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Radiation-reaction force and multipolar waveforms for eccentric,
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While most binary inspirals are expected to have circularized before they enter the LIGO/Virgo
frequency band, a small fraction of those binaries could have non-negligible orbital eccentricity depending
on their formation channel. Hence, it is important to accurately model eccentricity effects in waveform
models used to detect those binaries, infer their properties, and shed light on their astrophysical
environment. We develop a multipolar effective-one-body (EOB) eccentric waveform model for compact
binaries whose components have spins aligned or antialigned with the orbital angular momentum.
The waveform model contains eccentricity effects in the radiation-reaction force and gravitational modes
through second post-Newtonian (PN) order, including tail effects, and spin-orbit and spin-spin couplings.
We recast the PN-expanded, eccentric radiation-reaction force and modes in factorized form so that the
newly derived terms can be directly included in the state-of-the-art, quasi-circular—orbit EOB model
currently used in LIGO/Virgo analyses (i.e., the SEOBNRv4HM model).
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I. INTRODUCTION

The observation of gravitational waves (GWs) by the
LIGO-Virgo detectors [1,2] have corroborated the existence
of binary black holes (BBHs) in our universe. But how and
in which astrophysical environments these binaries form
are not yet fully understood. However, the masses, spins
(magnitude and orientation), and binary eccentricities
inferred from GWs provide invaluable clues to determine
BBH formation channels [3,4]. So far, the observed GWs
are consistent with binary coalescences of negligible
eccentricity, i.e., on quasicircular orbits [5-8].

In general, binaries are expected to circularize [9,10] as
they approach merger due to the emission of gravitational
radiation. But depending on their astrophysical formation
channel, a small fraction of binaries could have non-
negligible orbital eccentricity, as they enter the frequency
bands of current detectors. This can occur in dense stellar
environments, such as globular clusters or galactic nuclei,
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where dynamic capture [11-16] or the Lidov-Kozai mecha-
nism in hierarchical triples [17-19] can lead to eccentric
binary inspirals at close separations.

In particular, Ref. [13] (and Ref. [14]) showed that ~5%
(or ~10%) of all mergers in globular clusters enter the
LIGO band with eccentricity e > 0.1. Binaries formed via
dynamic capture in galactic nuclei are expected to have
high eccentricities [16], with 92% having ¢ > 0.1 and
50%—-85% having e > 0.8 at 10 Hz. For a BBH around a
supermassive BH, the Lidov-Kozai mechanism can secu-
larly drive the BBH to eccentricities near unity for some
orientations [19]. Hence, inferring those eccentricities from
GWs is important for understanding the origin and envi-
ronment of BBHs. Interestingly, Ref. [8] pointed out that
GW190521 [20] could be consistent with either an eccen-
tric nonprecessing or a quasicircular precessing binary,
which illustrates both the difficulties and the prospects of
further observations in the upcoming and future LIGO,
Virgo, and KAGRA runs [21].

While the expected fraction of eccentric GW observa-
tions with current detectors is small, neglecting eccentricity
for the parameter inference can cause significant bias [22].
This becomes more relevant for LISA where a large fraction
of stellar-mass binaries is expected to be eccentric [23-27].
Hence, it is important to develop accurate waveform
models for eccentric binaries to detect them, infer their
properties, and shed light on their astrophysical environ-
ment and formation channels. Several studies developed
post-Newtonian (PN) waveform models for eccentric
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orbits, such as Refs. [28-38], or hybrid models that use
PN results for the inspiral and quasicircular numerical-
relativity (NR) simulations near merger [39-41]. Recently,
NR simulations for eccentric binaries were reported in
Refs. [41-43], and the first NR surrogate model for
eccentric BBHs has been developed in Ref. [44].

The effective-one-body (EOB) formalism [45-47]
improves inspiral-merger-ringdown waveforms by combin-
ing information from PN theory, NR simulations, and the
strong-field test-body limit. EOB Hamiltonians have been
constructed to include spin [48-56], tidal effects [57-60],
information from the small mass-ratio [61-65] and the
post-Minkowskian approximations [66—68], and have been
refined and calibrated to NR simulations [69-77]. While
the EOB Hamiltonian is valid for generic orbits, most EOB
waveform models use quasicircular orbit results for the
radiation-reaction (RR) force, gravitational waveform
modes, and the calibration with NR simulations.

Recent approaches to extend the EOB formalism to
eccentric orbits include Ref. [78], which derived the RR
force with eccentricity up to 2PN order, but without tail
effects and for nonspinning BHs. More recently, Ref. [79]
incorporated eccentricity effects in the RR force and in the
(2,2) waveform mode through 1.5PN order, including tail
effects, using the Keplerian parametrization and phase
variables that evolve only due to RR. References [80,81]
extended the quasicircular SEOBNRv1 [72] model to
eccentric orbits, while Ref. [82] added eccentric corrections
in the SEOBNRv4 [74,83] waveform model, notably in the
(2,2),(2,1),(3,3),(4,4) modes through 2PN order, including
spin-orbit (SO) and spin-spin (SS) couplings,' but not tail
effects. They employed these eccentric modes to construct
a RR force for eccentric orbits, which, however, does not
include the Schott terms. As argued in Ref. [78] and Sec. II
below, these Schott terms are necessary for generic
orbits to satisfy the flux-balance equations. Furthermore,
Refs. [84,85] incorporated noncircular effects in the
TEOBResumS_SM [76,86] model at leading PN order in
the azimuthal component of the RR force and used a
quasicircular 2PN-expanded radial RR force without spin
or tail effects. They included eccentric corrections at
leading PN order to all modes m # 0 up to £ = |m| = 5.

In this paper, we develop a multipolar EOB waveform
model for eccentric binaries with the compact-objects’
spins aligned or antialigned (henceforth, for short aligned)
with the orbital angular momentum. We derive the eccen-
tric PN expressions for the RR force (including the Schott
terms) and the gravitational modes up to ¢ = |m| =6,
including the m = 0 mode, through 2PN order, including
tail effects, and SO and SS couplings. We recast our results
for the RR force and modes in a form that can be directly

'Our results for those modes are mostly in agreement with
Ref. [82] except for the SO part, where we disagree with their
findings (their expressions contain two extra SO terms).

incorporated in the state-of-the-art, quasi-circular—orbit
EOB model currently used in LIGO/Virgo analyses
(SEOBNRV4HM [74,83]).

The paper is structured as follows. In Sec. II, we derive the
RR force from the energy and angular momentum fluxes
using the balance relations. We use the gauge freedom in the
RR force to impose that it reduces to the relation used in
SEOBNRvV4HM in the quasi-circular—orbit limit. In Sec. III,
we obtain initial conditions for eccentric orbits. In Sec. IV, we
calculate all the gravitational waveform modes that contrib-
ute up to 2PN order relative to the leading order (LO) of the
(2,2) mode, i.e., up to the £ = |m| = 6 mode. These higher-
order modes are even more important for eccentric orbits
than for quasicircular ones [87]. We conclude in Sec. V witha
discussion of results and potential future work. Finally,
Appendix A provides the coordinate transformation from
harmonic to EOB coordinates, Appendix B includes a
derivation of the LO spin-squared contribution to the angular
momentum flux, Appendix C lists the spin contributions to
the waveform modes in harmonic coordinates, Appendix D
provides some relations for dynamic quantities in the
Keplerian parametrization, and Appendix E includes the
transformation to tortoise coordinates. We provide our
results for the RR force and waveform modes as
Mathematica files in the Supplemental Material [88].

A. Notation

We use the metric signature (—, +, +, +), and use units
in which ¢=G =1, but write ¢ explicitly in PN
expansions.

We consider an aligned-spin binary with masses m; and
m,, with m; > m,, and we define the following constants:

mymy H
M: s =, = —,
my + m, Y2 v
1L~ My m my
s="1"" =1 ==
M ' M T M (1)

In the binary’s center of mass, we introduce the canonical
phase-space variables (R, ¢, Pg,Py), where R is the
separation, ¢ the azimuthal angle, Py the radial momen-
tum, and P, the angular momentum. The total relative
momentum P is given by P> = P} + P5/R> We use the
rescaled dimensionless variables

R T 3 P,
r—=—, - — ==, - )

M M Ty Po= My
~ H N S. .
A==, §=-", =, 2

where the dimensionless quantities are denoted with either
a hat or a lowercase letter.

The energy and angular momentum fluxes far away from
the binary are denoted by @ and ®,, respectively, and
scale as follows:
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o)
®J:C5ﬁj, (3)

®E = chd)E,
where quantities with a tilde are the physical dimensionful
fluxes. The components of the RR force are denoted
by F, and F,, and are scaled similarly to ®; and @,,

respectively.

II. RADIATION REACTION FORCE

The RR force accounts for the energy and angular
momentum losses by the system, and is added to the
right-hand side of the Hamilton equations of motion
(EOMs) such that

A N

. OH . OH

r_apr7 pr__ar+fr,

. OH OH

=, Dy = ——+ Fy, 4
Ty Py op T (4)

where the leading order of F, 4 is of order 1/ ¢ (2.5 PN).
From the EOMs, with OH/0¢ = 0, the time derivatives of
energy and angular momentum are given by

. :
system :E: rfr+¢~7:(/)a
. dp
szstem:d—t(ﬁ:]:(p- (5)

The energy and angular momentum lost by the system are
not equal to the energy and angular momentum fluxes, ®g
and ®@;, because of additional contributions to E and J
due to interactions with the radiation field. The balance
equations are modified by Schott terms, as in electrody-
namics, that appear as total time derivatives in the balance
equations [78]

Esystem + ESchott + q)E =0,
szstem + JSchott + @, =0. (6)

Substituting the expressions for the energy and angular
momentum losses, we obtain

rF, +¢~7‘—{/} + Esehor + P =0,
Fp+ Jschon + @y = 0. (7)

The energy and angular momentum fluxes are gauge
independent, but the RR force and Schott terms are gauge
dependent. This coordinate gauge freedom in the RR force
was discussed by Iyer and Will in Refs. [89,90], and by
Gopakumar et al. in Ref. [91]. Bini and Damour showed in
Ref. [78] how the gauge freedom in F is related to the
freedom in defining the Schott terms.

Note that while we only consider aligned spins in this
paper, an extension to precessing spins is straightforward;
the RR force F is added to the EOM for the total
momentum p, and a RR contribution is added to the spin
evolution equations, such that

dr OH dp OH
a-op d ot

The balance equations are then given by

Esystem + ESchott + q)E =0,

szstem +chhott + (I)J =0, (9)
with

Esystem =r-F,

szstern =rX ~7:.+SIFR+S2RR (10)

See, e.g., Refs. [92,93] for more details.

