2 = eK/2 |W | . (3.3)

In Minkowski vacua, a massive gravitino implies that supersymmetry is broken, and

therefore Λ���SUSY ∼ m3/2. In supersymmetric AdS vacua, the gravitino mass is di-

rectly related to the cosmological constant, which takes the value (in Planck units)

Λ = −3eK |W |2 = −3m2
3/2. In this case, supersymmetry may remain unbroken even if

the gravitino gets a mass3. When supersymmetry is broken the gravitino mass also

sets the overall supersymmetry breaking scale in AdS and dS vacua, although such a

precise equality does not apply.

3.1 Relation with the ADC

It is particularly relevant to examine the GDC in the case of supersymmetric AdS

vacua, as in this setup it can be shown to be equivalent to the ADC. As explained

above, considering an N = 1 theory with an AdS supersymmetric vacuum yields

Λ = −3eK |W |2 = −3m2
3/2 , (3.4)

where K and W are evaluated at the minimum. The GDC then implies

Mtower ∼ mδ
3/2 ∼ |Λ|δ/2 . (3.5)

By comparing with eq. (2.2), the ADC can be stated saying that, as the gravitino mass

goes to zero, necessarily a tower of states becomes massless, and we can identify the

parameters in both conjectures as α = δ/2. Therefore, all supersymmetric examples

that fulfill the (weak version of the) ADC are also in agreement with the GDC. In non-

supersymmetric AdS vacua this identity between m3/2 and the cosmological constant

does not hold in general, but given that the ADC is supposed to apply also to non-

supersymmetric vacua it is reasonable to conjecture that also in this case

Mtower ∼ mδ
3/2 . (3.6)

3This is due to the form of the supersymmetry algebra in an AdS background, see e.g. [41].
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We therefore expect that as the gravitino mass goes to zero, there is a tower of states

which becomes massless, also in the non-supersymmetric case.

In the next section we present several type II models in which both supersymmetric

and non-supersymmetric vacua are examined, and all of them agree with our conjecture

(with 1/3 ≤ δ ≤ 1), even in the non-supersymmetric configurations. Furthermore, the

general argument presented in the next subsection, based on 3-forms and membranes

is equally valid in the non-supersymmetric vacua. Still, it would be interesting to check

more examples of non-supersymmetric AdS.

3.2 Relation with the WGC

There is an interesting connection between the limit in which the gravitino mass van-

ishes and the existence of a membrane with vanishing tension. Consider a flux configu-

ration, with gravitino mass given by eq. (3.3). A BPS membrane interpolating between

a Minkowski vacuum without fluxes, and the aforementioned flux configuration has a

tension given by [42,43] (see also [22,44])

Tmem = 2eK/2|W | , (3.7)

in Planck units. In string compactifications one can interpret this membrane as a bound

state of Dp or NS5 branes wrapping the appropriate cycles in the internal geometry.

As a consequence, the limit in which the gravitino mass goes to zero is also the limit

in which such a membrane becomes tensionless. Let us try to relate this to the WGC

for membranes in four dimensions, which takes the form [22,45]

M2
Pγ

2
extT

2 ≤ e2Q2 (3.8)

where, e is the gauge coupling associated to the 3-form that couples to the membrane,

and Q is its quantized charge. γext is the charge-to-mass ratio of a extremal solution,

that generically depends on the scalars of the theory. Note that for codimension 1

objects, and due to the strong backreaction that they produce, the notion of extremality

is subtler than for high-codimension states. However, we will take the approach in [22]

and consider extremal membranes as infinite dimensional flat membranes, whereas

superextremal ones are associated with bubbles that can mediate transitions. The F-

term scalar potential generated by the fluxes sourced by the membrane can be dualized

and expressed in terms of 3-forms, as shown for string compactifications in [46,47] and

for N = 1 compactifications in [48–52], yielding the result

V =
1

2
ZABQAQB, (3.9)
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where the RHS is a generalization of the RHS of eq.(3.8) for several 3-forms with kinetic

term Skin ∼
∫
ZABF

A∧ ?FB, so that ZAB plays the role of the gauge coupling squared

and QA are the quantized charges of the membranes, which can be identified with the

fluxes sourced by them. For N = 1 compactifications the F-term scalar potential can

also be written as

V = eK
{
KIJ̄DIW (DJW )− 3|W |2

}
(3.10)

with KIJ the Kähler metric, and DI = ∂I +KI the Kähler covariant derivative. These

two ways of expressing the scalar potential can be interpreted as a no-force condition

between membranes interpolating between a fluxless Minkowski vacuum and the one

with the fluxes given by QA, with eq.(3.9) giving the electric interaction, and the two

terms of eq.(3.10) describing the scalar and gravitational interactions respectively [53].

We can therefore identify the scalar potential generated by the membranes as the RHS

of the WGC (3.8), and the LHS being proportional to the gravitational exchange given

by the second term in the F-term scalar potential.

Let us first consider BPS membranes interpolating between the fluxless Minkowski

vacuum and a supersymmetric AdS one. This is the only interesting supersymmetric

solution for us here as it is the only one that allows a non-vanishing gravitino mass.

In this case, we have DIW = 0, and hence V = −3eK |W |2. The physical charge of

the membranes is then proportional to the gravitino mass, and in the limit in which

it goes to zero so does the corresponding 3-form gauge coupling. Therefore we can see

the gravitino mass going to zero as a consequence of the WGC for membranes, and

we expect a tower of particles in that limit to prevent this higher-form symmetry from

becoming global. In fact, this is nothing but the fact that for a BPS membrane its

charge is proportional to its tension, and therefore as its tension goes to zero so does

its charge, saturating the WGC.

In a more general case, we can consider a flux configuration with spontaneously

broken supersymmetry. In particular, for an elementary saxionic membrane [22], that

is, a membrane which is only charged under one 3-form in the asymptotic splitting

induced by the corresponding asymptotic field direction (e.g. a single Dp or NS5-brane

wrapping a (p−2) or a 3-cycle respectively in a toroidal orientifold, as the ones in Table

1), one obtains that V ∼ eK |W |2 = m2
3/2 (see [19,22] for details). Once more, the limit

in which the gravitino mass goes to zero implies that the potential also vanishes, and

therefore the physical charge of the corresponding membrane goes to zero and the

WGC requires its tension to do the same. The appearance of an infinite tower of states

that become light may then be understood in terms of preventing this higher-form
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symmetry from becoming global once again. Note that, apart from giving a supportive

argument for the GDC presented in this paper, this connection between membranes

and the scalar potential (both for the supersymmetric and the non-supersymmetric

vacua) equally applies to suport the ADC.

4 Evidence for the GDC in type IIA vacua

In this section we will consider several examples in which the GDC can be analyzed

in detail. In particular, we will see that as the gravitino mass goes to zero there is

a tower of KK states that becomes light and the corresponding values of δ can be

determined. In fact, we will explain that requiring validity of N = 1 supergravity as

an efective field theory constrains the range of δ. After showing that the gravitino mass

can be written purely in terms of complex structure moduli, we will be able to compare

the mass scales of KK states and other massive objects, such as strings and domain

walls, depending on the field direction that becomes large. We will also describe some

runaway dS examples which display a field-dependent gravitino mass directly related

to the tension of membranes.

Let us begin with a succint review of basic results. We will work in the framework

of type IIA CY orientifolds which give rise to a 4d N = 1 supersymmetric theory con-

taining massless chiral multiplets corresponding to the dilaton, plus complex structure

and Kähler moduli. The Kähler potential takes the form [54]

K = KK +KQ, KK = − log(8V), KQ = 4φ4 . (4.1)

Here V is the volume of the internal manifold whereas φ4 is the 4d dilaton. The 10d

dilaton φ and φ4 are related by eφ4/
√
V .

The mass scale of the various objects that we will consider is set by the Planck

mass MP. In particular, the string and KK scales can be written as (see e.g. [19])

Ms = eKQ/4 MP , MKK =
Ms

V1/6
= Ms e

KK/6 , (4.2)

Here MKK is the KK scale estimated in terms of the overall volume of the CY com-

pactification.

We now specialize to simple type IIA toroidal orientifolds. We take the internal

torus to be factorized, i.e. T 6 = (T 2)3, and isotropic. Thus, besides the dilaton S,

there is only one Kähler modulus T and one complex structure modulus U . For this

reduced set of moduli the Kähler potential K = KK +KQ has

KK = −3 log(T + T̄ ), KQ = − log(S + S̄)− 3 log(U + Ū) . (4.3)
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Notice that the internal volume is V = t3, where t = ReT . We will also denote s = ReS

and u = ReU .

Fluxes are turned on to generate masses for the moduli. The general superpotential

induced by R-R, NS-NS and geometric fluxes is found to be

W = e0 + 3ieT + 3cT 2 + imT 3 + ih0S − 3ihU − 3aST − 3bTU . (4.4)

Here we are using the conventions of [36]. The fluxes m, c, e and e0 are R-R, while

h0 and h are NS-NS. The terms mixing T with S and U arise from geometric fluxes

denoted a and b. Since the theory has N = 1 supergravity, the F-term scalar potential

has the standard expression given in (3.10).

In the following we will need the string and KK scales written in terms of the

toroidal moduli. Each T 2 is generically non-isotropic, having t = RxRy and τ = Ry/Rx

as in [19]. The radii can be expressed in terms of the saxions t, s and u using that

s = e−φ4τ−3/2 and u = e−φ4τ 1/2 [36]. From (4.2) we then obtain

Ms =
MP

(su3)1/4
, MKK =

MP

(su3t2)1/4
. (4.5)

Since Rx and Ry are not necessarily equal there are actually two separate KK scales

defined as Mx
KK = Ms/Rx and My

KK = Ms/Ry. It is easy to see that

Mx
KK

MP

=
1

(stu)1/2
,

My
KK

MP

=
1

ut1/2
. (4.6)

Notice that M2
KK = Mx

KKM
y
KK . The expressions for Ms and the different KK masses

are collected in Table 1.

4.1 Gravitino mass and KK towers in type IIA models

From the tests of the ADC conjecture we know that in supersymmetric AdS vacua

there are towers of KK states that become light as the cosmological constant Λ goes

to zero. Since in such vacua |Λ| ∼ m2
3/2, the GDC holds and moreover δ = α/2 as

discussed before. We further expect the GDC to be valid for non-supersymmetric

vacua in analogy with the ADC. As we said, we will propose that

MKK ' mδ
3/2 (4.7)

for some δ ≤ 1. Moreover, the proposal applies to non-supersymmetric AdS and

Minkowski vacua.
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In the following we will verify that in a class of type IIA flux vacua the KK states

indeed satisfy (4.7). We will consider models with universal moduli S, T and U ,

whose Kähler potential is given in (4.1). The superpotential induced by R-R, NS-NS

and geometric fluxes has the form (4.4). We will discuss AdS and Minkowski vacua,

obtained by turning on suitable subsets of fluxes.

4.1.1 AdS vacua

We will present two AdS examples. The first one, dubbed DGKT-CFI, belongs to a

class of type IIA models with only NS-NS and R-R fluxes studied originally in [35,36].

The second example will include metric fluxes.

The DGKT-CFI model

The superpotential reads

W = 3ieT + imT 3 + ih0S − 3ihU , (4.8)

Without loss of generality we take m > 0. It is easy to show that there exists a

supersymmetric AdS minimum only if e < 0. With this choice the moduli are fixed at

ImT = 0, h0ImS − 3hImU = 0 ,

ReT = t =

√
5|e|
3m

, ReS = s = − 2e

3h0

t, ReU = u =
2e

3h
t

(4.9)

Since e < 0, necessarily h < 0, and h0 > 0. There are non-zero tadpoles of C7-form,

proportional to mh and mh0, that can be cancelled by D6-branes and O6-planes [36].