A. Summary of the approach used in this paper
for the RR force

The aim of this paper is to extend the quasicircular
RR force and gravitational modes employed in the
SEOBNRvV4HM waveform model to eccentric orbits.
The Hamilton equations that describe the dynamics of
the SEOBNRv4HM model use the following relations
between the RR force and the energy flux for quasicircular
orbits, which are based on results from Refs. [46,94]:

o _OF
Q 9,
. . oS
f"‘:fﬁ’;&:—;p’, (11)
Py Py

with Q being the (angular) orbital frequency. However,
these two relations are only valid for quasicircular orbits
and are not consistent for generic orbits, since they use the
circular-orbit relation @} = Q®% and do not include the
Schott terms.

Hence, the approach we use to obtain the RR force is to
write a generic ansatz with unknown coefficients for the
Schott terms, and calculate the RR force from the fluxes
using the balance equations

Fp==Ps = Jsehouw
i’f.r = _(I)E + ¢¢J - ESchott + ¢JSch0tt' (12)
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Then, we specify the free unknown coefficients in the
Schott terms such that the force reduces to the conditions in
Eq. (11) in the limit of quasicircular orbits, i.e.,

Fyp=-@;+0(p,) + O(p).

F rP 17/
= =1+0(p7). (13)

F ¢p r '
since both p, and p, are zero for circular orbits. Finally, we
factorize the RR force into the quasicircular part used in
SEOBNRvV4HM times eccentric corrections

F, = FrFee, Fy :]:3,0 s (14)
where the quasicircular parts are given by Eq. (11), and the
eccentric corrections scale as F™ ~ 1+ p, + p?+---. In

the following subsections, we provide the details of
these steps.

B. EOB Hamiltonian and angular momentum

The EOB Hamiltonian is calculated from an effective
Hamiltonian H . via the energy map

H
Hrop :M\/1+2u<—eff—1>, (15)
U

with H; given in Refs. [50,51,56]. When calculating the
RR force to 2PN, we only need to work with the PN
expansion of the EOB Hamiltonian. The nonspinning part
to 2PN order is given by

A p 1 1 [w=1Dp> 1+v p?
1 Y a_Pr
EOB 1/+2 { 2r 8 P r
l—f—z/ 1 1+1/+y o (1 +2v)p?
ta -
( +1/—3u )p2 +u—3z/)
(l—i—v)pp, 1 —v+1?
— , 16
* 2r 2r3 (16)

the LO (1.5PN) spin-orbit part
A5, = 2 3 3&1(24‘25—’/)#”(2(2 26 —v)], (17)
and the LO (2PN) spin-spin part
1 P
Ay = 33 {)(% [Xélt (1 - + ”P%) - CIESZX%]
2
+15 [XE‘(] —7¢+ ”P%) - C2ESZX%]
22
+ 2010 [(v— I)V—T"'ﬂwzrp%] } (18)

where C;is2 are the spin quadrupole constants, which equal
one for BHs.
The orbital frequency expanded to 2PN is given by

o aI:\IEOB p¢ p¢ v—1 (l/ + l)pZ 1
Q: = ap(/} :? ? r3 - 2r2 3r3b{l(2+26—1/)+)(1(2—25—1/)]
+p¢ 3 +v+1)pt N (=32 +v+1)p> w+1)p? -3*+v+1
c4 8r2 23 P 27
(2v x0T X1+ aXs). (19)
From the EOM p, = —0H /9r, we can obtain an expression for Py(r Drs D),
Py 1
=1 Pt 64 (0 DY = (= 5)7 o (v D), +4)]
3Vrp,+r
—24”W2+25—u) (225 0)]
+ gt S + 50+ 10)rfp) — (P —v+ 1) plp, +2(50 + 8)r* pi — (V¥ + Tv — 63)r* p,
ctr?
—24( —3) +2(8 =24v + 3ur p2)rp2 +2(* + v+ 3)p2rip,]
2 5042 {x1B3C g2 X3 + X1 (1 4+ 412 p, — 2rp?)] + 43B3Cops X3 + X3(1 4+ 412 p, — 2rp?)]
+ 2w +4vrtp, + 3) = durprl}, (20)
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which we use to express the noncircular part of the RR
force and modes in terms of p, and p,. It will also be
useful below, when taking the circular-orbit limit, to
have an expression for p, as a function of r for circular
orbits. Setting p, =0 = p, in the previous equation
yields

2
P circ 3 3(3 _1/)
R T S
r +02r+ c*r?
3
=530 (=26 +v—=2)+ (26 +v—2)]

1
+ Y 1(3C g2 XT + X1) + 2up102(3 +v)
+ 73(3Cops2 X5 + X3)). (21)

C. Energy and angular momentum fluxes

The energy and angular momentum fluxes for non-
spinning binaries were derived to 3PN order in harmonic
and Arnowitt-Deser-Misner (ADM) coordinates in
Refs. [95-97]. The 2PN instantaneous part of the fluxes
for nonspinning bodies is given in EOB coordinates in
Appendix A of Ref. [78]. The leading order reads

812

A 1
ot = = (12p2 — 11p2) + O = |,
2

4 8v 2 1

The hereditary contributions to the fluxes can be
expressed as an infinite sum over Bessel functions
[79,96] that can be evaluated numerically or resummed
analytically [31,98]. Here, we follow the method from
Ref. [79] to obtain the LO tail part (1.5 PN) of the orbit-
averaged fluxes in an eccentricity expansion, and we extend
their derivation to O(e®), which yields”

“Calculating the tail contribution to the fluxes is similar to that
for the waveform modes (see Sec. IV B) except for using the
integrals [99]

. 4 3 o 5 T
<D‘E£“1:§Igj)A dﬂ,?j)(r—f)ln(z),

ai 4 2) [ 5 T
@3‘1:562,‘,‘[151)/0 dﬂ;z)(l‘_f)m(B)

+14 A Z delP(t - 7)In (%)} , (23)

where [;; is the mass quadrupole moment and b = 2rpe” /12

with r, a gauge parameter.

O 128m2 2335 . 42955
q)tall _ 13/2 1 2 4
(@£ O [+1926 768 ¢
6204647 .
?@§*+O“ﬁ
. 128712 209 2415 730751
q)tall — 5 1 =2 4 6
(@) =55 x{ T3 T TR ¢
+(9(e8)], (24)

where x = Q?/3. The eccentricity e in these equations is
defined using the Keplerian parametrization, which is
given by

1
S S 25
: u,(1+ecosy) (25)

where u, is the inverse semilatus rectum and y is the
relativistic anomaly.

Since we are not using the adiabatic approximation and
are not working with orbit-averaged fluxes, we can obtain
an approximate expression for the tail contribution to the
fluxes by writing an ansatz in terms of (r, p,., p,) in a p,
expansion of the form

o 128mp, [ 1 2 ;
- ¢ Pr Pr 6 8
o =S [pra il ret +ou .
128mA 1 pr o ph
1 r r 6 8
q)tjm W{7+C47+057+C6pr+0(pr) ’ (26)

calculate the average of that ansatz in terms of (e, x) (see
Appendix D), and then match it to the average flux in
Eq. (24) to determine the unknowns c,,. This yields

o 128mtpy [1 415p2  Spt 73p°
Plail — P | L r ro r O(pt ,
E T 504 [r3 967 T 288 11520 T O
128 1 49p2 49p°
(I)taul — 21 - ro_ r 1) 8 . 27
4 5¢3r? w [r3 1672 5760+ (p7) (27)

The LO (1.5PN) SO fluxes for generic orbits and generic
spins were derived in Refs. [92,100]. (The next-to-leading-
order (NLO) SO energy flux was derived in Ref. [101].) It
should be noted that Ref. [100] used the Tulczyjew-Dixon
(covariant) spin supplementary condition (SSC) [102-105],
while Ref. [92] used the Newton-Wigner (NW), or canoni-
cal, SSC [106,107]. In this paper, we use the NW SSC since
we are working in a canonical Hamiltonian formulation of
the spinning two-body dynamics [108,109]. Changing the
velocities in Eq. (17) of Ref. [92] to momenta, which
involves spin-orbit terms, the aligned-spin fluxes reduce to
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42py 4(94+95—4v)
+9p%(3 +35—2v)] +1 <—>2},
412 9496 —4v
50 = 53 { { 4(8v—95-9) +—
+(9+95—24v)p?p? — (17—0—176—1—61/)—
,

re
+15upt + (11 + 115+ 10v) }+1<—>2} (28)

For the LO (2PN) SS contributions, the LO spin;-spin,
energy and angular momentum fluxes in harmonic coor-
dinates were derived in Refs. [93,100], while the spin-
squared energy flux was derived in Refs. [110,111], and we
obtain in Appendix B the spin-squared angular momentum
flux. Transforming from harmonic to EOB coordinates,
using the transformations in Appendix A, we get the
following SS contributions to the fluxes for aligned spins:

O = 2 (A{Cue (6~ 20+ 1) (144" — 15672)
+3(9618 — 476 — 961* + 190y — 47) p?
+ (14968 — 280w + 2800* — 578v + 149) p?]
+ vy 1r2[10(28v — 33) p2 — 6(48v — 47) p?]
+ 1« 2},

l/2p{/)
5¢4
(5= 260+ 202 — du + 1)(22p2

1
O = {;{% {(321/5 — 156 —320% + 62v — 15)
r
—20p?)
5 , 24
+C1E52(5—21/+1) 12p —30pr+7

[2(23 —16v)

Al Z4v % - 8(50-3)p*

+4(11y —15)p ]+1 <—>2} (29)

The total 2PN energy and angular momentum fluxes are
the sum of all the above contributions, i.e.,

Oy = Ot + Ol 4 OO + O3S,
QJ — q)i]nst + (I)tjajl + @?O + @?S (30)

D. Ansatz for the Schott terms

As an ansatz for the Schott terms Eggo and Jgenor, W€
consider

IJ PrP 1 ay
J‘S“Csﬁon 7r; ¢ [al + P (azp% +o3p? + —)
2

1
+?<a5p‘,‘+a6p +a7 +agp +a9p—

a0
+_ )
)

2
[ﬂlpr+ﬁzp +ﬂ +—= <ﬁ4pr+ﬂsp

Emst — vp

Schott —

+ﬁ6—+ﬂ7P +ﬁ8— %)

1 p4
+? <ﬂ10p9 + 1 p*p; +ﬂ127r + B13p* p;

P’p;

p; p*
r
+Pa +ﬂ157+ﬂlﬁp6+ﬁl77

+Bis 2+ﬂ'9>} (31)

Note that this ansatz for Eqg 1s more general than the one
used in Eq. (4.4) of Ref. [78], since we found that such an
ansatz is needed for the RR force to satisfy the conditions
in Eq. (11).

For the LO tail, we use the ansatz

; av? avp, A
JtSacLott C . (ﬂ“lpr + /12P + >

i m? PoDPr A
EtSchmt T’ﬁ (’1417% + /15P2 + 76> s (32)

while for the LO SO part,

JSO Vp, 2 2, 03
Schott — 6‘31"2 X1 Glpr+62p +7

o
+12 (0417% + osp* + 76)] )

ESO

Schott

v pPrP O9
7r¢ {)(1 (0717% + ogp* + 7)

(o3
+)(2<010P%+0'11P2+’1,2>} (33)

and for the SS part,
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v p( Pr
J$hott = /) (¢ + Cresela)

+)(1)(2(:3 + 13(84 + Cops2ls)].
Vp, ¢
Eg(sthott = 4 A |:)(1 (§6Pr +C7p + 8)
Cn
+x1Cigs2 | Cop? + C1op? +—
Cl4
+ x| Cpt + Cip* +
2 417
+Zz(flspr+§1ep + )

+ 13 Cogs2 (é'lspr +C1op? +£2O>}- (34)

The total energy and angular momentum Schott terms
are the sum of the above contributions, i.e.,

t tail SO SS
Tschott = Jehor + JSehor + I 3chott T JSehor
t tail SO SS
Eschon = ESncghott + ESaéhott + ESchott + ESchott' (35 )
Note that when taking the time derivative of these Schott

terms using the EOMs, the LO nonspinning part contributes
to the LO SO and SS parts of the RR force.

E. Solving for the eccentric-orbits RR force

Using the fluxes and the Schott terms, the RR force can
be calculated from the balance equations (12), which fix
some of the unknowns in the ansatz for the Schott terms.
The remaining unknowns can be determined by requiring
that the RR force satisfies the conditions (13) in the
circular-orbits limit.

1. Leading order

Atleading order, calculating the RR force with the ansatz
in Egs. (31) and expanding in p, gives

1/2

Sp.r <”2 - %) [ 2(5a; — 56, + 16) —
+O(p,). -

Requiring that the 1/p, term is zero leads to the solution

F, =

shs
r

By =0, = £ (56, 16). (37)

Expanding F,p,/(F4p,) — 1 in p, yields

Frpy | _ 9581 —8)p* = (4551 +30P, + 88)/r
Fopy 158,p% +3(32=58,)/r
O(p7). (38)

Requiring that the first term in that series expansion is zero
gives the solution

8 16 128

ﬁ1=§’ ﬂzz—?, M =-75 (39)

With that solution, we obtain the LO RR force
812 22
LO — 10p= —39ps — — |,
Fo =157 ¢< =390 =

16v 11
FLO — —Wpr<—5p2 + 12p? +7>' (40)

This force satisfies the conditions in Eq. (13) for circular
orbits since

128 .
Fho = -0 - Wp(/ﬂﬂ@p% - pyr),

]:(/, p, 10p? —39p2 —22/r"
2. IPN

Following the same steps as above, we obtain the
following solution for the unknowns at 1PN:

1
— (371 = 15a; + 268v),

Ps = 15

@ — 315 (3565 + 1080 — 22),

fe = 3?5 (1050 — 17600 + 1743),
fo == (1),

B = a3 —1—%(41/ +93),

with three arbitrary coefficients out of nine coefficients at
that order. To simplify the resulting expressions for the
RR force, we choose to set all arbitrary coefficients to zero,
ie., az = f4 = fs =0, which yields the following 1PN
contribution to the RR force:

.7-"(1/)PN 03¢ 2 3 [18(41/+93)p%p2—6(41/+93)p4

2

+180(7w — 5)p? + (9780v + 19198) £~
r

— (484w + 3833) .
,

p? 1684v + 6213}
r 9

IPN _ vp,
" 105¢%7°

[180(71/ - 5)pt —6(4v +93)p*

2
+4(691v + 3958)— —198(6v — 13) p2p?

— (4840 + 3833) ] (43)
r

p_ 1684y + 6213}
St
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3. LO tail

Solving for the unknowns at the LO tail contribution
leads to the solution

334 128 334
/12 - = 15 5 3 5 5 14 - 15 11,
334 128
k== k=5 (44)

with either A; or 4, arbitrary. Choosing 4; = 0, the tail
contribution to the RR forces becomes

il _ 334p* _718p 334p? p? 308p%+49p?
¢ c*rz 150 1572 5r 1572 225 )7
il :71'1/ DPypPr 334p2_p_‘,‘_7034p%_ 718 (45)
d Art 15 18  45r  15¢%)°
4. LO spin orbit
At LO SO, we obtain the solution
1
05 = E(_%é —32v+ 1564, + 36),
1
Og — E(—685 - 401/ + 150'12 + 68),
1
0y = s (366 — 32v + 1505 + 36),
1
03 = s (685 —40v + 1564 + 68),
8
=—(4 -4
8
09 = —E<45—31/+4),
1
Oy = E (—65 + 441/ + 15610 + 6),
1
0| = 6(66 + 441/ + 1507 + 6),
2
o1 = —E(95 + 221/ - 9),
2
= 15 (96 —22v+9), (46)

where either o or o5 is arbitrary, and either 64 or oy is
arbitrary. Choosing 67 = 617 = 0, we obtain

2

FyP = [ (220 -95-9) +5(3 + 35+ 16v)p}

2u
153270 |P

Pr P’
+ (66v — 236 —23) —— + (179 + 1796 — 146v) —
r r

+6(9+ 95 — 22u)p2p3] +1 <2 (47)

20%p,py
156387

F0 = + (220 -95-9) p?

1796 — 146v + 179
X1

-5(3+35+ 161/)p%} 4112 (48)
5. 2PN no spin
At 2PN, we obtain
5 4632 1909y . 922
ag = -t =,
6P 63 315 ' 315
B — 215 N 10602 12116v 347236
=73 189 189 2835
52761 109609 9175
ﬁ16 - _ﬂ17 ﬂlS - 15 630 378 )
P 2817 2Pis 24407 124660 28204
= A7 — —_— p— — S
=" 3 45 135 2835
P 640> N 4l6v 2608
77189 T35 0 945
P 501807 105491y | 52223
ag = — ,
8 177 P18 7315 630 1890
92:2 309y 10019
ay = Pig — - 5 - 315 °
782 1201v 5711
=By — 4
Pia 90 126 ° (49)

with eight arbitrary coefficients out of 16. Choosing as =

a; = Bio = P11 = P2 = P13 = P17 = Pis = 0 yields

o _ PPy [ (527607 1096090 9175 o (1519 99647 1008470\ p* | (35127 4234y 3355) p?
R AT 630 378 54 315 630 ) r 315 45 21 ) /2
L (017552762 1096090\ , , (104296 15121 2547300\ p2p® | (52 1522 3100
126 105 210 " 945 105 315 r 379 9 )
1851/ L2171y 269 4112 2787 3440\ pt 160402 20540 8803 p>
+ - pip? - + 2= - - =
63 63 )77 35 45 35 ) r 315 7 21 ) P
81/2 9728 190244\ 1
o L 50
+(15 315 2835 )ﬁ} (50)
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3 315 T 630 378 52 315 60 ) 35 T4 21

FN z/p,{<52761/2 109609y 9175) 6 <1519 996412 1008471/) p? (35121/2 4234y 3355>p_2

9713 21292 _ 350537v\ 4 , 26459 17452 449227y pip? 52 15212 _ 3100\ ¢
126 45 630 " 945 63 315 3 9 9 "
n 29312 14471/ 1361\ , , n 41612 189412 n 28648v\ pt 34528.2  481624v 18761\ p?
21 63 : 315 45 315 r 945 945 45 ) r?
82 9728u 190244\ 1
- — 51
+ ( 15 2835 ) } (51)
6. LO spin-spin
At LO SS, we obtain the unique solution
1 ) 42 2
& :%[5(73—128@—#1281/ —274v + 73], sz—?(5—2v+l), &3 :Ey(641/—261),
1 42
{4 = 0 [6(128v — 73) + 12802 — 274v + 73], (s = 5 (6+2v-1),
74 1
{6 = 15( 260+ 6+ 207 —dv+ 1), ;= 10[5(43 80v) + 80v% — 166w + 43],
{s =0, $o=2(0—-2v+1), Cio=-6(6—-2v+1), =0,
8 2 74 )
4‘12* (15 371/) 4‘13— (401/—63) CMZO, ClSZ_E[é(ZU_1)+2V —4l/+1],
1
Clﬁ——[ (80v — 43) + 8012 — 166w + 43], 7 =0, Cig=-2(6+2v-1),
Ci9=06(0+2v-1), &0 =0. (52)
With that solution, we get
ss_ Vry [, 2 2 4 2 2
Fy = 30645 X7124X7Cgs2 | 15p7 —90p; — 7 + (3618 — 632u6 + 632v° — 13540 + 361) p=
1
+ (40008 — 2098 — 4002 + 818v — 209) p? + (3558 — 70418 + 7041% — 1414y + 355) —}
-
704y — 1182
+ Uiy [(378 —400v) p? + (632v — 2250)p? + yi} +1< 2}, (53)
r
Fs Vb 224X2C, st (1597 = 5502 = 2) & (3015 = 51260 + 51207 — 1114 + 301)p2
30647 1ES? P_ pr_T +( - v+ v = v+ )pr
1
+ (400u8 — 2098 — 4000* + 818y — 209) p? + (3556 — 704 + 70417 — 1414v + 355) }
,
704y — 1182
+ Uy [(378 —400v)p? + (512v — 1410)p? + yi} +1 < 2}. (54)
r
F. Factorizing the RR force into circular and noncircular parts
The total RR force is the sum of the contributions calculated in the previous section, i.e.,
_ rlo IPN 2PN il SO o
Fo=FP +F; N+ Fg +Fg + Fi°2 + Fp,
Fp=FP + FIN 4 FIN 4 Foil 4 730+ 7. (55)
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We have checked that our gauge-dependent RR force
agrees with that in Refs. [78,92,93] by using the balance
equations. Denoting the RR force from those references by
(F,.F ) with corresponding Schott terms (Eschorts Jschott)»
Eqgs. (7) lead to

rF, + 47).7_:45 + Eschon = 7F» + 9?)‘7:45 + ESChO“’
F o+ Ischon = Fp + Jschot (56)

Then, by writing an ansatz for (Egwmous Jschon) With
unknown coefficients, we checked that a solution exists,
implying that (F,,F,) and (F,,F,) are related via a
coordinate transformation.