At the minimum
Λ

M4
P

' −m
5/2h0|h|3
|e|9/2 ' −mh0

u3
, (4.10)

where we dropped numerical constants. Substituting the moduli in (4.6) gives the KK

masses

Mx
KK

M2
P

' m3/4(h0|h|)1/2

|e|7/4 ' m1/6h
1/2
0

|h|2/3u7/6
,

My
KK

M2
P

' m3/4h

|e|7/4 '
m1/6

|h|1/6u7/6
. (4.11)

The overall scale is M2
KK = Mx

KKM
y
KK . The various KK masses have the same depen-

dence on the flux e, which is not constrained by tadpole cancellation and can be taken

large to ensure the validity of the approximation. Thus we will not distinguish them.

Since this is a supersymmetric AdS vacuum, Λ = −3m2
3/2 in Planck units. Therefore

MKK ' |Λ|7/18 ' m
7/9
3/2 . (4.12)
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Thus, with the definition in (4.7) we have δ = 7/9. This is the previously mentioned

example that violates the (strong) AdS conjecture. As already remarked, there is some

controversy on whether this model is a consistent 10d compactification (see e.g. [3] for

a review and [25, 27, 28, 39, 40] for recent assessments). If the model is inconsistent,

all the AdS examples in the literature would have δ = 1 and no separation between

gravitino and KK scales.

We now turn to non-supersymmetric vacua. In [36] it was found that in the model

with superpotential (4.8) such vacua arise depending on the parameter γ = me. Up to

now we have taken γ < 0 to have a supersymmetric solution. The general situation is

much richer though. For starters, there is an AdS non-supersymmetric stable minimum

in which the moduli are still given by (4.9) but changing the sign of e. Therefore,

the KK scales are again given by (4.11). Concerning m3/2, it is no longer given by

m2
3/2 = |Λ|/3 but it only departs by a numerical prefactor from the supersymmetric

value. We then conclude that this case satisfies again the GDC, leading to a value of

δ of 7/9.

When γ > 0 there is a second branch of stable non-supersymmetric AdS vacua in

which the vev of the axion ImT is different from zero while the vevs of the saxions

have essentially the same form as before. Concretely, hu = −h0s, 2h0s = mt3 and

3m2t2 = 4γ. The KK scales will clearly depend on the unconstrained flux e as in the

supersymmetric case and it is easy to show that so does m3/2. Thus, the GDC remains

valid for this case with δ = 7/9,

It is interesting that all the (perturbatively) stable non-supersymmetric AdS vacua

studied above violate the strong ADC conjecture in that α > 1/2. It is also remarkable

that the GDC holds although without supersymmetry Λ 6= −3m2
3/2. So far the vacua

belong to the DGKT-CIF family with m 6= 0 and no metric fluxes. In the next example

these two conditions are relaxed.

Example with metric fluxes

Our discussion here will rely heavily on the analysis of section 4.4 in [36]. The super-

potential now has the form

W = 3ieT + 3cT 2 + ih0S − 3aST − 3ihU − 3bTU . (4.13)

Notice that the Roman mass m has been set to zero. The metric fluxes, as well as the

NS-NS fluxes are taken to be non-zero and to satisfy h0 = −3ha/b.

This model admits supersymmetric and non-supersymmetric AdS minima related

by a sign flip in some fluxes. In both cases ImT = h0/3a while only a linear combination

15



of ImS and ImU is fixed. The saxions are found to be stabilized at

± 9ct2 = −h0e

a
− h2

0c

3a2
, s =

2c

a
t, u =

6c

b
t . (4.14)

Observe that the metric fluxes a and b must have the same sign. On the other hand,

in the expression for t2 choosing either gives an extremum solution. A supersymmetric

minimum is obtained by taking the plus sign, but we can also choose the minus sign

and still get a consistent solution, depending on the fluxes. In this latter case super-

symmetry is broken. The minimum is still AdS and it is typically stable [36]. The

grativino mass turns out to be

m2
3/2 =

ab3

384c2u3
, (4.15)

while the KK scales can be obtained by direct substitution of the saxions in (4.6).

The important point for us is that they both give the same dependence (modulo a

flux-dependent coefficient) on the modulus t. Specifically

Mx
KK 'My

KK 'MKK ' m3/2 =
1

t3/2
. (4.16)

Hence we see explicitly that this class of non-supersymmetry vacua would give a value

of 1 for δ in the GDC, provided t can be consistently taken to infinite distance. The

question is, however, if the large volume limit can be indeed accomplished within the

perturbative regime. Since the flux e coming from the 4-form is unconstrained by

tadpole cancellation, its absolute value can be taken arbitrarily large to guarantee

large t. In this way the resulting 4d dilaton is small. However, the 10d dilaton grows

with t and to keep it small requires choosing fluxes appropriately, e.g. letting c to be

large enough. However, this seems difficult to realize because the fluxes a, b and c are

strongly constrained by tadpole cancellation.

4.1.2 Minkowski vacua

The case of Minkowski vacua is compelling because obviously Λ = 0 is fixed and cannot

be varied, so the GDC goes beyond the ADC. We are not aware of simple explicit

Minkowski flux vacua with all moduli fixed but there are many known examples of

no-scale models with vanishing cosmological constant. Below we will check that the

GDC is fulfilled in such models.

Several no-scale examples were presented in [36] and others may be designed, both

with and without metric fluxes. In those models, with universal moduli S, T , and U ,

both MKK and m3/2 turn out to depend on a single no-scale modulus to some power.
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So there is always a ratio of powers of MKK and m3/2 which only depends on fluxes,

and indeed one can write a GDC expression like eq.(4.7). There are however no-scale

examples with more than one no-scale direction, in which one rather obtains a certain

range of values for δ. Below we will analyze two models, the first with metric fluxes

and the second only with R-R and NS-NS fluxes.

Minkowski example with metric fluxes

The model is defined by the superpotential

W = 3cT 2 + imT 3 + ih0S − 3aST . (4.17)

This model is of type NS-4 in section 4.2 of [36]. The scalar potential is positive definite

since W does not depend on U and K is of no-scale type. There is an extremum with

DTW = DSW = 0. Supersymmetry is broken because necessarily W 6= 0 so DUW 6= 0.

The generic vevs were found in [36]. We take the particular solution

ImT = 0, ImS = 0, t =

√
−h0c

ma
, s = − c

a
t . (4.18)

The complex structure field U remains undetermined. This solution exists for ac < 0

and h0m > 0. We choose a > 0 for concreteness. Since the mass matrix has four

positive and two zero eigenvalues (from the flat directions) this non-supersymmetric

Minkowski solution is stable.

The various scales scales are straightforward to compute. In particular,

m2
3/2 =

a|c|
32u3

(ν + 9) M2
P, M2

KK =

(
a2

c2ν3

)1/4
M2

P

u3/2
. (4.19)

where ν = h0|c|/am. Apparently the GDC is obeyed with δ = 1/2. However, we must

be careful to also take into account the scales Mx
KK and My

KK which are found to be

Mx
KK

MP

=

(
a

|c|νu

)1/2

,
My

KK

MP

=
1

ν1/4u
. (4.20)

Then one rather has (in Planck units)

Mx
KK ' m

1/3
3/2

(
a1/3

|c|2/3(ν + 9)1/6

)
; My

KK ' m
2/3
3/2

(
ν−1/4

[a|c|(ν + 9)]1/3

)
. (4.21)

As m3/2 → 0, it is My
KK which becomes light faster and hence that should be the tower

which is really relevant for the GDC. So in this type IIA example the result is δ = 2/3,

rather than 1/2.
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Note that one can play somewhat with the flux coefficient in the KK scales, but

the fluxes in ν and c are strongly constrained by tadpole cancellation. Since tadpoles

come in the combination (h0m− ac), none of the fluxes can be parametrically large so

the coefficients of the GDC are of order one. Another interesting result in this example

is that the sum of the 4 eigenvalues of the masses of S and T , i.e. the moduli masses,

satisfy ∑
mod

M2
mod =

a|c|
16u3

6ν M2
P . (4.22)

For large ν (which means here large t), the sum tends to 12M2
3/2. Thus, the gravitino

follows the pattern of the moduli, rather than that of the KK states.

Minkowski example without metric fluxes

In our last example there are no metric fluxes at all while all R-R fluxes appear.

Besides, the NS-NS flux h is set to zero so that W is independent of the modulus U .

The superpotential is then

W = e0 + 3ieT + 3cT 2 + imT 3 + ih0S . (4.23)

This example is adapted from the NS-1 model in section 4.2 of [36].

As in the previous model, there is a non-supersymmetric Minkowski solution with

DTW = DSW = 0 but DUW 6= 0. One finds the following vevs for the real and

imaginary parts of the moduli

ImT =
c

m
, ImS =

e0m
2 + c3

h0m2
, h0s = mt3 . (4.24)

Observe that only a combination of the saxions t and s is fixed, as expected from the

absence of mixing between S and T in the superpotential. Necessarily h0m > 0, so that

the flux contribution to tadpoles is positive. Moreover, this solution exists provided

m 6= 0, h0 6= 0, and γ = me + c2 = 0. Regarding the stability of the solution, one can

readily show that this extremum must be a minimum because the scalar potential is

positive definite. Indeed it can be verified that the mass matrix has three positive and

three zero eigenvalues, the latter due to the flat directions.

Let us now examine the scales. For the gravitino mass we find

m2
3/2

M2
P

=
h0m

32u3
. (4.25)

The main novelty now is that the KK scales

Mx
KK

MP

=

(
h0

mu

)1/2
1

t2
,

My
KK

MP

=
1

t1/2u
(4.26)
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turn out to depend not only on u but also on t (or equivalently on s) because in this

case there is an extra modulus which is not fixed by the vacuum condition.

In order to test the GDC we must limit ourselves to directions in moduli space

along which the supergravity approximation is reliable. Concretely, we must check

that both coupling constants eφ and eφ4 are small enough to remain within the string

perturbative regime, and are also compatible with the large volume limit of the internal

space. Using eφ4 = eφ/
√
V , eK = e4φ/(2V)3 and V = t3 we obtain

eφ4 =

(
h0

m

)1/4
1

(tu)3/4
, eφ =

(
h0

m

)1/4
t3/4

u3/4
. (4.27)

Hence, naively one could say that in order to have t� 1, and eφ, eφ4 � 1, it is enough

to let u tend to infinity while we move in moduli space directions parametrized by the

simple power law expression t ∼ uq, with 0 < q < 1. However, as discussed further in

section 4.3, we see that this range is actually restricted to the interval 1/5 < q < 1/2.

This follows because the fundamental string scale Ms must be larger than both Mx
KK

and My
KK , and we should also ensure that the gravitino scale is below the KK scale

(δ ≤ 1) for the effective field theory to be meaningful.

Substituting t ∼ uq in the KK masses implies the behavior

Mx
KK

MP

∼ 1

u
1
2

+2q
,

My
KK

MP

∼ 1

u1+ q
2

. (4.28)

To extract the value of the GDC parameter δ we should distinguish two cases here, for

depending on whether q is greater or smaller than 1/3 the lightest mass tower appears

to be the one for the x or y direction, respectively. In particular, one can check that for

the limiting cases when q . 1/2 (q & 1/5) the GDC holds for δ . 1 (δ & 11/15). Also

note that when the two directions x and y give identical KK scales (i.e. when q = 1/3),

the conjecture is fulfilled for δ = 7/9, as in the DGKT-CIF AdS model (4.12).