To implement our results in the SEOBNRv4HM model,
we factorize the RR force into a quasicircular part times
eccentric corrections as in Eqgs. (14) and (11), which read

Fyp=FSFse.  F,=FEFe,
.o >Lp
q _ _YE q¢ _ _FEPr 57
F o 7 p, (57)

and for the quasicircular part we use the unexpanded force

used in SEOBNRv4HM, in which the energy flux has the

following PN expansion in terms of the orbital velocity
— Ol/3.

Vo = Q .

oF 32 1287
=% vy — 0582 (980w + 1247) vl + 3 v
40}23
+ 53 (120 =116 = 11) + (120 + 115 = 11)]
METYTE v (327600 + 166878y — 44711)

2
+ 5.4 v [(32C gs2 + 1)yiXT + 62uy1 2,

This leads to the eccentric part
cce _ 29p2r — 10p,r* + 12 [-] L
¢ 12(p,r? +1)*/3 cr(p,rr +1)3/3

Tpir=Sp,r +6 -]
6(p,r + 123 2r(pr? + 1)

)

Feoe = +oeel (59)

The full 2PN expressions are provided in the Supplemental
Material [88].

In these eccentric corrections to the RR force, we used p,
instead of p, because it improves the agreement of our
model with SEOBNRv4HM in the quasicircular orbit limit,
in which p, =0= p, leading to F s = 1. However,
having p, on the right-hand side of the EOM for p, would
complicate solving the system of differential equations (4).

Therefore, when evolving the EOMs, we simply replace p,
in the RR force with the derivative of the Hamiltonian with
respect to r calculated numerically, i.e., p, —» —0Hgog/Or.

SEOBNR waveform models use p, (the conjugate
momentum to the tortoise radial coordinate r,) instead
of p, since it improves stability of the EOMs near the EOB
event horizon [69,112]. The two momenta are related by
Eq. (E3). In Appendix E, we also obtain Eq. (E8) for the
transformation between p, and p, .

III. INITIAL CONDITIONS

Having determined the RR force that enters the EOMs,
we need to specify the initial conditions to be used in
evolving the system of equations. In this section, we first
review how the initial conditions are implemented in
SEOBNRvV4HM for quasicircular orbits [46,94], and then
discuss a simple extension for eccentric orbits.

A. Initial conditions for quasicircular orbits

Let us recapitulate the initial conditions for quasicircular/
spherical orbits in the SEOBNRv4HM model as derived in
Refs. [46,94]. We start by specifying an initial orbital
frequency €, with initial orbital phase ¢, = 0, and solve

OH
[ﬂo =0

for the initial values of r and p,, while neglecting RR,
p,~0. The initial condition for p, is then obtained by
solving

o= 5| (61)

for p,, after calculating [F], using the result from adiabatic
evolution [46]

eftt] ), e

where E is the circular-orbits energy flux, and the derivative
dE/dr = dH/dr can be determined using the following
equations for circular orbits:

OH OH OH
dH = —dr+—d —d
EP r+ op, p,+ 8p¢ Dy (63)

OH

pr=0, dp, =0, d<5> =0. (64)

This leads to
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d O0H O*H  0*H dp,
———=0=— —, 65
dr Or or? +8rap¢ dr (65)
which can be solved for dp,/dr to obtain
d O*H/0r?
Py _ /Or (66)

dr — 9*H/drdp,

Plugging that solution into dH/dr = (0H/Op,)dp,/dr
yields the result in Eq. (4.14) of Ref. [94], which reads

dH _ (0H/0p4)(9*H/Or?) 6
dr O*H/0ropy (67)
and hence
OH| ... _dE 82H/3r8p¢ 63
{apjo‘[’b‘[ a @njop@ajoR), (%

The complete procedure to obtain the initial conditions
for the orbital phase space is now as follows. Given €,
masses, and spins, we numerically solve the relations in
Eq. (60) for the initial values ry and p,, choosing ¢y = 0
and assuming p, ~ 0. Using these values, we numerically
solve Eq. (68) for the initial value p,.

B. Initial conditions for eccentric orbits

Since eccentricity is a gauge-dependent concept, we do
not need to calculate accurate initial conditions for eccen-
tric orbits in a specific gauge. Instead, we can choose a
measure for eccentricity that can be adjusted to be as
convenient as possible for numerical implementation. The
|

_60(€0+1)2 €0(€0+1)2

only strict requirement is that for zero eccentricity e = 0
one recovers the quasicircular case. Hence, we can start
with very accurate initial conditions for quasicircular orbits
and perturb them for eccentric orbits.

We choose to specify an initial orbital frequency €, and
an initial eccentricity e, using the Keplerian parametriza-
tion 1/r = u,(1 4 ecos ). We also assume that the orbit
starts with ¢pg = 0 at periastron (y = 0), where p, =0 in
absence of RR, which simplifies calculating the initial
conditions for r and p,. An advantage of starting at
periastron instead of apastron is that the specified initial
frequency is then the maximum orbital frequency (over the
first orbit), and can be used to estimate the frequency
at which the binary enters a GW detector’s frequency band.

To obtain ry and p,,, we solve Eq. (60) with a nonzero

P, 1.e.,

{8H

T =-lotmpen o

— =Q,, 69
%h 0 (69)

with p, 0, and [p,], given as a 2PN expansion in terms of
Py and e. For quasicircular orbits, these equations reduce
exactly to Egs. (60) since p, « e.

To obtain the PN expansion for p, at periastron, we first
invert the Hamiltonian at the turning points r, =
1/(u,(1 £e)) with p, =0 and solve for the energy and
angular momentum as functions of e and u,, which are
given by Eqs. (D2). Then, we invert py(e, u,) to obtain
Eq. (D3) for u,(p,.e) and insert it into the PN expansion
for p, = —0H /Or at periastron (r = 1/[u,(1 + e)]). This
yields

o = + [e5(5 —v) —4eq + v +7]
0 p:&o 2C2p250 0 0
+ 1)*(3ef — 2¢p + 3
s eoleot DV 20 29, 25— 2y + v+ 25- 2}
2c Pgo
Lol DR s 05— 66212 + 50— 39) + Seg(v — 25) + (307 — 170 + 55) + 8¢3( —7)
8t Vv —v ep(v” +5v ) +8ey(v +e5(3v v+ 55) +8ey(v—17)
$0
eoleg +1)2
o ) CAICi (368 200 + 3)X + (563 66y ~ 3]
c*plo
+urixaled(5v+3) —2¢(Bv+1) = 3v+ 3]+ 1 < 2}. (70)

The initial condition can now be obtained in analogy to
the quasicircular case: given ), e, masses, and spins, we
obtain ry and py, from Egs. (69) and (70) (assuming
p,=0), p, then follows from Eq. (68) as before, and
¢o = 0 by convention. We can keep using the circular-
orbits energy flux in Eq. (68), instead of replacing E with

I
QF, for eccentric orbits, because the difference on the
orbital dynamics is negligible since it involves p, (which at
periastron is numerically much smaller than r or pg).

To assess the accuracy of the initial conditions for
eccentric orbits, we compare the specified value for the
eccentricity in the Keplerian parametrization with the value
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TABLE I. Nonspinning initial conditions given the parameters
(eg,Qp,v) and the eccentricity en measured from the orbital
frequency using Eq. (71). The initial frequency € was chosen to
give ~30 GW cycles between rq and r = 5.

€0 Q v ro Py Pro €Q
0.01 0.03 0.25 10.4 3.8 —0.0012 0.0087
0.2 0.045 0.25 8.1 3.7 —0.0024 0.19
0.7 0.065 0.25 6.7 4.0 —0.0033 0.69
0.2 0.058 0.1 6.8 3.6 —0.0011 0.20

calculated from the orbital frequency [or the frequency of
the (2,2) mode] at periastron Q,, and apastron Q,, which is
given by [113]

TR, VG,

and to calculate it, we follow the steps explained after
Eq. (2.8) of Ref. [41]. Since we evaluate eq, by evolving the
binary over one orbit (including RR), it only holds
approximately that €, ~€Q, in the quasicircular case.
That is, eq does not vanish exactly for quasicircular orbits,
in contrast to our e, Table I shows the value of the
eccentricity eq calculated from the orbital frequency
compared to the specified eccentricity e, and we see good
agreement between the two measures of eccentricity.

IV. GRAVITATIONAL WAVEFORM MODES

In this section, we obtain the 2PN waveform modes to
2PN order including LO tail effects, and SO and SS
couplings for aligned spins. The instantaneous nonspinning
part of the modes was derived for eccentric orbits in
Refs. [114,115] in harmonic coordinates and we convert
their results to EOB coordinates. For the LO tail part, we
extend the results of Ref. [79] to O(e®) and to higher modes
using the Keplerian parametrization, and then we convert
those results to an expansion in p, and p,. The spin
contributions to the modes were derived to 2PN order for
circular orbits in Ref. [116], and here we derive them for
eccentric orbits.

The GW spherical harmonic modes 4’ are the expan-
sion of the complex polarization waveform h = h, — ih,
into spin-weighted s = —2 spherical harmonics Y*%'(©, ®)
such that

i i meL”m 0, CD) (72)
=2 m——¢

The modes 4™ can be calculated directly from the radiative
multipole moments via [117-119]

1
B \/EDLCf+2

‘m [Ufm _ g me]’ (73)

where D; is the luminosity distance of the source and the
radiative multipole moments are related to the symmetric
trace-free (STF) moments U; and V; by

16 (£ +1)(¢+2)-

‘m o
v e+ 1N 20(¢-1) Vi"UL,
32z 26 +2) -
m = ' m 4
Y 2+ 1N 2(f+1)(f_1)yL Vi, (74)

where )™ is the complex conjugate of the STF tensors
relating the unit vectors N ) (which point from the source
to the detector) to the sphencal harmonics basis Y*"(©, ®)
such that

Ym(©,®) = YV{"N (0, D), (75)
dnf) AN
Npy(@.@) = - >~ Yi"yr"(0.®).  (76)
(2£+1)!!m;f
< (264N o
cimpm (26 + DN
yL yL —Wémm’ﬂ (78)

and we can express the unit vector N in terms of the angles
® and © as

N = sin © cos ®é, + sin@sindé, + cos@¢,.  (79)

For planar binaries, nonspinning or with aligned spins, it
was shown in Ref. [119] that the modes can be determined
using the mass-type multipole moments for even £ + m, or
the current-type multipole moments for odd & + m, i.e.,

1
‘m __ ‘m
h = W U y 4 -+ meven,
i
hm = ————_ym, ¢ + modd. (80)
\/ZDLCerT)
We define H”™ such that
‘m 8u | —im¢ ryém
h'm = ——; —e H™, (81)
c*Dp V5

which makes the LO part of H?> = x for circular orbits.
Note that different conventions for the phase origin
contribute a factor of (—i)™ to the modes [120].

In this paper, we compute the modes to 2PN order
beyond the leading order of the (2,2) mode, which means
we consider modes up to the £ = 6, m =even modes. To
2PN order, the instantaneous contributions to the radiative

024046-12



RADIATION-REACTION FORCE AND MULTIPOLAR WAVEFORMS ...

PHYS. REV. D 104, 024046 (2021)

multipole moments coincide with the source multipole
moments. Including the hereditary terms that contribute to
2PN, the radiative multipole moments are given by
[115,117,118]

2 2M o 4 T 1
1
2M
) +T/
c Jo

o del)(1—7)In <b2> +o< >
1
UL—IE‘K)+O<C—3>,

_ g 2M e @ v 1
Vij_‘]ij +—3/ dTJij (t—r)ln(b—3> +O<§>,
Vo= +o( %),

Uy =10

where the constants b; are gauge parameters that will be
eliminated via a phase shift as was done in Ref. [117]. The
source multipole moments for nonspinning binaries are
given in, e.g., Refs. [115,117], while the spin contributions
to the source moments are given in Refs. [116,121].

A. Instantaneous nonspinning contributions

The instantaneous contributions to the modes for non-
spinning binaries in eccentric orbits were derived in
Ref. [114] to 2PN and in Ref. [115] to 3PN. The results
of Ref. [115] are in harmonic coordinates and in terms of
the variables (7, ¢, 7, ). Hence, we can simply transform
their results from harmonic to EOB coordinates using the
transformations in Appendix A. For the (2,2) mode we
obtain

2
s o) o B (s (3-8 (o (5)
v , 5 v 185 1 172 5
(o) |-+ ()3l ol (e i)
+< 6717 13750 @)19_ (1271/2_13551/ 5519>p_ (m &—i)zﬂp“
1008 1008 ' 504) r 54 189 3024/ r? 168 ' 168 24)7"
+( 6707 @ 659) pip +(_464u 2249y 811>p_+<17y 250 919>p_4
126 504) r 189~ 756 3024/ r? 36 1008/ r
+(205y 49v 9_5> +l_prp¢|:(_17—y_& ) < 2 29y 67>p_2
252 63 r 168 168 r t36) 2
+( 5232 1226u+g>i+<£y2_125y 787) H (83)
189 54 )/ 63 126 504

The expressions for the other modes that contribute to 2PN,
i.e., upto £ = |m| = 6, are provided as a Mathematica file
in the Supplemental Material [88]. Note that the (Z,0)
modes are zero for circular orbits but not for eccentric
orbits. For example, the LO part of the (2,0) mode is

given by
()

which is zero for circular orbits since p> = 1/r + - - -.

HZO —

st —

(84)

B. Hereditary contributions

The hereditary contributions to the modes can be calcu-
lated analytically in an eccentricity expansion, as was done
in Ref. [79] for the (2,2) mode to O(ez), and in Ref. [122] for
all modes to 3PN order and to O(e®). The results of
Ref. [122] use the quasi-Keplerian parametrization, while

|

here we use the Keplerian parametrization following the
method developed in Ref. [79], which is based on results
from Refs. [96,117,123], to derive the leading order tail
effects that contribute to the modes up to 2PN order and to
O(e%). (See Ref. [79] for a discussion of the advantages of
the Keplerian parametrization over the quasi-Keplerian
parametrization.) We finally convert the eccentricity—
expanded tail contributions to an expansion in p, and p,.

1. Modes with even € +m

The LO mass-type multipole moments are given by [96]

IF = ﬂsfr”ﬂn<1‘>,

(85)

where s, = X5 4+ (=1)/X¢~', and the unit vectors n!"
are related to spherical harmonics via Eq. (75), leading to
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¢
= Z VL agnrie m?, (86)

m=-¢

with the coefficients (for equatorial orbits)

drus l) T
=——VYol = . 7
Apm <2f—|—1)” ‘m (2’()) (8 )

Decomposing the phase ¢ into an oscillatory part and a
linearly growing part ¢ = ¢y + w,t + Ag, allows express-
ing the oscillatory part A¢, as a Fourier series expansion.
Hence,

4
= Z y?mafm‘]fme_imwd)? (88)

m=—¢

with the functions J,,, defined by

o0
Jpm = rlemimboemimid: — Z Jomie™ ™ (89)

k=—00

where y, and y, are the radial and azimuthal angle
variables associated with the frequencies w, = dy,/dt
and wy = dy,/dt. The coefficients J,,,; are given by

J 7i 2”d iky,
fmk_z y,e ‘m
7.Jo
Z”d)( f —im(/)(,e—imAqﬁ,eiky/,
27z

W, _p3pp [P dy —imAd, aiky
="y — = e retVr (90
2z " A (1+ecosy)’*? (50)

where, in the last line, we assume ¢, = 0. The function P
denotes the conservative part of y and is related to the radial
angley, viady,/dy = ®,/P, with P = 2 3/2
at LO (see Ref. [79] for more details).

Thus, the Newtonian mass multipole moments can be

expressed as

(14 ecosy)u

4 o
= Z Z yémafm']fmke_i(kwr+mw¢)7 (91)

m=—¢ k=—oo

where the azimuthal angle is related to the radial angle by
vy = ¢ — Ap, with Ap, = y —y, at LO. This allows us to
write the LO tail contribution to the mass-type radiative
moments as

oM
Uil = / del' " (1= 1) In (%)

f o0
= (—i f+2 Z V" and e
Mt ke—oo
x e~y T(Q, ), .

where Q,; = mwy + ko, and

T(x) = A ® dre™ In <Z>

— _% |:g sgn(x) + iln(|x|b) + i}’E] . (93)

The exponential e*¥+ can be expressed in terms of )( and e
by integrating dy, = o,dy/P, with w, = (u, — ¢’u, )/,
leading to Eq. (3.41) of Ref. [79], which reads

\/:em)( — l)(
<1+v1 e> + ee > (04)

e_ikl//r — elke I+ecosy
+ (14 V1 —e?)e”

Hence, the modes with # = 2 and m even are given by

V2 Ma2 _
htza:ﬁ ~ T IR e Z szkQ

k=—00

% eim;(e—i(ker)l//,:Z'(gzmk)7 (95)

while the modes with £ = 3 and m odd are given by

m 4\/_Ma3m —im c
hl3all = 3\/—ch ¢ kZ J3kafnk
x emre=itmv T(Q . (96)

To obtain analytical expressions for the modes, we
expand the above equations in eccentricity, where the
infinite sum over k can be stopped at the order of the
expansion in e. The result of that expansion is complicated,
but we can perform a phase redefinition in the leading order
instantaneous part’ of the form ¢ — ¢ + x*/25; and absorb
in 8, all terms that are not proportional to x*/2. This
modifies the phase at 4PN relative order, which we can
ignore when working to 2PN order. (See Ref. [117] for
more details.) The result for the (2,2) mode to O(e®) is
given by

3One first needs to express the leading order part in terms of
the variables (e, x, y) instead of (r, p,, p¢) using the relations
from Appendix D. For example, for the (2,2) mode, we obtain

_8” Ee
C4DL 5

22 _
hLO -

2
X e, _. . e .
1—62 |:1+Z(€ IZ+5€W)+7€ 4
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. 2 lle % 13e¥ 5 .71, 121e™%  143e* 3 .. 1 ..
H, :—fx5/2 [1 —I—e< et ) +ez<§e‘2”f +§e211 +4> + e3< 3 +T+§e‘3”f +Ee3’%>

(B 2By S 65 SSer 6233 15, 28leW 53
et — + & ——+ = —
16 96 96° 8 8 768 ' 64 1536 ' 7680
175 1869 ,  449e*r 318 30247
6" 2iy 2iy _ 97
Te <64e TS ¢ T 3840 T 23040 2304)] 7)
while for the (2,0) mode
I’j]2Q :Lw e(e—i;(+ei)() +62(e_2i){+62i)(—|—2) +€3 3e—i;(+3ei)( _’_16—31')( +le3i)( -|—6 29 —21)(+29 2iy _,’_2
tail 2\/6C3 4 4 ]2 12 2
179¢% 179¢% 125 125 805 .. 805 ., 7 . 7 , 121
5 31;( 31)( 20y | T 2y Ay D LAy TS . 98
¢ ( 2 Txm Tt T, )” <192e 192 T960°  To60° 16>] (%8)
The (3,3) mode is given by
9ins [15 47e7 19 61 . 91 155 69le# 84l 35e73r 653
I—I’;3 1 2( 2" A2y 21)( 3
il =T Vgt [+<27+9> e<54e 55¢ +27> €<108+108+108+108>
32 oy, 287y, SeM NIset 3130\ o (503¢7  613ck 35 3005¢% _457c’
+ et it 4 i + + + + + -
9° 54 144 1728 ' 216 36 36 36 1728 25920
131 . 150503¢%* 5 151 ,  41e% 219
6 7" =2iy ey L T oy — ], 99
e (18 ¢ 13824 % TRI0° "20736 T8 ﬂ (99)
and the (3,1) mode
. idx> 27 5. 177 _. 19e* 25 _.. 4 .
H31~ — iz 1 il _Qe—ix —21)( l)( —-15 3( " iy T A Biy 30y
wil = 15 Tiaet +e(e e %) + e? 5 ¢ +e 1 ¢ 54 C 3¢
89 125, 15 _, 55" 1703 10141 . 2867e% 75 . 629 . T
4 —21)( 2iy _ —diy T 50 _ —iy _ _ YA By T Biy 0 LSy
e ( 27T T T T, ) ¢ < 9% °© %6 4% "192° "90° )
-2 6i
Lo _142903¢7% 2965 5, 45 . 239, 37 16343\] (100)
1536 256 16 240° 723040 144

We checked that our results agree with those of Ref. [122] after converting between the quasi-Keplerian and Keplerian
parametrization, and performing a phase shift.
To express the modes in terms of (7, p,, p,) instead of (x, e,y), we use the following leading order relations:

) 1
Py = , pr=e\/u,siny, ;:up(l—f—ecos;(), x=u,(1-eé?). (101)