4.2 Gravitino mass and IIA Complex Structure sector

We are interested in the limit in which the gravitino mass goes to zero and we want

to identify in which directions in moduli space that happens. Examining the examples

above one observes that in all cases the gravitino mass can always be written in the

form

m2
3/2 ∼

(tadpole)

u3
. (4.29)

By tadpole here we mean a bilinear in integer fluxes contributing to the RR tadpole

like e.g. (hIm) or (ac), etc. Thus the limit of small gravitino mass in these minima

corresponds to the limit with large complex structure.
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This is not a particular property of these toroidal vacua but it is always the case

for any CY orientifold in which fluxes contribute to the R-R tadpole. Indeed it is

known [46,47] that for a general type IIA N = 1, D = 4 CY orientifold the flux scalar

potential may be written in the form

V = V3-form + Vloc . (4.30)

The first term above comes from the contribution of the different R-R and NS-NS

fluxes and is positive definite whereas Vloc corresponds to the tensions of the localized

O6 orientifolds (and possibly D6-branes). The latter provides for the only negative

contribution to the scalar potential and imposing tadpole cancellation it may be written

as (see e.g. [47])

Vloc = − eK(V)(mhJuJ) ∼ −eKQ(mhJuJ), (4.31)

e.g. in the case in which only m,hJ contributes to tadpoles. Recall V denotes here the

volume of the CY threefold. We see from here that the local term depends only on

the complex structure moduli, and not on the Kähler moduli. This is expected since

the tension of O6, D6 is proportional to the volume of the wrapped 3-cycles in the

CY. Given this fact, the value of the gravitino mass at the minima will only depend

on the complex structure fields. The argument is as follows: If a minimum is obtained

there will be a partial cancelation between the positive terms and the local term. For a

minimum to be reached, the potential at the minimum V0 should scale in the moduli as

the piece of the potential coming from the O6-planes. But the tension of the orientifold

only depends on the complex structure, and hence, at the minimum, V0 may be written

in terms of the vevs of complex structure moduli only and one expects (if it is non-zero)

that V0 = ∼ ± eKQ(mhJuJ). Consider now the case of N = 1 AdS vacua. In this case

V0 = −3m2
3/2 in Planck units and hence

m2
3/2 ∼ − eKQ(mhJuJ) . (4.32)

This is in fact true for non-supersymmetric AdS and Minkowski vacua since the same

cancelation between the positive definite terms and the local term has to occur in

order to get a minimum. Summarizing, in AdS and Minkowski vacua of type IIA CY

orientifolds, the (on-shell) gravitino mass depends only on the complex structure and

the limit m3/2 → 0 which we are studying corresponds to the large complex structure

limit. Nevertheless let us emphasize that, unlike the case of flux-less N = 2 vacua, the

minimization conditions of the scalar potential may force the Kähler moduli also to be

driven to large values.
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4.3 Gravitino mass and asymptotic moduli limits

4.3.1 General constraints on δ from EFT conditions

According to the GDC we want to study those limits in the moduli space in which

the gravitino mass becomes light and the corresponding towers of states. For those

limits to make sense we need the gravitino mass to be smaller than the towers of states

involved, so that we can use the formalism of N = 1 supergravity as an effective field

theory (EFT). We also need to have the KK scales of the theory to be lighter than the

extended objects in the theory, in particular the fundamental string scale Ms. Thus

we will require

m3/2 . MKK . Ms . (4.33)

Here MKK is the KK scale estimated in terms of the overall volume of the CY com-

pactification. Now, from the expressions (4.2) one sees that for large moduli the KK

scale will always be lighter than Ms.

We will also impose that the 10d and 4d dilatons remain smaller than one, so that

we stay in perturbative regime. This is

eφ = eKQ/4 e−KK/2 . 1 , eφ4 =
eφ√
V

. 1 . (4.34)

Here we have used (4.1) and eK = e4φ/(2V)3. Note that in large volume the 4d theory

remains perturbative as long as the 10d theory does. Substituting the definition of the

overall KK scale, cf. (4.2), one can then obtain a general bound on the exponent δ

which defines the GDC. Indeed, one can write

m2
3/2 = eK |W |2 = M6

KK e−KQ/2 |W |2 > M6
KK , (4.35)

since eφ4 . 1. From this result one concludes that in a type IIA CY orientifold at large

moduli there is a general constraint

1

3
< δ < 1 , (4.36)

where the upper limit comes from the EFT condition m3/2 < MKK . This general bound

is important because it tells us that the possible separation of the gravitino scale from

the UV scales is bounded.

4.3.2 Asymptotic limits of the gravitino mass in toroidal orientifolds

To gain intuition on the behavior of the towers which become massless in the limit

m3/2 → 0, in this section we will consider the class of toroidal type IIA orientifold
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models studied in [35, 36] and more recently in [55, 56]. As in section 4.1, we will

concentrate for simplicity in the isotropic case with the overall moduli S, T and U

with real parts (saxions) s, t and u. Since the gravitino mass depends on the complex

structure modulus u, we will take general large moduli limits parametrized as

s ∼ ur , t ∼ uq . (4.37)

General expressions for the masses of KK scales as well other massive objects (particles,

strings and domain walls) were given in [19] and are displayed in Table 1.

Scales Ms MKK Mx
KK My

KK

(su3)−1/4 (su3t2)−1/4 (stu)−1/2 (ut1/2)−1

Tstrings D4(B0) D4(BI) NS5a

s−1 u−1 t−1

Tmem Dp NS50 NS5I

(su3t(5−p))−1/2 (s−1u3t3)−1/2 (st3u)−1/2

Table 1: Masses and tensions of KK states and branes in an isotropic Z2×Z2 type IIA

orbifold in Planck units.

Here we have taken into account that directions in which s/u 6= 1 correspond to

situations (in a square torus) in which the tori radii Rx and Ry are not equal and hence

there are two separate KK scales Mx
KK and My

KK given in (4.6). Let us study first

which are the field directions in which there is a well defined perturbative EFT, which

requires eφ . 1 and the constraints eq.(4.33). It is easy to check that to stay within

the perturbative regime requires r ≥ 6q − 3. The general constraints for these STU

models are summarized in Figure 1. The possible exponents r, q are constrained to

be inside the depicted triangle. For r > 1 it is Mx
KK which provides the lightest KK

tower whereas for r < 1 it is My
KK . This triangle is purely kinematical and the moduli

directions in any flux compactification of this type should be confined to lie inside in

order to get a consistent EFT.

Let us now make contact with the examples described in section 4.1. In general the

gravitino mass at the minima scale like m3/2 ∼ 1/u3/2 and imposing that it is lighter

than the KK scales cuts the triangle in the middle (line marked δ = 1). Then one can

write general expresions for the exponent delta, namely

δr≥1 =
1

3
(1 + r + q) , δr≤1 =

1

3
(2 + q) . (4.38)
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My
KK > Ms

m3/2 > Mx
KK

� =
11

15

Mx
KK > Ms

� =
2

3

�r�1 =
1

3
(1 + r + q)

�r1 =
1

3
(2 + q)

Figure 1: Scales in the asymptotic limit u → ∞ with s ∼ ur, t ∼ uq. Each point in

the plane (r, s) means one possible field direction.

Looking at the triangle constraints one sees that any model in this clase (either AdS

or Minkowski) has δ in the range 2/3 ≤ δ ≤ 1. Here we have defined δ in terms of

the lightest of the two KK scales (either Mx
KK or My

KK). If one rather considers the

δ corresponding to the subleading tower, lower values like δ = 1/2 may be reached.

Concerning the examples discussed in section 4.1, the DGKT-CIF AdS model corre-

sponds to the back dot with δ = 7/9. The Minkowski examples without metric fluxes

in section 4.1.2 correspond to the dotted red line which has 11/15 ≤ δ ≤ 1. The AdS

examples with metric fluxes in section 4.1.1 correspond to the blue dot, which is outside

the perturbative regime.

4.3.3 Relating the GDC with the SDC

The goal of this section is to point out the relation between the original SDC [6] and our

GDC for Minkowski vacua, in a similar way to the connection between the ADC and

the GDC for AdS vacua discussed above. Minkowski vacua are typically characterized

by the presence of flat directions associated to the subset of the moduli which are

not fixed, as it occurs in the no-scale examples discussed above. Therefore, there is a

subspace of the original moduli space which remains flat, i.e. with vanishing potential
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(at least classically), so that one can freely move within that subspace. The claim is

then that as we move in the aforementioned subspace of the moduli space in order to

make the gravitino mass tend to zero, we also approach an infinite distance point. The

presence of the tower of states which is predicted by the GDC is then guaranteed by

the SDC too. Recall the precise form of the SDC (see 2 for more details). If we now

identify the tower predicted by the SDC and the one from the GDC, we can calculate

the coefficient α in the SDC from the δ in the GDC (and viceversa). Writing

Mtower = c mδ
3/2 = c′e−αd, (4.39)

and taking logarithms we obtain

log c+ δ log(m3/2) = log c′ − αd. (4.40)

Asymptotically, both sides tend to −∞ when the gravitino mass vanishes and the field

distance diverges and we can therefore neglect the constant contributions coming from

the first term in each side. Therefore we obtain

α = − δ log(m3/2)

d
, (4.41)

On the other hand we have shown that in general in this class of models m3/2 ∼ 1/u3/2

whereas the proper distance in the one-dimensional subspace spaned by u takes the

form

d =

∫ √
2KUŪ du =

√
3

2
log u+ const.

u→∞−−−→
√

3

2
log u. (4.42)

Therefore we see that the point at which the gravitino mass vanishes is indeed at

infinite distance, as

m3/2 ∼ e−
√

3
2
d , α =

√
3

2
δ . (4.43)

It is important to remark that whereas the prefactor in the exponential of the SDC,

α, is related to the value of δ, the fact that the gravitino mass is exponentially light

with the proper distance is guaranteed as long as δ > 0. One could then say that

the GDC in Minkowski space is guaranteed to hold if the SDC (with a positive α) is

fulfilled.

Note that the general range we have found for δ, 1/3 ≤ δ ≤ 1 then translates to a

range for the exponent α of the SDC

1√
6
≤ α ≤

√
3

2
. (4.44)
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This inequality is consistent with results of [7, 9, 11, 13] which studied a different class

of asymptotic limit of N = 2 theories in which the towers studied are BPS states

becoming massless in the large Kähler (rather than complex structure) limit in type

IIA.

4.3.4 The gravitino and towers of strings and membranes in toroidal type

II orientifolds

As we mentioned, the limit m3/2 → 0 not only drives towers of KK states exponen-

tially massless. Different types of both fundamental and emerging strings, as well as

domain walls, also become tensionless. The above class of toroidal orientifold is a good

laboratory to explore which extended objects become tensionless when the gravitino

gets massless, as well as the rate at which they do.

Let us start with strings. In addition to the fundamental strings, CY type IIA

orientifolds feature a number of emergent strings which come from branes wrapping

cycles in the CY, see e.g. [14, 15, 17–19]. In particular there are strings coming from

D4-branes wrapping (unprojected) 3-cycles in the CY and others from NS5-branes

wrapping even 4-cycles. In the case of the toroidal orientifold the 4-branes wrap the

invariant 3-cycles which we call B0 and BI , I = 1, 2, 3 with tensions given in table 1.

Defining the δ parameter for string particles as T
1/2
string ∼ mδ

3/2 it is easy to check that

these exponents in this class of isotropic s, t, u orientifolds are given by

δF =
1

2
(1 +

r

3
) , δD4BI =

1

3
, δD4B0 =

r

3
, δNS5 =

q

3
, (4.45)

where the subindex F stands for the fundamental string. From these values it is

clear that as m3/2 → 0 both the fundamental strings and the emergent strings from

D4-branes wrapping the I = 1, 2, 3 cycles become tensionless. Concerning the other

strings coming form D4B0 and NS5-branes also typically become tensionless except for

some field directions with r = 0 or q = 0 respectively. We will further comment on the

role of tensionless strings at large moduli in section 5.

As we already remarked, the m3/2 → 0 limit also drives some membranes tension-

less. In particular membranes are obtained from Dp-branes, p = 2, 4, 6, 8 wrapping

(p− 2) cycles in the CY. There are also membranes from the NS5 brane wrapping the

B0, BI 3-cycles. The effect of tensionless domain walls is less clear from the point of

view of towers of states. One point to remark though is that, as explained in [22],

tensionless strings appear as boundaries of these domain walls and their presence is

required by consistency in these compactifications. Looking at table 1 and defining
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now the δ exponent as T
1/3
mem = mδ

3/2 , one obtains for the exponents

δDp =
1

3
(1 +

r

3
+

(5− p)
3

q) , δNS50 =
1

3
(1− r

3
+ q) , δNS5I =

1

9
(1 + r + 3q) . (4.46)

All these domain walls become tensionless as the gravitino mass goes to zero, in agree-

ment with the general arguments that we gave in section 3.

4.3.5 The GDC and dS runaway vacua

In the previous discussion we have considered AdS and Minkowski vacua, with the

gravitino mass defined at the minima or determined by a flat direction in the case of

Minkowski vacua. What about dS vacua? We do not have any classical dS vacua other

than runaway examples to make a test. Still in those vacua one can define a field-

dependent gravitino mass in terms of the EFT as m2
3/2 = eK |W |2 and formally explore

the GDC in those models, studying the connection between the massless gravitino limit

and towers of states.

Unlike the case of AdS and Minkowski minima, the field-dependent gravitino mass

depends in general in all moduli through the eK factor, since there is no minima and

hence no cancellation of the positive definite terms in the scalar potential with the

orientifold contribution to the potential. The fluxes in general will not contribute to

tadpole cancellation in the class of vacua we are considering. Thus the moduli depen-

dence of the gravitino mass will depend on the particular form of the superpotential W .

Still, it is interesting to consider some simple examples of such runaway flux potentials

to compare the gravitino mass scale with the towers of states appearing asymptotically.

We will take again as a laboratory the class of toroidal type IIA orientifolds considered

in previous sections.

We will consider three simple monomial examples with superpotentials W1 = e0,

W2 = eT and W3 = hU . Taking the asymptotic directions again s ∼ ur, t = uq, one

finds for the gravitino masses

m1
3/2 =

1

u(3+r+3q)/2
, m2

3/2 =
1

u(3+r+q)/2
, m3

3/2 =
1

u(1+r+3q)/2
(4.47)

One then finds for the δ exponents

δ1
r≥1 =

1

3

(1 + r + q)

(1 + r/3 + q)
, δ2

r≥1 =
1

3

(1 + r + q)

(1 + r/3 + q/3)
, δ3

r≥1 =
1

3

(1 + r + q)

(1/3 + r/3 + q)
, (4.48)

δ1
r≤1 =

1

3

(2 + q)

(1 + r/3 + q)
, δ2

r≤1 =
1

3

(2 + q)

(1 + r/3 + q/3)
, δ3

r≤1 =
1

3

(2 + q)

(1/3 + r/3 + q)
(4.49)
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Comparing to the case of AdS and Minkowski minima in eq. (4.38) one observes that

the δ exponents are in general smaller, so that the corresponding KK towers are driven

to zero but in a milder way.

It is interesting to observe that in these monomial examples the implication that

membranes become tensionless as m3/2 → 0 is very explicit since one can write

m1
3/2 = |e0|

T (D2)

M2
P

, m2
3/2 = |e|T (D4)

M2
P

, m3
3/2 = |h|T (NS5I)

M2
P

, (4.50)

in terms of membranes obtained by wrapping appropiate cycles in the internal manifold,

as expected.

For completeness, let us mention here that the models discussed in this section

are all compatible with the (refined) de Sitter conjecture [57]. In the present case of

runaway examples one only has to check that |∇V | ≥ cV , with c a positive constant

of order 1 (in Planck units). The explicit form of the potentials in each case is

V 1 = 4eK |e0|2, V 2 = 4eK |e|2
[

1

3
t2 + (Im T )2

]
, V 3 = 4eK |h|2

[
1

3
u2 + (Im U)2

]
.

(4.51)

Thus we can compute the norm |∇V | of the potential gradient by using the metric on

field space given by the kinetic terms of the moduli, i.e.

|∇V | = [2(
∑
I,J

KIJ̄∇IV ∇J̄V )]1/2, (4.52)

where KIJ̄ is the inverse Kähler metric in moduli space. In the asymptotic regime,

with u → ∞, s ∼ ur, t ∼ uq, where also the contribution to the scalar potential from

their axionic partners can be neglected, one can check this to be proportional to V ,

with a flux independent constant c equal to (
√

14,
√

26/3,
√

26/3) for the examples 1),

2) and 3), respectively. Note that this basically amounts to restrict ourselves to the

“vacuum” condition, which fixes Im T = 0 or Im U = 0. However, it is also interesting

to mention that even though the dS conjecture seems to be fullfilled asymptotically,

this also holds even when considering the axions outside the minima, since |∇V | will be

greater than that of the minimum, and thus |∇V |/V > c is still satisfied. Hence, the

constants ci computed above really give a lower bound for the constant appearing in the

dS conjecture. Also note that these bounds agree with some general no-go theorems in

type IIA geometric compactifications [58], which state that in such compactifications

in string theory with fluxes and orientifolds any V > 0 satisfies |∇V |/V ≥
√

54/13.
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5 The gravitino mass in the limits of moduli space

The analysis presented up to this point in order to show evidence in favour of the GDC

has focused mostly on type II compactifications to 4d in some specific toroidal orien-

tifold models. We have discussed examples of vacua in the large volume approximation

in IIA (large complex structure in IIB) and weak coupling limit so as to remain within

the regime of applicability of the effective supergravity action. Hence, the following

question arises quite naturally: can we be more general in our assertions to include a

broader class of vacua obtained through generic CY orientifold compactifications and

still be able to give explicit values of the relevant parameters appearing in the GDC?

If this is to be case, we could then perhaps give some model-independent constraints

on the parameter δ in the GDC, or extend our results to other infinite distance points

in moduli space apart from the commonly explored ones.

In this section we will try to address these questions by using the machinery of

limiting Mixed Hodge Structures (MHS). In the next subsection we will present the

main results and formulae to be used in the upcoming ones. This formalism will give us

some tools to treat (some of) our type II asymptotic vacua examples of section 4 in a

unified way and extract the general features appearing in those simple but instructive

models. However, before jumping straight into the discussion that is to follow, a

cautionary note is in order. The framework of asymptotic Hodge theory is well adapted

to discuss independently the complex structure [8] and (the mirror) Kähler structure

sectors [9] of type II string compactifications. However, we have seen in our examples

that the on-shell gravitino mass does not seem to depend on the Kähler moduli in

type IIA (complex structure in type IIB). Still, in order for the aforementioned mass

to approach zero while having the effective description under control, we saw that we

needed to sample directions in moduli space with both sectors taken to the boundary.

The focus will be therefore to study those models that can be lifted to flux compact-

ifications in F-theory on CY fourfolds, in the spirit of [30]. This will be briefly reviewed

in the next subsection. The reason for concentrating on F-theory compactifications is

that it let us study examples in type IIA supergravity (after taking the suitable limits

and making proper identifications through mirror symmetry) where both the dilaton

and Kähler moduli are taken to infinity. Moreover, we will restrict ourselves to codi-

mension two loci in the boundary of moduli space. The reason for this is twofold.

First, these cases were extensively analyzed in [30], and we can then apply their results

directly to our setting. Second, by relaxing some constraints on the asymptotic scalar

potential in the dual type IIA theory, they showed that the only possible AdS vacua
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were precisely the infinite family studied in [35,36], which we have discussed earlier in

section 4.1.

5.1 Rudiments of Asymptotic Hodge Theory

The raison d’etre of this section is to provide the reader with the main results and ap-

plications of Asymptotic Hodge Theory to string compactifications and the Swampland

Program [7–10, 12, 29–32]. This will serve us to set also the notation that will be used

in the discussion that is to follow.

One of the main observations about the moduli space of CY compactifications,

denoted here as Mmod, was that it is neither smooth nor compact. In fact, it was

shown [59] that there are special loci where the compactification manifold becomes

singular. Those points were seen to lay at both finite (e.g. the conifold [60, 61])

and infinite distance (measured with the metric defined in moduli space). The latter

are the main goal of some of the most recently studied Swampland Conjectures, as

the SDC (see section 2), and thus one of the main focus in this work. Locally, each

singular locus can be described as the intersection of several divisors. One can thus

construct a set of local (complex) coordinates in moduli space, T a = ta + iba, with

a = 1, . . . , dimC(Mmod), such that these intersection is characterized by some subset

of them having infinite real part, i.e.

T j = tj + ibj, T j →∞ (5.1)

where the index j = 1, . . . , n̂ (with n̂ ≤ dimC(Mmod)) denotes the subset of the moduli

which are taken to infinity. Notice that the real (imaginary) part tj (bj) corresponds

here to the saxion (axion) of the associated 4d field. For definiteness we will refer

henceforth to the complex structure moduli space,Mcs, of a general CY d-fold (CYd),

but one should note that similar arguments let one analyse singular limits in other

sectors, such as the Kähler structure sector of its mirror compactification [9]. Hence,

all the relevant information is encoded in the holomorphic (d, 0)-form Ω(T a), which

depends on the complex structure local coordinates. This form belongs to the middle

cohomology Hd(CYd,C) of the internal (complex) manifold, such that for fixed complex

structure, it can be decomposed into a direct sum as follows

Hd(CYd,C) = Hd,0 ⊕ ...⊕H0,d . (5.2)

As a consequence of being at the singularity, though, the above splitting breaks down.

However, one can still extract some refined mathematical structure captured by the
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so-called Deligne splitting [62], Hd(CYd,C) =
⊕d

p,q=0 I
p,q. Each of these subspaces

I(p,q) has dimension ip,q = dimC(Ip,q), which are related to the usual Hodge numbers

hp,q by the following expression ∑
q

ip,q = hp,d−p. (5.3)

This may be depicted by the limiting Hodge diamond displayed in Figure 2.

I3,3

I2,3

I1,3

I0,3

I0,2

I0,1

I0,0

I1,0

I2,0

I3,0

I3,1

I3,2

I2,2

I2,1 I1,2

I1,1

Figure 2: Limiting Hodge diamond for the middle cohomology H3(CY3,C) of an un-

specified CY threefold.

To build this splitting we need some local information near the singular locus. The

central element in this respect is the monodromy matrix, which captures the behaviour

of the holomorphic (d, 0)-form when one encircles the singularity, i.e. under the axionic

shift T j → T j + i. It is convenient at this point to look at the period vector, usually

denoted as Π, that comprises the coefficients of Ω when expanded on an integral basis

µI , I = 1, ..., 2hd−1,1 + 2, of Hd(CYd,Z), that is

Ω = ΠIµI . (5.4)

The periods are not uniquely determined and undergo some transformation Π(T j +

i) = Rj Π(T j) via the aforementioned shift, which is encapsulated by the monodromy

matrix Rj. However, the interesting object is not the monodromy matrix itself but its

logarithm, Nj = log(Rj), which can be seen to be nilpotent 4, i.e. that there exists

4Strictly speaking one has to first extract the unipotent part of the monodromy matrix, which can

be reached after a change of basis [7]
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some mj ∈ Z such that N
mj

j 6= 0 and N
mj+1
j = 0. What is most striking about this

is the fact that the nilpotent matrix captures a great deal of information about the

singularity. Hence, by means of the Nilpotent orbit theorem [63] one can write the

above period vector as

Π(T j) = e−iT
jNja0 +O

(
e−2πT j

)
(5.5)

where both Π and a0 may additionally depend on the non-divergent moduli. Several

comments are in order. First, it should be noted that the nilpotent orbit lets us

extract the singular part of the period vector, which explicitly depends on the nilpotent

matrix Nj (notice that under the shift T j → T j + i, the above formula states that Π

transforms by the monodromy matrix Rj). The order O
(
e−2πT j

)
terms are subleading

in the asymptotic expansion, and thus can be neglected when approaching the singular

locus T j → ∞. Finally, one should note that by the nilpotency property of Nj, the

exponential in (5.5) only contains a finite number of terms, leading to a polynomial

dependence on the divergent moduli.