As explained above, it is advantageous to replace pé with p, using p, = ( pé —r)/r® and expand in both p, and p, (since
p, and p, are both of order ¢) to obtain
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rn  2mpy ip, [T .7 s (TP T, 3P 5.4 Py o 2en , PyP?
g2 2 )re , Pr _ 2. " 3:3 i ) 2 SPp 5.4 P 2 2.2  FPoPr
tail C3 {rg 4r2+ 32p¢prpr 96p¢r pr+l 967 327' PrPr + 32 rpr 8 rprpr+ 487
rt r 31 173p,r'py 1 r® 49 89p>
S A o 42 o Pr L4 0.3 (T Preg  FF 3 3.9 P
+l<12prpr 96prpr>:| + |:384p¢rprpr 1920 192p¢r PrPr +l<768 Pr 384r PrPr +3840>:|
Iper’pt 1 5.y AT oo pePt 1 g o 137°pipd 23, o
{W‘f‘ﬁpﬂ PrPr =34 Po” PrDy + +1 ~ea! PrPr +T52—mr PrDr ;
. 4
f20 T ) PyPr P EEEYEN 2 7 5.4 PoPr 95 7.5 13 4 5.5
Htail_ 6C3{ r _p(/)rpr+ |:4p(/1r pr_Zp(/)prpr + _Ep(/)r Pr— 6r + @p(/)r Pr +%p4)l" PrPr
11 4 139 4.4 11 6.2:4 , 3 3,422 p¢p?
+ 192p¢rprpr:| + |: 320p¢r Pr 96p¢r PrPr +64p¢r PrPr 480 ’
R 9izs [15(1  [23p, 10ipyp,] 2p> [.[25 .25 L\ 255pt 25
pg» o _2mo ) r r| _ 4Pr Rl 3.0 49 3.3\ ro, 2 2 2.9
il = 7 \/14{r3+ [27r T | T T\ @3 PP Pr T gz P PP | T g Togg PP
_ 25p] ; 109pyr°p, b} | 4lpyr*pipr  Alpypy\ | 29377p)  41r'pipl  157rpip,] | [28457° pip}
1728 r 2592 1296 12960r 25920 1296 5184 41472
_15617°pY  TI5r°pipy  653p} iy 4211p,rpip, _ 2173pyr’p,pl _ 307pyrtpip;
207360 13824 69120 103680 103680 3456 ’
. ) 1 [10ipyp, 11p Wipyp,p, 13p%  11rp? , o PP\ 35 5.
H31- _ 24 - 4 r_ rl P r¥r r r 6 2 r 22 3.3
tail 12\/ﬁc4 3 3 , 2 4.2 + 4 + |1 PprPrPr 612 + 127‘ Pr
37

pive [ (A5 s 6L s s\ 269
— —_— — r* —
D) l 16P¢prpr 16P¢ PrPr 192

101 . (83 . ., 43, ..,
+192rprpr+l<32p¢r PrPr 48p¢r prDy +

1920 640

2. Modes with odd € +m

The Newtonian order current quadrupole moment is
given by [96]

Ji = —gur*ngv,eind) = —5rp{/,é§inj>, (103)

where 2! is the unit vector in the z direction. The term e{'n/)

can be expressed in terms of y;jl, as was done in Ref. [124],
by defining the complex vector

fl=el + ief;,, (104)
which leads to
i 1 15 i i
Vi =3 /ﬂd el. (105)

Since, for equatorial orbits, n' = cos ¢’ + sin e} and
A" = —sin @}, + cos @}, we obtain

nl +ill = e ¢ (106)

w4 2222
r r+_rprpr_

379p,p? 317 4 4., 5039758 289 ., 297p¢
480r e

(151 . A267p,r p,py 271 )
+l<ﬁp{/}r4 - S i, ) | b

car | T logo 77 1gn Py

960 16

63pf] (643 4o 5 4 5.4
32

768" 11520 768 PP~ 1280

(102)
|
Hence,
elini) = Re[e—ifi’e?gﬂ]
27 L
= —24 /ERe[e"‘/’yZJI]
27 g L i
== 1_5(3 V3 +e?Y5)). (107)

Since V;; is contracted with 5){}"’ in Eq. (74), and
j;;f’;mjz,{,!m = 0, only the term with y;fl in the above equation
contributes to the modes. Thus, we only need to consider
the following part of the current quadrupole

JY = puéy/ Byzjlpd,re""’ + -

Then, we follow the same steps as in the previous
subsection. Decomposing the phase into ¢ = w,t + A¢p
leads to

(108)
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JYV = po \ Eyzjl eI + (109)
with
J] = lA(/) = Z J“ke iky, (110)
k=—c0
and
1 [2 )
Jik = —/ d’I/rJne'kl’"
2r 0
2r . .
- / U minteitn, (111
27m,,/ o (I+ecosy)

Thus, the current quadrupole source moment can be
expressed as

’ & .
7= woy Tjsrylz’mz/» > et 4
k=—00

(112)

and the current quadrupole radiative moment

2M pté

tail _
Vi 7

27 =
V15 V4py Z T,

X e—f<kwr+w>z(szlk), (113)
leading to the (2,1) mode
16i [zoM _, * i
=3 SR 3 e
x e DT (Q) ), (114)

with p, =1/,/u, = /(1 —€*)/x. Expanding in eccen-

tricity yields

N 5 ) . 1 .. 45e~ 5 |
2l — 70 sl +e(3e™ +e¥) +e*( 3e 2 + e + 6 ) + &3 © | geir 4 Dt 4 gl
3c 4 4 4 6
19 . 25 .. 3 . 17 493 2375e~%  865e* 15 .. 91 .. 7 -
4 27 20y = iy = iy 41){ 5 Y A3y T 3By 0 ASiy
e <2e 7R TR T +32>+e ( 9% 96 4% T2 T90® )
29957e~%* 593 9 o241 . 37eSr 8417
6 21)( —41)( T o4y I , 115
te < 153 2565 16 '960 23040 T 288 >] (115)

which is in agreement with the results of Ref. [122]. In terms of (7, p,, p,. p,), We obtain

Afaluzg{% [pr 2iifp}+{ip¢£rpr—f—’z+% P}Jr[—ilgﬁfg 112 pr—%prpﬁ}
+ <16p¢p pr— 16p¢ prp>—19%5r5pi‘+£ pzﬁ%—éii]
+ < Pyr’Prit = 72P ¢2p3p3+li§gfg> +;20 r’py - 136 4p3p3+% prpr}
B -y oS )

C. Aligned-spin contributions

The spin contributions to the modes were derived for
circular orbits in Refs. [116,120,125]. To derive the spin
part of the modes to 2PN for eccentric orbits, we use the
source moments from Refs. [116,121], which are in
harmonic coordinates and in terms of the covariant SSC.

024046-

[

Differentiating the source moments to obtain the radiative
moments (82), and plugging them into Eq. (73), we obtain
the modes listed in Appendix C. Transforming from
harmonic to EOB coordinates, and from the covariant to
the NW SSC using the transformations in Appendix A, we
obtain the following spin contributions to the modes:
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A 1 X .
Hzgin: - 3[(65+1/+6)p4,+21(35—1/+3)rp,] ]223[( 65 +v+6)p,— 21(35+1/—3)rpr]}

+ W UABCesX] = X1(2p%r + D] + 133Copse X3 = X3(2p%r + 1) = 2u7120(v = 3 + 20p?r)}.

. . 2
ip ,
Y, = ﬁ [—(1+8)y, + (1= 8)ys] + 84)2%2 L—;” (4306 — 425 + 1530 — 42) + p—fd’ (36(20 + 49) — 104u + 147)

. . i 2
+%p%(5(381/ +105) + 74v + 105) + - (635 — 3808 — T4v + 63)] + 84’% S {pf (4306 — 425 — 1530 + 42)
r cre | r

+ PrPh (3520 + 49) + 1040 — 147) + ép%(38u5 + 1058 — 74u — 105) + — (636 — 3806 + T4v — 63)} :
r r

R V3p v 5
Ha?m:ﬁ[@é—wzm+<—25—””)“] m‘“{”{ r

2
(2r2p2 —2p} +1) - C2E52X%:| + ”’g‘h {y—3—2yﬂ+2wp%”,
r

—2py+r) - ClESZX%]

+13 [3

N —ivp
HS](J)in = \/Z‘.—i 3;2 (Xl +/,{/2)1

731

P¢
AL o= -
spin 24\/_4c { [ 2 (
£ 2

l
i PrP¢ (—6uS + 306 — 127 + 30)] + 1> {% (5516 — 966 — 3750 4 96) +
r r

5508 — 965 + 3750 — 96) + l(p, - —) (206 — 66+ 231 —6)

Prp¢(
r

—6v6 + 306 + 127v — 30)
2
+ l<p, - —) (2u6 — 65 — 23v + 6)]}

ﬁlspln_ 3 3\/'(4p¢+lrpr)<)(l +)(2)

3 NG 23i(6 4 1)vpy  (2u6 + 66— 19v + 6)p,p 2
j - _ ¢ 02— p? ) (206 —65+23u—6
spin 8\/4—26’472{[ 2}"2 + r +1 Pr (1/ +25v ))(1
23i(6 — )vps (250 + 65+ 190 — 6 2
+[_ (22) Py, (200 Y )prp‘ﬁ+i<——p%)(Zéy—66—23u+6)];(2},
r r r

N /5 v
H?ﬁm = _l\/;336c4r4( 10irp,py + 6r’p? — 12r + 11P¢)[(5— D1+ (6 + 1)xa).

N 5 v
H?Sin = ”ﬁ4804r4 (lOrp,p(’,J +2ir’p? — 4ir — 23lp¢)[( =Dy + 6+ D)y (117)

The circular-orbit limit of these modes, when expressed in terms of the orbital frequency, agrees with the results of
Refs. [116,125]. The spin contributions to the (2,2),(2,1), and (3,3) modes for eccentric orbits were calculated in Ref. [82];
4

however, we find a small disagreement with their results for the SO part.