Moreover, the nilpotent matrix can be used to give a classification of the allowed

singularities within the moduli space under consideration [7, 8, 29]. This is done by

studying the degree of the above polynomial, i.e. which dj ∈ Z≥0 fulfills the condition

(Nj)
dja0 6= 0, and (Na)

dj+1a0 = 0. (5.6)

The latter is usually indicated by referring to the corresponding singularity as one

of type I for dj = 0, type II for dj = 1, etc. For CY threefolds and fourfolds this

classification is further refined adding some subindices to the singularity type (see

e.g. [8, 30]).

Interestingly, when several moduli are sent to infinity (i.e. for codimension greater

than 1 singular loci), path dependence becomes important, and one has to specify the

order in which one approaches the boundary. Hence, one obtains a different limiting

Hodge diamond at each step of the (accumulated) singularity. This provides us with an

enhancement chain [8] characterized again by the nilpotent matrix N(j) = N1 + ...+Nj,

as shown below [8]

t1→∞−−−→ Type X(1)
t2→∞−−−→ Type X(2)

t3→∞−−−→ ....
tn̂→∞−−−→ Type X(n̂) (5.7)

The nilpotent orbit leaves an expression for the period vector which is still difficult to

deal with. In order to simplify further one can introduce a growth sector, which amounts

to divide the local patch around the singularity into disjoint sectors by introducing a

specific ordering, namely
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R1,2,...n̂ =

{
T j = tj + ibj | t

1

t2
> γ,

t2

t3
> γ, . . . ,

tn̂−1

tn̂
> γ, tn̂ > γ, bj < δ

}
γ�1,δ>1

. (5.8)

The analysis that follows will be valid for any path belonging to the specified growth

sector. As long as one stays inside it, the results from the sl(2)-orbit can be applied as

in [8].

Recall that the nilpotent orbit approximation discarded exponential corrections

to the period vector Π(T a). The sl(2)-orbit further neglects subleading polynomial

corrections in tj/tj+1, which are obviously suppressed within the chosen growth sector.

Moreover, one can construct a particular splitting of the real cohomology from the

R-split Deligne splitting (see [8])

Hd(CYd,R) =
⊕

r=(r1,...,ra)

Ar, (5.9)

where −d ≤ rj ≤ d. Note that to make this splitting one has to restrict oneself to the

real cohomology as shown in Figure 3.

r = 3

r = 2

r = 1

r = 0

r = −3

r = −2

r = −1

Figure 3: Limiting Hodge diamond displaying the rj levels in which generic d-forms

live in the singularity

Finally, another important concept is that of the Hodge norm. This is inherited

from the inner product between forms in the internal manifold

||α||2 = 〈α, α〉 =

(∫
Xd

α ∧ ∗α
)
, (5.10)

where Xd denotes the compactification manifold and ∗ the Hodge-star operator associ-

ated to its metric. We will have special interest in the Hodge norm of forms belonging

to the middle cohomology Hd(CYd,R), the reason being that the holomorphic form
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Ω(T a) (and also the 4-form fluxes that we will consider later in next section) enter in

this category. Moreover, the Hodge star operator acts within this space as a multi-

plicative factor [8]. The point here is that this norm also gets simplified after if we use

the sl(2)-orbit approximation within a given growth sector. Hence, if α ∈ Ar, then the

Hodge norm reduces simply to

||α||2 ∼
(
t1

t2

)r1 (t2
t3

)r2
. . . (tn̂)rn̂ , (5.11)

where again not only exponential but also polynomial corrections in the divergent

moduli have been neglected, and ∼ indicates that we are not paying attention to finite

prefactors. It is worth mentioning too that the Ar subspaces are ’orthogonal’ in the

sense that for α ∈ Ar, β ∈ Ar′ we have 〈α, β〉 = 0 unless r + r′ = 0. This turns out to

be a key property to approximate quantities asymptotically, such as Kähler potentials

that take the form K = −log
〈
Π, Π̄

〉
' −log

(
(t1)d1(t2)d2−d1 . . . (tn̂)dn̂−dn̂−1

)
.

5.2 Application to F-theory flux compactifications

Here we want to briefly recall how flux compactifications of 11d supergravity (low

energy limit of M-theory) on (smooth) CY fourfolds relate to some type IIB/A orien-

tifold compactifications in special limits, following closely the exposition in [30] (see

also e.g. [64, 65] for more details). Readers familiar with this material may jump to

section 5.3.

Consider M-theory compactified on a CY fourfold X4, leading to D = 3, N = 2

supergravity. We allow for some G4 flux along some internal four cycles on the CY.

This leads to a scalar potential of the form

VM =
1

V 3
4

(∫
X4

G4 ∧ ∗G4 −
∫
X4

G4 ∧G4

)
, (5.12)

with V4 the volume of X4. Additionally, there is a consistency relation linking the

flux G4 and the curvature of the internal manifold [66]. We will be mostly concerned

with vacua determined by the complex structure moduli zJ , J = 1, ..., h3,1(X4) of the

internal manifold. Hence, we further restrict to 4-form fluxes satisfying the primitivity

condition J ∧ G4 = 0 (i.e. G4 ∈ H4
p(X4,R)). As a consequence, VM will depend only

on the complex structure moduli and the overall volume factor, rendering the potential

positive definite due to its no-scale condition. In supergravity language, the potential

can be then rewritten in terms of a Kähler potential K, and a superpotential W as

follows

VM = eKKIJ̄DIW (DJW ), (5.13)
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where, as usual, DIW = ∂IW + KIW and KIJ̄ is the Kähler metric in the complex

structure moduli space Mcs of X4. For completeness, we recall here the usual expres-

sions both for the Kähler potential,

K = Kcs(z, z̄)− 3 log (V4), Kcs(z, z̄) = − log

(∫
X4

Ω(z) ∧ Ω̄(z̄)

)
, (5.14)

and the Gukov-Vafa-Witten superpotential [42]

W =

∫
X4

G4 ∧ Ω(z). (5.15)

We proceed now sketching the chain of dualities that lets us relate this potential to

an analogous one in type II orientifold compactifications. One can see that the above

potential lifts almost directly to an F-theory scalar potential if X4 is taken to be an

elliptically fibered CY fourfold (with base denoted by B3) by shrinking the volume of

the torus fibre to zero. Hence one obtains the following scalar potential in F-theory

VF =
1

V 3
b

(∫
X4

G4 ∧ ∗G4 −
∫
X4

G4 ∧G4

)
, (5.16)

where Vb denotes the volume in the 10d Einstein frame of a type IIB compactification

over B3.

Finally, one can take Sen’s weak coupling limit [67], to describe a type IIB CY

orientifold compactification over the threefold base B3. If one further goes to the

string frame and makes use of mirror symmetry, the following type IIA orientifold (in

the mirror X̃3 CY) scalar potential can be obtained [30]

VIIA =
1

4s3 |ΩA|4

(
s

t3
∣∣ΩA

∣∣2 ∫
X̃3

H3 ∧ ∗H3 +
1

st3

∑
p even

∫
X̃3

Fp ∧ ∗Fp −
∫
O6/D6

F0H3 + ...

)
.

(5.17)

Note that, as customary, we have labelled the saxion corresponding to the dilatonic

chiral multiplet as s, and the Kähler modulus t. From the above formula it is obvious

that it correctly reproduces the contributions to the scalar potential arising from the

NSNS H3 form flux and RR Fp form fluxes considered in e.g. [36], while the dots denote

some extra contributions coming from geometric and non-geometric fluxes which will

be taken into account later on.

Before proceeding we should make a couple of important observations. First of

all, from duality with M-theory we recover also the piece coming from the tensions

of the localised sources, i.e. O6 planes and D6 branes. This last term will be the

only negative contribution. Second, since this potential is dual to the one introduced
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in (5.13), which as we said was manifestly positive-definite, there must exist some

correlation between the local term and the fluxes. However, as was argued in [30], one

can relax this correlation between the flux parameters so that more general potentials

in type IIA, with the same dependence on the two moduli that will be sent to the limit

(i.e. s, t), can be described. Thus non-positive definite potentials can also be analysed,

as required to recast our AdS vacua within this framework. However, in order to do

that we will have to take s ∼ u in our examples (which is indeed compatible with the

vacuum conditions, see section 4.1), so as to have an effective two moduli problem.

5.2.1 2-moduli limits in F-theory

Henceforth we will restrict ourselves to the two moduli case, as anticipated before. We

will also make use of the main tools of MHS reviewed in section 5.1. Along the way we

will see that the form that the type IIA potential adopts in the asymptotic limits can

be readily identified with the ones we have used in this paper, provided we set s ∼ u

and a new ”free” parameter η that will be introduced later on in this subsection equal

to 3 [30].

Hence consider the complex moduli space of a CY fourfold with h3,1 = 2 and send

both coordinates to a singular limit (see [32] for more details), which can be locally

parametrized as

S = s+ iξ1, T = t+ ib2, (5.18)

such that the singularity is reached if s, t→∞. Also we fix a growth sector (c.f. (5.8))

Rs,t =
{

(s, t) | s
t
> γ, ξi < δ

}
γ�1,δ>1

. (5.19)

Note that we could exchange the coordinates so as to consider the alternative growth

sector. However, we will be more interested in this particular ordering for reasons that

will become clear in next subsection. It is important to keep in mind that we are

taking γ to be very large so as to be able to use the strict asymptotic approximation

(see discussion above (5.9)), in which one not discards exponential and subleading

polynomial (in s/t) corrections, which in this context can be interpreted as perturbative

and/or non-perturbative α′ corrections.

Recall that we could classify the singularity type as well as the allowed enhance-

ment by studying the corresponding monodromy matrix. For a complete list in this

two moduli limit case we refer the reader to tables 5.1, 5.2 in [30] (and the original

work [68]). Regarding the R-split of (5.9), one is interested in this case in the one cor-
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responding to the primitive part of the middle cohomology, H4
p (X4,R), of the fourfold,

as the G4 flux belongs to this class

H4
p (X4,R) =

⊕
r=(r1,r2)∈Γ

Ar1r2 , (5.20)

where the set Γ of possible (r1, r2), with −4 ≤ r1, r2 ≤ 4, depends on all this data.

A crucial concept for us will be that of unbounded asymptotically massless (UAM)

fluxes [30]. These denote those components in Ar1r2 above which have the following

properties

• 〈Ar1r2 , Ar1r2〉 = 0 ,

• 〈Ar1r2 , Grest
4 〉 = 0 ,

• ‖Ar1r2‖ → 0 on every path with s, t→∞ ,

where Grest
4 above refers to the rest of the components of the 4-form flux which are

not unbounded. The significance of these UAM fluxes is that they do not contribute

to the tadpole cancellation condition and hence, at least from this perspective, are not

bounded, and also their contribution to the potential asymptotically vanishes (they

produce a mild backreaction).

5.3 Type II vacua in codimension two boundaries

Now it is time to apply these results to gain some information about the asymptotic

scalar potential in type II orientifold compactifications. Recall that we are particu-

larizing to the two moduli case here. Thus, we have two scalar fields, which in type

IIA are taken to be the dilaton s and the (universal) Kähler structure modulus t, both

becoming large as we approach the boundary. We also need to specify a growth sector

in order to apply the strict asymptotic approximation, which in our case will be Rs,t,

whose paths are characterized by s growing faster than t. Note that the motivation

for this becomes clear once one takes s ∼ u, as happened in our AdS examples, and

asks for the supergravity theory to stay within the string perturbative regime. Indeed

by substituting in (4.34), we see that the 10d dilaton vev goes like eφMP ∼ MP
t3/2

s
,

justifying our choice (see discussion in sect. 4.3.2).

We start then from the generic asymptotic potential for the codimension two limit

VIIA =
1

sη

 ∑
(r1,r2)∈Γ

Vr1r2 s
r1tr2−r1 − Vloc

 , (5.21)
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where (r1, r2) are the corresponding weights of the two sl(2,C)-triplets in the intersec-

tion locus of the singular point. The different values than can happen depend on the

type of singularities (and enhancement) that is realized in each specific case. Recall that

the coefficients Vr1r2 represent the different components of the G4 flux in the limiting

Hodge splitting of H4
p (X4,R) (actually an axion dependent combination thereof), and

we have loosen the correlation between them so as to elliminate the positive definite-

ness constraint and accomodate more generic vacua. Also note that we’ve introduced

a general dependence on the exponent of the dilaton s in the prefactor. This intends

to capture the different limits one can approach in the type IIA setting. Henceforth,

though, we will stick to the case η = 3, as this is the one corresponding to the weak

coupling and large volume limit, where our classical vacua reside. It was shown in [30]

that this limit (which is the dual of the type IIB orientifold arising from Sen’s weak

coupling limit in F-theory) actually corresponds to a singularity enhancement (in the

CY fourfold) of the type II0,1 → V2,2. This means that the allowed values of the pairs

(r1, r2) can be read directly from table 5.4 in [30]. Let us mention also here that the

possible UAM fluxes that appear in this particular enhancement can be found in table

5.5 of [30].

All in all, the most generic asymptotic flux potential we can get at this singularity

is of the form

VIIA =
1

s3

(
VF0t

3

s
+
VF2t

s
+
VF4

st
+
VF6

st3
+
Vh0s

t3
+
Vas

t
+ Vg1st+ Vg2st

3 − Vloc

)
, (5.22)

where the naming of the different components has been done such that one can identify

them with the contribution coming from the R-R fluxes Fp, NS-NS flux h0, metric

fluxes a, and non geometric ones g1, g2 (cf. eq (4.4)). Notice that this discussion is not

restricted only to the case in which we have just two moduli. Indeed, it is still valid

even when our moduli space has more dimensions but we choose some flux configuration

such that the vacuum condition fixes some of them to be proportional to others, leaving

us with an effective two moduli problem.

With all this information we can understand using this language the results in our

supersymmetric and non-supersymmetric AdS vacua discussed in section 4.1.1, and

also the Minkowski no-scale vacuum without metric fluxes of 4.1.2. We will discuss in

the following each of them in turn. Note also that this formalism does not capture our

Minkowski no-scale with metric fluxes example in type IIA of section 4.1.2. The reason

for this is that, as will become clear later, to have a minimum at parametric control

within our fixed growth sector, it is crucial that there is at least one flux component that

is unbounded and asymptotically massless, as discussed below (5.20). However, as was
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demonstrated in [30] the only ones that fullfil this condition at weak coupling and large

volume correspond to the R-R fluxes F6 (e0 in our notation) and F4 (e in our notation).

Thus, given that this model contain none of these special fluxes (see eq. (4.17)), we

expect the moduli to be fixed in terms of fluxes constrained by tadpole cancellation

and hence bounded. This is indeed what happens. Those examples moreover cannot

be made to treat s and u somewhat symmetrically (as is evident from (4.18)) and thus

cannot be translated to this new setting.

Before discussing each of these cases it is necessary to comment on the strategy

to look for vacua at parametric control. Thus recall that we are looking for vacua

obtained by minimizing (5.22)) which result in an asymptotic stabilization of s, t. For

this to be the case (even when taking s, t→∞), it is necessary that the different terms

in the potential scale asymptotically in the same way. Otherwise some terms will gain

more importance than others in the limit and we loose control on the solution. Hence

we look for solutions of the form s ∼ ρr, t ∼ ρq. Thus, each component Vr1r2 of the

potential will scale as follows

Vr1r2 ∼ ρ(r1−3)r+(r2−r1)q (5.23)

Note that this does not need to be the case for the class of unbounded fluxes (if any),

as they can be made to scale the desired way to contribute as the other terms in the

potential. Thus we need to include those pairs (r1, r2) and fix a relation between r, q

such that every term included in VIIA yields the same asymptotic scaling. However, it

is important to keep in mind that for the results of the strict asymptotic approximation

to apply we need also to be sure that we stay in the growth sector Rs,t, as discussed

at the beginning of this subsection. This boils down to the necessity of having r > q.

AdS vacua

Let us look at the DGKT-CIF model of section 4.1.1. By staring at the superpo-

tential (4.8) we see that this includes an unbounded flux (the one coming from F4) and

components coming from H3 flux (h0 in (5.22)) and F0 (Roman’s mass). Recall that

our vacuum conditions, both in the supersymmetric (4.9) and non-supersymmetric (see

discussion after (4.12)), fixed the complex structure u to be proportional to s. Thus,

effectively we have a two moduli problem, the one presented and discussed in previous

subsections, and we can readily apply the results. First of all, we see that for the terms

to scale the same way asymptotically and give a minimum at parametric control we

need r = 3q, i.e. s ∼ t3, which can be seen to be the case in all of our AdS vacua

(see e.g. (4.9)). With this relation, one can check that all the terms appearing in VIIA
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(including Vloc) yield to the same scaling, and also (since r > q) we keep ourselves

within the fixed growth sector, so that we can trust our minima in the limit. This

reinforces the discussion in section 4.2, where it was argued that the potential at the

minima, V0, should scale as the contribution from the localised sources Vloc yielding

to a dependence exclusively on the scalars in the underlying quaternionic space (i.e.

dilaton and complex structure). Notice that this is valid both for the supersymmetric

and non-supersymmetric cases. In the former V0 = −3m2
3/2, and this last statement

extends immediately to the gravitino mass. For the non-supersymmetric case even

though we don’t have this explicit relation between the c.c. and the gravitino mass, it

is still proportional (m2
3/2 = eK |W |2) to the unique negative summand in the Cremmer

et al formula (3.10) for the N = 1 supergravity potential and hence should have the

same scaling as the other summands.

Recall that we also had AdS extrema by including metric fluxes. This is discussed

around (4.13). There we were looking specifically for non-supersymmetric solutions

and we specialized to the case were no constant moduli-independent contribution to

W was included, i.e. we set e0 = 0 (see eq. (4.13)). We could, in principle, have

included such a contribution, and the analysis for the vacua with metric fluxes would

have proceed analogously (see [36] for more details). In the following, we will consider

this latter situation, which simply amounts to change the value of the Kähler structure

saxion t in the vacuum from (4.14) to the following one [36]

± 9ct2 = e0 −
h0e

a
− h2

0c

3a2
(5.24)

The vacuum conditions fixed again s ∼ u, so that we can discuss these vacua within

this context as well. Note that to have indeed a solution we had to set m = 0.

This means that we are considering again a flux potential with two unbounded and

asymptotically massless fluxes (those coming from F4 and from F6) and some other

components which are bounded by the tadpole condition. Moreover, in order to have

a solution at parametric control, it is convenient (although not essential in this case)

to turn off the contribution of the h0 flux (which can be seen to be consistent with

(5.24) above and with the vacuum condition, as discussed after (4.13), leading to both

supersymmetric and non-supersymmetric vacua depending on the sign of e0), as this

induces a term in the scalar potential (5.22) that scales differently than the others

(indeed it grows more slowly), and hence gets ”diluted” with respect to those in the

asymptotic limit. One can then see that this case is exactly the other unique AdS

solution obtainable through (5.22), as was discussed in [30]. There it was shown that

one can get an AdS vacuum at parametric control if r = q is satisfied and contributions
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both from metric fluxes a and the R-R 2-form F2 are included. In this case, every

component scales the same way as the local potential Vloc, validating the arguments

in section 4.2. The problem with this possibility is that, as was pointed out in [30],

the relation r = q implies that even though we are in the asymptotic limit, we do not

approach it by staying in the growth sector Rs,t, and hence the analysis is not valid.

In our case this is seen by the fact that we cannot stay within the string perturbative

regime, as was mentioned after (4.16) (it corresponds to the blue dot in Figure 1).

Minkowski No-Scale without metric fluxes

To end this section we recast our second no-scale Minkowski example in section

4.1.2 in terms of this language. To make contact with the analysis presented here we

will further set c = e = 0 in (4.23), which can be seen to be compatible with the

solution. The reason for doing this is that, after this has been done, we see that the

potential we get contains contributions from an unbounded flux (the one coming from

F6), and two other bounded fluxes F0, h0. Note that here again we can make u ∼ s, as

the complex structure is not fixed by the potential. This is entirely analogous to the

case of AdS vacua without metric fluxes of the last subsection, where in order to have

a minimum at parametric control we needed s ∼ t3 to be satisfied, so that every term

in the potential, including the one from localised sources, scales the same way. This

solution is thus seen to be the one presented in section 4.1.2 (modulo this identification

of the complex structure modulus and the restriction imposed on the fluxes).

The parameter δ in the two moduli limit

This formalism also lets us understand why the δ parameter in the GDC was

7/9 for the supersymmetric and non-supersymmetric AdS examples discussed in sect.

4.1.1, and also for the type IIA Minkowski no-scale vacuum of sect. 4.1.2 when

Mx
KK ∼ My

KK ∼ MKK (see discussion after (4.28)). The reason for this is that in

these models we can relate the naive compactification scale with the gravitino mass

in our parametrically controlled vacua, by exploiting the scaling arguments discussed

before. Thus, given the KK mass in a generic type IIA CY compactification presented

in (4.2), which we recover here for completeness

MKK ∼
Ms

(VA)1/6
∼ MP

st1/2
, (5.25)

and recalling that in the two moduli case the only possibility to get (perturbative)

vacua at parametric control forced us to satisfy s ∼ t3 so that Vloc ∼ s−3, one thus sees
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that the KK mass grows as s−7/6. Hence, by the arguments explained in the previous

section one obtains

MKK ∼ mδ
3/2 → δ = 7/9 , (5.26)

in agreement with our results (cf. Figure 1). Let us mention once again that the

Minkowski no-scale model with metric fluxes in type IIA (4.17) did not enter in our

discussion in this section. Recall that the reason for this was that both t and s were

fixed at a finite value in terms of quantized fluxes constrained by tadpole restrictions

(see (4.18)), leaving the (universal) complex structure modulus u undetermined, on

which the on-shell m3/2 solely depends. Thus, even though one could let u grow to

infinity (which is indeed necessary if one wants to mantain string perturbativity), it is

not possible to reach the asymptotic regime in the Kähler plus dilaton sector, and hence

the model cannot be recast within the lines of this section. However, it is interesting

to see that this example lead to a different δ in the GDC, which was 2/3 if one focuses

on the leading KK tower of (4.21).