*The difference between the modes in Ref. [82] (denoted with a bar) and the modes in Eq. (117) (with Cigg2 = Cyps2 = 1) is given by

ivp iovp, 2 33 N \/§5vp .
Hspm H%gm_zc rr ()(1 +ZZ) Hspm Hz;m_6 4 3(rpr+lp¢)()(1 +)(2) Hspin_HSSin:8\/4—74;3(1717115‘1»5”'1%)()(1 +)(2)7

which is likely due to the coordinate/SSC transformations detailed in Appendix A.
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D. Factorized modes
The quasicircular waveform modes used in
SEOBNRvV4HM are factorized as follows [70,83,126,127]:
REAC = plae8A T pivn f9° (118)
¢m T fm Nefft fm ‘m’
where A% is the Newtonian part of the mode, S is an
effective source term given by

cac H o (vg) ¢ + meven
Seff

. (119)
7 + modd

- ~

Legr = vopy(v0)

T} resums the infinite number of “leading logarithms”
entering the tail effects, ,,, contains the part of the tail not

included in T, , and f,, contains PN corrections such that

the expansion of h?;;lc agrees with the known PN expansion
of the modes. See Refs. [70,83] for more details and for
expressions of these terms.

We include the eccentric corrections in the factorized
modes as follows:

hpo = Ser(1+ TS5 S35

15 = oy S (T8, + Ti) e (FF, + i), (120)
where the effective source term is given by
N A rsPr P ¢ + meven
Suir = { fen 2 . (121
Leff = UQP¢ 4 +m odd

T%: contains the eccentric corrections to the hereditary
contributions, d,, is the same as in the quasicircular case,
and f7+ contains the eccentric corrections to the instanta-
neous contributions (both spinning and nonspinning,
including the Newtonian part). For example, for the leading
order of the (2,2) mode, we obtain

1
ecc _ 2+r2'r_r%_2r2'r+11/3
5 —2(r21'7,+1)l/3[ pr=rpr =2(r'p, +1)

+2ip [Py r|

For the tail part, we simplified the results of Sec. IV B
and eliminated the gauge parameter by using a phase shift,
which led to the circular part of the tail contribution to the
(2,2) mode simply being 2zv3; however, this phase
redefinition is not done in SEOBNRv4HM, and the corre-
sponding expression reads v (27 + 12ilog (2evq) —
17i/3 + 12iyg/3). Therefore, when including the eccentric
corrections in TS, we assume that the phase redefinition
was done only for the eccentric part and keep using the
same circular part as in SEOBNRv4HM. In addition, since
we expanded the tail part in eccentricity to O(e®), when
factorizing the modes as in Eq. (120) and writing the

(122)

quasicircular part in terms of frequency, we reexpand 775"
in eccentricity (or p, and p,). For example, for the (2,2)

mode, we obtain

T . . .
TS = = [4r°2 b, +ip (2 +6) +2v/rp} + O(p?)].
(123)

The full expressions for 79" and fS are provided in the

Supplemental Material [88].

V. CONCLUSIONS

Extending the waveform models used today in GW
astronomy from quasicircular to eccentric orbits is impor-
tant for future observations with LIGO, Virgo, and
KAGRA detectors [21], and with new facilities on the
ground (Cosmic Explorer and Einstein Telescope), and in
space (LISA). In fact, sources with non-negligible eccen-
tricity might come into reach of observations soon and
should routinely be included in searches and parameter
inference. While this presents a challenge for waveform
modeling and data analysis, it also offers the unique
opportunity to unveil the formation channels of compact
binaries and probe their environment (through eccentricity
measurements). In this paper, we constructed an EOB
waveform model for eccentric binaries. For this purpose,
we obtained analytical results for the RR force and wave-
form modes to 2PN order, including the leading-order tail
effects, and SO and SS couplings for aligned spins.

In particular, we first derived the RR force for eccentric
orbits in PN expanded form, and then we recast it in a form
that it can be directly incorporated in the quasicircular RR
force employed in the SEOBNRv4HM [74,83] model,
currently used in LIGO/Virgo analyses [1]. We then
obtained initial conditions for the binary evolution which
generalize those from Ref. [94] to eccentric orbits, and
which allow starting the binary’s evolution from a specified
initial frequency at periastron and an initial eccentricity
(in the Keplerian parametrization). We also calculated all
the waveform modes that contribute up to 2PN order
relative to the leading order of the (2,2) mode. It should
be noted that the (#,0) modes are proportional to the
eccentricity and are hence important for eccentric orbits,
especially the (2,0) mode since it starts at the same PN
order as the (2,2) mode. Also the gravitational modes were
rewritten in a factorized form to be straightforwardly
implemented in the SEOBNRv4HM model.

Our results for the RR force and modes are valid for
moderate to high eccentricities during the inspiral phase,
since we do not use an eccentricity expansion except for the
tail part, which is known analytically as an infinite series
expansion. We provided expressions for the tail part in an
expansion to O(e®), but we checked that expanding to
O(e'%) produces negligible difference on the waveform
even for high eccentricities (<0.9). If results for e close to
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1 are needed, one could calculate the series expansion for
the tail part numerically, or use analytical resummation
methods as was done in Refs. [31,98].

We are currently incorporating the eccentric RR force
and gravitational modes of this paper in the inspiral-
merger-ringdown quasicircular—orbit SEOBNRv4HM wave-
form model (SEOBNRv4EHM [128]) and validating it
against NR simulations with eccentricity. We leave to
future work the extension of the model to higher PN orders
and the inclusion of spin precession.
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APPENDIX A: COORDINATE
TRANSFORMATION FROM HARMONIC
TO EOB COORDINATES

The coordinate transformation from harmonic to EOB
coordinates with no spin is given in Appendix A of
|

Ref. [78]. In this Appendix, we include LO SO and SS
contributions to the transformation. We label harmonic,
ADM, and EOB coordinates by (xj,v,), (x,,p.), and
(x,p), respectively.

1. ADM to EOB transformation

To find the canonical transformation from the ADM
Hamiltonian with LO SO and SS using the NW SSC (see,
e.g., Refs. [129-131]) and the 2PN expansion of the EOB
Hamiltonian of Ref. [50], we write an ansatz with unknown
coefficients for the generating function G(x, p), perform the
following transformation on the ADM Hamiltonian [45]:

. . 0G 0G 0°G (1)
xh =x"+ ,

8pi_ﬁapjapi 6
2
oG 0G 0°G (’)<1>,

i i

Pa="p

ox; + ﬁ@p,@x" +

G (A1)

c

and match it to the EOB Hamiltonian to solve for the
unknowns.
The result for the generating function is given by

V-Tv+1 1,

. vl 1 1
G(x, p) :% {—1 ——+—1/p2r} —l—% [—1/(31/— 1)p4r—§y(y+ 14)p? —————— + - 1?p?

2 2 8

1/2

264

P81 +8)> (-8 +n-8)p-8 +p-5y)].

4r 8

(A2)

which has no LO SO terms since the ADM and EOB Hamiltonian are the same at that order. This generating function

yields

c 2 2r

1 2
xa:x+—2[x(£—y+ p

o0, 2

1
+pp, [— (W= Dwp?r+—,

2

e L[ (rr2 et D] LT
Pa=PT 2P\ 7, 2 272 LA

3(v-2)vp? B 32 =100+ 6 31/2p%] v’x

-

8r2 453 8r2 r

2 1 3(v=2)vp?
) —l—urp,p} —&—?{x [@8#

Bv+1)p

+—=

1
—gv(v—i— 1)p* -

v(5v+ 16)p? _1/2 -Tv+1
8r 4r?

+5 [(31 +§2)2§— (81 +8)(n-8, +"'Sz)} }

., v(Tv+2)p* vw+8)pr 2P -3u+5
- + + :
8r 8r 4r

[(31 +Sz)zpr - ("‘Sl +"‘§2)(P -8 +P'Sz)]

v . A4 R N
+W[_(Sl +8)p+($1+8)p- S, +P'Sz)]}- (A3)

2. Harmonic to EOB transformation

The transformation from harmonic to ADM coordinates is given by Eq. (E1) of Ref. [78], which is independent of spin
since the ADM and harmonic coordinates agree at LO SO and SS. Using that equation together with Eq. (A3), we obtain the
following transformation from harmonic to EOB coordinates:
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1 vp y+2 1 1 4
X, =x+—|x > "5 +urpp| +—3x|—-sv(w+1)p* +
c c* 8

(3v—1)wp? _v(Sv+ 17)p? (=19
8r 8r 4r?

1 1 27 o N A A N
+I7Pr[— (v— 19)V+§<V— 1)VPZT} +% {(»5'1 +Sz)2§— (S1+82)(n- S, +"‘52)} }

4
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4377

n (1502 +29v + 8)p

[nx8,(3=36+2v) +nx8(3+36+2w)]

1 3 T2 =41y + 8)p?
el (g

4 -3 4+ 9
+ +

2 2+ 150+ 1}
+

8r 2r?
3u(5v+ 1) p?

8r
4 — 712 = 230)p?
+xp,[( v v)p

1/2x

’,.

and for the scalars (¢, r, ¢ ), we obtain

B Py [3(v S)V_v_pz_vzp%
=0+ c2r * ct [ 452 2r ro|

B I (v, 5 v 1 (v , v 4 v
rh—r—i—g(Epr—l—urp, 1 —)+F[§(3u 1)p g(u—i—l)pr E(v 19)

2

8r2 453 8r2

YX 181+ 8, <n-Sl+n-Sz><p~S]+p-Sz>]},

2
r U a3 S ~ A A A
} +?KSI +8)p-Si+p-8y)— (S +$,)°p]

(A4)

—|—g(2y - 1)p*pir

(3> = 1Tv +2)p?

v 1 1

—§(31/+55)p%—§1/2rp‘,‘+2 (X 1)(1+2V)(1){2+X2)(%)}
~P¢ Py jv=1 0 ] 1 2425 2-26
S pea el R w (L] +Wb(1( +26-v) +12(2-26-v)] +

(v* + 5v - 3)p*

4 —50% +65v 5
+ pPr

Py 2.4
A2 {41/ prt 4r

-9 +2 1

—-2(v - Lupip* - g o

1,2 +2 (X 1Z1+2’/}(1)(2+X2)(2)]

1 1 3 2_550+6 502
pr+i [<2v—2>p —(2v+3)—VP]+pZ{<v2—2v+8>p4+( 4Ur+ L +<v—y>p3p2

4 — 39 3
+# 2+,y2p‘r1_|_

6 — 507 + 39 L
a7 472

_I_

3. Transformation for the SSC

When calculating the spin contributions to the waveform
modes, we used the source moments from Refs. [116,121]
which are in terms of the covariant SSC. To transform the
resulting modes to the NW SSC, we use the center-of-mass
shift [100]

X eoy) = Xy + 25m, (va x 84)' (A6)
and the spin transformation [132]
m 1
S(]:oV: <1_Ti'>sl+2 2V1(V1 Sl) (A7)

where the spin transformation is required only for the NLO
SO part of the 2PN (2,1) mode.