5.4 The GDC, tensionless membranes and tensionless strings

In this section we explore some possible implications for the breaking of the EFT of

having a membrane that becomes tensionless. In particular, we use the unavoidable

appearance of tensionless axionic strings in the same limit, in the spirit of [22, 23],

to give an upper bound for the mass scale of the leading tower that arises as the

membrane become tensionless. To keep the analysis as general as possible, we will use

the formalism of limiting MHS introduced above, but the reader interested in more

concrete realizations can check how the results in this section reduce to the ones in

section 4.3.4 for type IIA toroidal orientfolds.

First we restrict ourselves to the growth sector defined in (5.8). Within such a

growth sector, the fluxes can be split as Γ =
⊕

r Γr, analogously to the decomposition

of the real cohomology given in eq. (5.9). More precisely, we group the different terms

in this splitting as [22, 30]

Γ = Γlight ⊕ Γheavy ⊕ Γrest. (5.27)

The labels denote the behavior of the Hodge norm of the fluxes within each subspace,

namely the tension of the membranes dual to the fluxes (and their contribution to the

scalar potential) within Γlight tends to zero, the ones associated to fluxes that belong to

Γheavy diverge, and Γrest corresponds to the ones whose behaviour is path-dependent.
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In particular, for a CY threefold we have

Γlight =
⊕
r

Γr, with r = {r1, . . . , rn̂−1 ≤ 0, rn̂ < 0}

Γheavy =
⊕
r

Γr, with r = {r1, . . . , rn̂−1 ≥ 0, rn̂ > 0} .
(5.28)

In the strict asymptotic approximation, the tension of a membrane with charge

qr in a single Γr (i.e. a membrane that interpolates between a fluxless Minkowski

region and one with the fluxes given by qr) takes a particularly simple expression. It

can be computed by using the sl(2)-approximation for the Kähler potential and the

superpotential, which take the form [30]

K ' − log
{

(t1)d1 (t2)d2−d1 . . . (tn̂)dn̂−dn̂−1
}
,

Wqr ' ρr (qr, b)
(
t1
) d1+r1

2
(
t2
) d2−d1+r2−r1

2 . . .
(
tn̂
) dn̂−dn̂−1+rn̂−rn̂−1

2 ,
(5.29)

and substituting into eq. (3.7) yields [22]

Tqr ' T0 ρr
(
qr, b

i
)

(t1)
r1
2 (t2)

r2−r1
2 . . . (tn̂)

rn̂−rn̂−1
2 , (5.30)

where T0 has units of M3
P and it is finite, even though it can depend on the moduli

that are not taken to infinity (if any) and ρr (qr, b
i) = eb

iNiqr depends on the axions

and the fluxes and is also finite.5

On the other hand, there exist BPS strings in 4d N = 1 EFTs which implement

monodromies bj → bj + ej when they are encircled, with ei the charge of the string.

Their tension is given by [22]

Tstring =

∣∣∣∣12ej ∂K∂tj
∣∣∣∣ . (5.31)

Taking the approximation for the Kähler potential given in eq. (5.29) for the strict

asymptotic aproximation, we see that for each field that goes to infinity there is a string

whose leading contribution to the tension takes the form

T jstring '
dj − dj−1

2tj
. (5.32)

Notice that the above expression nicely matches the expressions given in Table 1. Let

us recall that this is in agreement with the idea put forward in [22,23] that any infinite

5In models in which some fluxes are not restricted by a tadpole constraint, there can be an extra

divergence associated to the flux becoming large. However, in all the cases we are interested in, the

leading contribution to the tension of the membranes can be captured by a finite flux number.
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distance is associated with an axionic string becoming tensionless. However, note that

this expression is only valid for the cases in which dj − dj−1 6= 0, signaling that the

process of approximating the periods by means of their nilpotent or sl(2)-orbits, as

required to obtain eq. (5.29), does not generally commute with taking derivatives with

respect to the moduli (see [12,32,69] for more details on this issue). This implies that

the approximation in eq. (5.29) does not always include the necessary information

to calculate these derivatives, and we should first calculate the derivative of the full

Kähler potential and then use the nilpotent or sl(2)-aproximation. However, this is a

rather complicated task in general and we will restrict ourselves to the cases in which

d1 6= 0 (i.e. we approach an infinite distance singularity when t1 → ∞), as this turns

out to be enough for our purposes in this section. Note that this is not a very restrictive

assumption as long as we study infinite distance points, and it is enough to compute

the tension of the leading string tower in the given growth sector.

Let us now use this information to give a lower bound for δ in the GDC. As explained

in section 3.2, the gravitino mass in Planck units, given in eq. (3.3), takes the same

form as the tension of a membrane interpolating between a fluxless Minkowski vacuum

and the flux configuration in which we want to study the gravitino mass, displayed in

eq. (3.7). That is
m3/2

MP

= eK/2|W | = 1

2

Tmem

M3
P

. (5.33)

Therefore, sending the gravitino mass to zero while staying in the growth sector defined

in eq. (5.8) implies that the membrane with charge vector q equal to the fluxes becomes

tensionless. In particular, following (5.27) the charge can be decomposed as q =
∑

r qr

and therefore all the constituent membranes with charges qr, whose tensions are given

by eq. (5.30), would also be tensionless, implying that all these qr ∈ Γlight. We obtain

then, for the leading contribution to the tension given by the heaviest Tqr , the following

expression

m3/2

MP

' Tqr

M3
P

=
T0

M3
P

ρr
(
qr, b

i
) (
t1
) r1

2
(
t2
) r2−r1

2 . . .
(
tn̂
) rn̂−rn̂−1

2 . (5.34)

Our goal now is to obtain a lower bound for the δ in the GDC. First, we define r̂i =

rj − rj−1, with r0 = 0. Second, we recall that in the given growth sector t1 > tj > 1 for

all j > 1, and in order to bound the gravitino mass from below we proceed by following

the subsequent steps (where we have omitted the factors of 1/2 in the exponents in

order not to clutter the notation):

1) For every r̂j ≤ 0,6 we use (tj)r̂j ≥ (t1)r̂j for all j.

6Recall that all rj ≤ 0 but this does not necessarily imply r̂j ≤ 0
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2) For r̂j > 0, if it is followed by r̂j+1 < 0, we have (tj)r̂j(tj+1)r̂j+1 =

=
(

tj

tj+1

)r̂j
(tj+1)rj+1−rj−1 ≥ (tj+1)rj+1−rj−1 , where we have used that

(
tj

tj+1

)r̂j
≥ 1.

Now, if rj+1− rj−1 ≤ 0, we can proceed as in step 1) and utilize (tj+1)rj+1+rj−1 ≥
(t1)rj+1+rj−1 . On the other hand, if rj+1 − rj−1 > 0 we go back again to the

beginning of step 2) if r̂j+2 ≤ 0 or go to step 3 otherwise.

3) If we have r̂j > 0 followed by r̂j+1 > 0, we use that (tj)r̂j(tj+1)r̂j+1 ≥ (tj+1)r̂j+r̂j+1 =

(tj+1)rj+1−rj−1 . If the exponent r̂j+2 ≤ 0 we go to step 2) and if it is r̂j+2 ≥ 0 we

proceed as in step 3) again.

After following these steps systematically for all tj we arrive at

m3/2

MP

≥ Tqr

M3
P

≥ T0 ρr
M3

P

(t1)
rmin

2 (5.35)

where rmin = min(rj). Using eq. (5.32) we can relate t1 to the tension of the cor-

responding BPS string as long as we are studying infinite distance singularities (i.e.

d1 > 0), obtaining (
m3/2

MP

) 1

|rmin|
&

(T 1
string)1/2

MP

' mtower

MP

, (5.36)

where & means that we are neglecting finite factors like T0, ρr or d1, which are positive

but not relevant for the asymptotic behavior, and we have used that the mass of

the states associated to the string tower scales as m2
tower ' Tstring. We can therefore

give a lower bound for the δ in the GDC because there is always a tower of states

associated to a BPS string becoming tensionless whose mass is ligther or equal than

mδcrit
3/2 . Consequently, we obtain that for the GDC δ ≥ δcrit = 1

|rmin| . For a CY threefold,

the minimum value for rmin = −3 and it can only be obtained if the enhancement chain

reaches a type IV singularity, whereas the minimum value for a CY fourfold may be

obtained at a type V singularity and is rmin = −4. Thus, we can give the following

lower bounds for the parameter in the GDC

δ ≥ 1

3
for CY threefolds,

δ ≥ 1

4
for CY fourfolds.

(5.37)

Strictly speaking, when applied to type II theories compactified on CY threefolds,

this analysis only captures the complex structure sector of type IIB and (by mirror

symmetry) the Kähler sector of type IIA. However, as seen in previous sections, for the

type IIA setup it is not possible to stay within the regime when we approach the Large

Volume Point if this is not accompanied by an infinite displacement in the complex
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structure sector. One can try to accommodate this by relaxing the form of the Kähler

potential in eq. (5.29) and using the monodromy generators associated to the complex

structure sector of type IIA, as defined in [19, 47]. We will see momentarily that this

allows us to recover the results from previous sections as well as to recover the adequate

F-theory results in the right approximation. First, following [22], we allow for the the

Kähler potential to be expressed as

K ' − log
{

(t1)n1 (t2)n2−n1 . . . (tn̂)nn̂−nn̂−1
}
, (5.38)

with nj not necessarily equal to the dj defined by the action of the asociated monodromy

generator on the period vector, as in eq. (5.6).7 Thus eqs. (5.30) and (5.34) take the

same form with the replacement rj → r′j = rj + (dj − nj). For type IIA orientifolds,

the no-scale condition for the complex structure moduli space yields a maximum value

for nj = 4. Furthermore, we also have dj = 1 because the associated log-monodromy

matrix has nilpotency order equal to 1 (see [19, 47] for the concrete expressions). The

question now is whether this may give a different value for δcrit. From the (dj − nj)
part, the minimum value that can be obtained is 3. Moreover, if we consider a qr that

does not include NS-NS flux (i.e. rj = −1, as can be seen from the superpotential in

eq. (5.29)) we obtain a δcrit = 1/4. Note, however, that this does not mean that we

have an example which saturates this bound. In fact, we recover the value δcrit = 1/3

as soon as we consider the presence of NS-NS fluxes (which are typically necessary

for cancelling the tadpole sourced by the orientifold), as their contribution to the

superpotential (linear on the corresponding complex structure moduli) corresponds to

the value rj = +1, yielding r′j = −2, which would not modify the argument below

(5.36).

Moreover, the bound δcrit = 1/4 can be interpreted in a more natural way as the

lower bound that one would obtain from an F-theory compactification on a CY fourfold,

as the complex structure deformations on such a setup capture the behaviour of the

dilaton in the dual type IIA compactifications, which belongs to the complex structure

moduli space in this case and in turn captures its behaviour in the limit s ∼ ui.

Finally, it is remarkable that the lower bound δ ≥ 1/3 for CY threefolds, also found

in section 4.3 from different arguments, matches the lower bound for the parameter

α ≥
√

1/6 in the SDC found in [11–13] as explained in section 4.3.3.

7This is the case when the Kähler potential cannot be written directly as K = − log
(
ΠIηIJ Π̄J

)
.
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5.5 Revisiting the relation between the GDC and the SDC

Recall that in section 4.3.3 a relation between the GDC and the SDC was pointed out,

at least for a class of Minkowski no-scale vacua, where some of the moduli remained

undetermined and hence there was still some freedom to move within the unfixed field

space. There it was shown that if we chose to move along those directions where the

gravitino was rendered asymptotically massless, one could relate the relevant expo-

nents in both conjectures to each other, by identifying the tower of light states whose

appearance signals the breakdown of the EFT. Indeed, by particularizing to the type II

examples analyzed in section 4.1, we obtained a relation of the form α =
√

3
2
δ , which

was shown to reproduce the known bounds in the α parameter of the SDC existing

in the literature [11–13]. Henceforth our goal will be to generalize this discussion by

using the tools of Asymptotic Hodge Theory introduced in this section.

To begin with, recall that the general relation between the α parameter in the SDC

and the δ in the GDC is given in eq. (4.41), that we recall here for definiteness

α

δ
= − log(m3/2)

d
. (5.39)

First, let us try to calculate the geodesic distance d. Consider the sl(2)-orbit approx-

imation of the Kähler potential (5.29), which extracts the leading dependence on the

moduli that diverge (after restricting to a specific growth sector of the form (5.8))

yielding the following expression in terms of the complex moduli T i:8

Kcs ' −log
(
(T 1 + T̄ 1)d1(T 2 + T̄ 2)d2−d1 ...

)
, (5.40)

where di was defined in (5.6) and indicates as well the singularity type in each step of

the enhancement chain (see discussion around (5.7)).9 Note that this implies that the

Kähler metric in the subsector of the divergent moduli is that of a direct product of

hyperbolic planes10 [70], i.e.

KT iT̄ i =
di − di−1

4(ti)2
and KT iT̄ j = 0 for i 6= j. (5.41)

8In this section will keep the notation used in section 5.1 above denoting the divergent moduli in

general as T i. To make contact with the results in section 4.3.3, recall that the divergent moduli there

are the complex structure moduli denoted U i.
9To allow for more general Kähler potentials one could make the replacement di → ni as explained

around eq. (5.38)
10Note that this expression is only valid whenever di − di−1 6= 0. If this is not the case, one could

first take the derivatives and then use the approximation given by the sl(2)-orbit, but this is extremely

more involved and beyond the scope of this work, so we limit our discussion here to the cases in which

di−1 6= 0 (see [12,31,69]).
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By solving the geodesic equation in such limit one can see that the unique geodesic

curves that asymptote to ti = Re T i → ∞ are those for which Im T i = const, and

the saxion grows as ti ∼ τ 1/2, where τ denotes the affine parameter describing the

trajectory. Thus, restricting to the one modulus case (T i = T ), we see that the

geodesic distance grows asymptotically along such paths as d '
√
d1/2 log(t). Hence,

since our large volume and weak coupling limit corresponds to a singularity type IV in

CY3 [8], meaning d1 = 3, we recover the result derived in (4.42).

Once one takes one step further and study higher dimensional limits in moduli space

one encounters an apparent inconsistency, since the geodesic equation (which decouples

for each hyperbolic plane) forces all the saxions to diverge at the same rate with respect

to the affine parameter τ . This is dangerous, as it could force us to go away from the

assumed growth sector (whichever ordering we chose to approach the boundary), thus

invalidating the arguments in the first place. However, there is a way out, since the

geodesic equation implies that for each saxionic moduli we have ti = λi τ
1/2, with λi an

a priori different constant for each one of them. Hence, even though all of the moduli

have the same parametric dependence, we can still satisfy ti/ti+1 >> γ if we choose

λi/λi+1 � γ, for any γ in (5.8) that we desire. Carrying over the same procedure as

in the one modulus case, one can find an analogous formula for the geodesic distance

d '
√
dn̂
2

log(tj) , (5.42)

where one can choose tj above as any of the divergent saxions. Notice that this makes

sence since the multiplicative factor inside the log (i.e. λj) drops out when considering

the distance traversed between two points. Moreover, the prefactor in the distance

depends on the final type of singularity. Thus, it can be seen as a natural generalization

of the above relation.

Given the general expression for the distance, let us now turn to the computation

of the log(m3/2). First of all, note that as a consequence of the logarithm, any constant

prefactor appearing in the gravitino mass, as well as subleading additive contributions,

can be neglected in the infinite distance limit so we only need to keep track of the de-

pendence on the divergent moduli. Therefore, by plugging the solution to the geodesic

equation, namely tj/tj+1 = λj/λj+1, into eq. (5.33) and expressing everything in terms

of any of the tj we obtain

− log(m3/2) ' |rn̂|
2

log(tj) , (5.43)

where one can ignore subleading contributions coming from the prefactors inside the

log. Thus, the relation between the parameters in the SDC and the GDC for Minkowski
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vacua can be expressed as

α =
|rn̂|√
2 dn̂

δ . (5.44)

Notice that for a CY threefold, the largest coefficient is obtained at a type IV singularity

and its value is
√

3/2. Additionally, this formula is reminiscent of eq. (4.33) in [11].

In the setup of section 4.3.3, one neds to make the appropriate replacements in the

general formula in order to describe the part of field space that is divergent, namely the

complex structure moduli in IIA. These replacements, already introduced throughout

the section, are dn̂ → nn̂ and rn̂ → r′n̂ = rn̂+(dn̂−nn̂), and the values, which can be read

from the corresponding Kähler potential and superpotential are found to be nn̂ = 3,

rn̂ = −1, dn̂ = 1 and nn̂ = 3, so that one recovers the previous result α = δ
√

3/2.

6 Phenomenological implications

The value of the gravitino mass is an important phenomenological parameter both

in particle physics and cosmology. In Minkowski vacua the gravitino mass is a direct

measure of the scale of supersymmetry breaking. But also for large moduli the gravitino

mass gives the size of supersymmetry breaking in runaway dS and AdS minima. In

supersymmetric theories of particle physics the gravitino mass will typically give us the

scale of the mass of the supersymmetric partners of the SM. If the gravitino distance

conjecture introduced in this paper is true, an important message is that one cannot

arbitrarily decouple the gravitino mass from the UV scales. One rather has

m3/2 '
M

1/δ
KK

M
(1−δ)/δ
P

, δ < 1 . (6.1)

For δ = 1 there is no decoupling and the gravitino mass would be of order the KK

scale. The maximal scale separation is reached for the smallest possible δ. We have

seen in the previos sections that in general the minimal δ is δ = 1/3, although in the

specific examples analyzed only δ = 2/3 for the lightest tower is reached. Thus e.g. for

such a value one would have the maximum separation at

m2
3/2 '

M3
KK

MP

. (6.2)

The implications for particle physics depend on the actual value of m3/2. A couple of

phenomenologically interesting values for the gravitino mass are

1) m3/2 ∼ 10 TeV. This is the popular case in low-energy MSSM supergavity

models, in which the gravitino mass is tied to the electro-weak scale. Then
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eq.(6.1) imply un upper limit

MKK . 109 − 1013 GeV (6.3)

for δ = 2/3 − 1/3. Thus the big dessert scenario with no new physics beyond

the MSSM up to a scale MX ∼ 1016 GeV would not be consistent with the GDC.

2) m3/2 ∼ 1010−12 GeV. This is the intermediate scale scenario in which the non-

supersymmetric SM is valid up to an intermediate scale 1010−12 GeV [71, 72]. It

is well known that above those energies the SM scalar potential with a Higgs

mass mH = 125 GeV becomes unbounded below. The virtue of having m3/2 at

this intermediate scale is that then supersymmetry is restored and the potential

becomes stable and positive. In this case the UV scales may be a bit larger with

MKK . 1014 − 1015 GeV (6.4)

for δ = 2/3 − 1/3.

It is interesting to note that a gravitino mass lower bound in terms of membrane

tensions was already remarked in section 5 of ref. [73]. There the necessity of a lower

UV scale in order to obey the WGC as applied to membranes was pointed out.

From the point of view of cosmology, the difficulties to acommodate inflation in

a way consistent with the dS swampland conjecture ar well known. From the GDC

here studied and obvious condition is that the Hubble constant upon inflation must be

H .MKK , for an effective field theory description to make sense. Tus one can write

H . mδ
3/2 M

(1−δ)
P . (6.5)

For the range of gravitino values mentioned above one thus generically expects neg-

ligible tensor perturbations in the cosmic background. Recently it has been pointed

out that one should impose as a Swampland condition that the cosmological gravitino

sound speed should be non-vanishing [74,75]. It would be interesting to study whether

this condition and our GDC are consistent.

It would be interesting to study whether the gravitino distance conjecture is con-

sistent with well known scenarios to fix all moduli in dS in type IIB string theory like

KKLT [76] or the LVS [77]. Since both scenarios start with AdS vacua a first ques-

tion is whether they are consistent with the AdS distance conjecture. In ref. [78] it

is claimed that the AdS step of KKLT is consistent with the AdS conjecture under

certain circumstances. In particular, if the KKLT requirement |W0| � 1 is obtained
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via a strongly warped throat close to a conifold point (this is the throat where the D3’s

are located), then it is claimed that there is a KK tower asociated to this singularity

and that its scale is

M2
KK '

1

log2(−Λ)
|Λ|1/3 , (6.6)

so that the AdS conjecture is respected. Since this is an AdS N = 1 vacuum, this

would be consistent with the GDC with δ = 1/3.

7 Final comments and conclusions

Many tests in the Swampland program are performed by studying the structure of

specific string vacua in some large moduli direction. That is the case particularly

of the SDC and the AdS Distance Conjecture. In this paper we have emphasized

that there is a particularly relevant limit which involves a physical particle rather

than a random field direction. This is the limit in which the gravitino mass goes to

zero, m3/2 → 0. This limit selects particular field directions and makes contact with

both the SDC and the AdS distance conjecture. We propose a Gravitino Distance

Conjecture which states that in that limit, towers of massless particles appear with

masses controlled by gravitino mass as Mtower ∼ mδ
3/2 in Planck units, with δ a positive

constant. The lowest lying tower is a KK tower with subleading towers coming from

tensionless strings. There is also a direct connection between a vanishing gravitino mass

and towers of membranes becoming tensionless. Their corresponding gauge couplings

to 3-forms goes to zero as m3/2 → 0, which would violate WGC conjecture arguments,

and hence gives support to the singular character of that limit.

We have presented evidence for this conjecture within the context of type IIA CY

orientifold vacua, both by studying specific classes of type IIA toroidal models as well

as considering general properties within CY and F-theory settings, using the MHS

formalism. The exponent δ is bounded as 1/3 < δ < 1 for CY orientifolds (although

δ ≥ 2/3 is realized in toroidal examples) and 1/4 < δ < 1 in F-theory settings.

The GDC here proposed implies the AdS Distance Conjecture and the exponents for

the latter are simply given by δ/2. The value of δ is also directly connected to the

corresponding exponent α in the SDC, and it is shown that α =
√

3
2
δ in toroidal

orientifolds and 2-moduli F-theory settings.

The m3/2 → 0 limit considered by the GDC is also relevant from the phenomenolog-

ical point of view. In general, m3/2 sets the scale of supersymmetry breaking (except for

supersymmetric AdS, which is not phenomenologically relevant). If one wants to have

50



a low gravitino mass in order to address the hierarchy problem (m3/2 ∼ 10 TeV) or to

guarantee the stability of the Higgs potential in the Standard Model (m3/2 . 1010 GeV),

the GDC tell us that this comes along with a relatively low KK scale MKK ∼ 109−1014

GeV. This implies that the traditional desert scenario with a gauge coupling unification

at ∼ 1016 GeV would not be viable. This lowering of the UV scale also puts limits on

a possible inflationary potential, which should have H . mδ
3/2M

(1−δ)
P GeV.

There remain many open questions to analyse. In particular, all examples provided

are classical type II vacua. This is also the case of the specific tests provided in the

literature for the SDC, the AdS distance conjecture and even the WGC. However the

distinction between classical and quantum vacua in string theory is not clear, and it

is difficult to believe that all these constraints are only valid for classical vacua. Still

it would be important to extend the checks to larger classes of string vacua. It would

also be important to check whether the GDC is consistent with specific scenarios for

full moduli stabilisation in dS vacua such as the KKLT or LVS schemes.
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