2r2( 1+ 20000 +X§)(%)]-

For the scalars (7, ¢, r¢ X1,X2), we obtain the trans-
formations

I/Féﬁ
Teov = r_?()ﬁ +)(2)’
vr
¢cov:¢+2_3()(1+)(2>’
Ccr
. . yi’(i)
Feov = r+2_c3()(1 +)(2)7

. . v
¢c0v_¢_m

X
2= _F;r(l —5)»

(147 = P¢*) (1 + 1),

2 = =22 (1 46).

A
202 (A8)
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APPENDIX B: ANGULAR MOMENTUM
FLUX AT LEADING-ORDER
SPIN-SQUARED

In this Appendix, we derive the angular momentum
flux at leading spin-squared (S?) order. Here, we use
unscaled variables in harmonic coordinates, but we drop
|

n 1 3m, n

the subscript & to simplify the notation. We denote the
orbital angular momentum L = ur X v, the relative position
r = x| — X,, and relative velocity v = dr/dt.

The relative acceleration a =a; —a, with LO SO and
SS contributions, in harmonic coordinates and the NW
SSC, is given by [100]

3 3 7
ﬂ>vx351 3<2+ﬂ)%nxS1+l<—>2
r r

g 2m
3
T n(S)-S,) +8i(n-Sy) +8,(n-S)) —5n(n-S,)(n-S,)]
| TSI sz 4 Su(n - 8,2 = 28, (n-81) + 1 <> 2. (B1)
24 | mp
I
Since the spin evolution equations start at 1PN order, where
we can assume S 1=0= S2 for the calculation of the LO
fluxes.
The source multipole moments needed are the spin Sxi — — 2 (rxS8,)" (¥x8$,) (B5)
quadrupole 7%/ and the current quadrupole J%, which are 263 | my m,

given by [100,110,121]

4d .
— o xS

.. i 3 i R
1V = mlxi x’l> +C—3xi (v; x ;)7 33

Clgs? ofi o)
N ; 3
T = myxl ey x v + —xis) +1 2, (B3)

2c

where the indices in angle brackets denote a symmetric
trace-free part.

To transform from the coordinates of the two bodies x!
and x) to the center-of-mass relative coordinates x' =
xi — x5, we use [133]

The energy and angular momentum fluxes in terms of the
multipole moments, to the order needed for the LO fluxes,
are then calculated from [100,134]

1 16
q>E:§If> <’JrFﬂ J5 (B6)
j )0 32 2) ,3)

®) = Sendyy 1) + gz et i (B7)

This yields the LO SO and S;S, fluxes derived in
Refs. [92,93,100], in addition to the S% energy flux from
Ref. [110]. For the Sl2 angular momentum flux, we obtain

xi :%xi+5xi, xh = —%x’#—éxﬂ (B4)
|
2 2
= ’ff_s =S —n-S,(vx8)+v-S(nxS8)
2m2C]E52 L . M
2B | 282 —30i2 + 1207 + 24—
5¢tMr* |ur! R

L M
+—(n-S;)? (210}"2 - 600% — 90—)
ur r

M M
+v><Sl(n‘Sl)<3Oi’2— 181)2—12—) +onxS (v-S —in-S)—
r r

L
—90—i(n-Sl)(v-S)+6 (v S;)? —6i’(v-S1)v><Sl] +1 <2
ur

(B8)
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This is in agreement with the recent results of Ref. [135], although our expression appears simpler because of using the
individual spins S; and masses m;, instead of different combinations of them.

APPENDIX C: ALIGNED-SPIN CONTRIBUTIONS TO THE MODES IN HARMONIC COORDINATES

The modes calculated from the source moments of Refs. [116,121] in harmonic coordinates and using the covariant SSC
have the following spin contributions:

. ¢ V3

3, = \/603r b(1+6+v)+ (1 =6+v)] = W] [Cies2 Xt + 2ux 12 + Copse X523,

Hg;m iy [(1 + &)y + (6= 1)ys] + ﬁ{){l [154 4+ 228(v + 7) 4 34v + 43¢ (46 — 215 + 661 — 21)
C'r

— 2iir2 (1308 + 1475 — 83w + 147) + i2r(—606v + 1058 — 520 + 105)] + y»[—154 + 226(v + 7) — 34
+ 43 ¢* (406 — 216 — 66v + 21) — 2iir?p(13v8 + 1475 + 83v — 147) + i2r(—608v + 1056 + 52u — 105)]},

1 . )
Hggm =57 {r1lrd(36 =50 +3) +ir(36 — 8v + 3)] + ya[rp(=36 — Sv + 3) — ir(36 + 8v — 3)|}

3
+—a3 Ach 3 [Clﬁszﬂhxl + Copex3 X5 + 2upaxi),

230 w

Hspin - \/4—2 3 2 ()(l +)(2)

731

H  &=——

spn 48\/ﬁc4r3 14
+ (=306 + 128 — 500+ 12)] + z2[4 + 2080 — 46 — 200 + P3¢ (=3 180 — 245 — 8Tv + 24)
ViR G(=T060 — 126 — 620 + 12) + P2r(=3060 + 125 + 500 — 12)]},

N 5
H?ﬁin = \/;6 32 (4r¢p + iF) (1 + x12),

[—4 + 2060 — 45 + 200 + P (=316v — 246 + 87v — 24) + irr2d(—=706v — 126 + 62u — 12)

N 5 . .
= /@FL‘% (1[4 = 2060 + 46 — 200 + P> (=330 + 246 — 1190 + 24) + iFr?P(~T86v + 365 — 154v + 36)

+ 127(308v — 126 + 500 — 12)] + 5[4 — 2060 + 45 + 200 + r3¢*(=336v + 246 + 1190 — 24)
+ i (=788 + 366 + 154v — 36) + i2r(306v — 126 — 50u + 12)]},

N

/5
H?[}m = \/;336 i3 (llrggb - 101rr2¢+6r r—12)[(6 = D)y, + (6 + 1)ya],

N 5 12 . 392 oy .. .
H?Sm = “ﬁm (=23ir3¢p” + 10ir?¢p + 2iir — 4i)[(5 — V)y; + (6 + )ya). (C1)

APPENDIX D: KEPLERIAN PARAMETRIZATION

This Appendix provides expressions for some orbital quantities in the Keplerian parametrization that are needed for
calculating the initial conditions, and the tail part of the RR force and waveform modes.
In the Keplerian parametrization,

1
_ D1
" u,(1+ecosy)’ (b1)

where u,, is the inverse semilatus rectum and y is the relativistic anomaly. Inverting the Hamiltonian at the turning points
ry = 1/(u,(1 £ e)) and solving for the energy and angular momentum to 2PN order yields
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2

-5 (@ =12 =3)

E=_(e*=1)u,

[NSR

3
+_’gp (e2 = 1)2[e2(1? = 3u +5) — 1% — 5v +27]

1
( )2u5/2
Tpm(y-za 2) + a2 (v +26-2)]

(1 _ 62)21/{3
4—c4p r1(Cies2 X7 + X1)

+20(1 4+ v)yox + 13(Copse X3 + X3)],

1 \/_ u3/2 5
\/@ 52 (e +3)+ ot (2 +3)(3e* —4v+9)

%( +3)uplri (=26 + v = 2) + 12(26 + v = 2)]
(

Py =

+

+3)uy”
T r1(Cips2 X + X7)

+ 23(Cops2 X3 + X3)]

Inverting the Hamiltonian to obtain p,(E, p,), and plug-
ging E(e,u,) and p,(e,u,), yields

3/2

sm;((e +2ecosy+1)+ (D4)

p,=e\/u sm;(—i—

The radial and azimuthal periods are given, respec-

tively, by
= (OH\ " dr
=2 —d
A <5‘pr) ¥

fd‘f<w) o

2, V32~ ’
(u, —eu)/ 2\ Ju, - etu

P

3/2 6
+”‘1’27;{4W2[e2(3u+1)+u+3]. (D2) T¢_]{¢dt ]f—dt + 2y (D5)
c
Inverting p,(u,,e), we obtain u,(p,,e)
1 (€43)  (2+3)(2e2=v+06) The associated frequencies are
uy(py.€) = —t—53
Py Dy ct P¢
3+ €2
+T3[(V—25—2))(1 + (W+25-2)y]
pe o, =—, Wy = —. (D6)
1 5 T, T,
+W{Vﬂ(1%2[€ Gv+1)+v+3]
¢
+ 72[Cips2 (€® + 3)X2 + (3e? + 1) X4
Crese( Xl il The dimensionless frequency variable x = a); 3 to 2PN
+ 1< 2} (D3)  order is given by
u? u
x=u,—¢eu, +3—pz(e2 —1)(e*(v—-6) —v) —?1)4(6 — 1){e4(81/2 —33v + 180) + 8.2
c c
—22[3(12V1— & +5)v =90V 1 = 2 482 + 27| +9(8V1 = > = 13 ) = 180( VI -2 - 1) }
S
+F(€2 -D)B+ Dy (2+26-v)+1 < 2]
B
—TQ{X%[ClESZ(e4 - X7+ (e = 12X +upinlet(v +1) =280 +v— 1]+ 1 < 2}, (D7)

which can be inverted to obtain u, (x,
which reads

e), the 1PN part of

[
APPENDIX E: p, IN TORTOISE COORDINATES

The tortoise coordinate r, is defined by [69,112]

dr, /D(r) 1

(E1)

dr A(r) E(r)’
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where A(r) and D(r) are the metric potentials

D
ds2y = —A(r)di* + ﬂdrz + r2dQ2. (E2)
A(r)
The conjugate momentum to r, is denoted p,, and
invariance of the action gives the relation

Pr, = pré(r)' (E3)

The Hamiltonian and EOMs used in SEOBNRv4 [see
Egs. (10) of Ref. [136]] are expressed in terms of the
variables (r, p, , ¢, p¢). However, the RR force we derived
in Sec. II is expressed in terms of (7, p,, p.). We use
Eq. (E3) to replace p, with p, , and to obtain a relation
between p, and the derivatives of Hgop(7, p,. . py)- We use
the following relations:

OH OH OH
af = (&£ dr+<—>d L+ ed
<8r>p,* ap,. ), " ap,

OH OH OH
() e (2 a4
<3r>p, op,), P Opy Pe (E4)

~ (Op.. op,.
dp, = < P )prdr+ < EP >rdpr, (E5)

leading to
8H> <8H> (aH) <8p,)
— | == + 5 =), (E6)
<8r » or o op. ), \or /),
where
op,. _dé(r)
< or )pr P (E7)
Hence,
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