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We resolve the fate of the two original apparent horizons during the head-on merger of two non-spinning
black holes, showing that these horizons exist for a finite amount of time before they individually “turn
around” and move backward in time. This completes the understanding of the “pair of pants” diagram
for the apparent horizon. Our result is facilitated by a new method for locating marginally outer trapped
surfaces (MOTSs) based on a generalized shooting method. We also discuss the role played by the MOTS
stability operator in discerning which among a multitude of MOTSs should be considered as black hole
boundaries.

It is common practice to picture the merger of two black
holes according to the famous “pair of pants” diagram,
which describes the evolution of the event horizon during
the merger. But what does the analogous picture for the ap-
parent horizon look like? While the evolution of the event
horizon has been understood for nearly half a century [1],
the complete evolution of the apparent horizon during a
merger has remained unresolved.

The event horizon is well-suited to theoretical analyses,
but its teleological nature makes it less useful in highly dy-
namical or practical situations, such as in numerical simu-
lations of black hole collisions. In these cases, it is much
cleaner to use marginally trapped surfaces. A closed two-
dimensional space-like surface S in a four-dimensional
spacetime is said to be trapped if light rays emanating from
the surface are converging. In the case where the outgoing
light rays are neither converging nor diverging it is said to
be a marginally outer trapped surface (MOTS).

MOTSs possess a number of desirable properties that
make them natural candidates as quasi-local black hole
boundaries. The notion of a trapped surface was first in-
troduced by Penrose and is a key ingredient in the singu-
larity theorems of general relativity [2]. MOTSs can be as-
signed physical quantities such as mass and angular mo-
mentum, allowing for the tracking of these quantities along
the world tube traced out by the MOTS during an evolu-
tion [3–5], and variations in these quantities obey mechan-
ical laws akin to the laws of black hole thermodynamics [6–
8]. Whether or not a MOTS can be evolved into the fu-
ture, generating a smooth, three-dimensional horizon-like
structure is related to its stability properties: if the princi-
pal (smallest) eigenvalue of the stability operator is posi-
tive, then the MOTS is guaranteed to evolve smoothly into
the future [9, 10]. The term MOTS is sometimes used in-
terchangeably with apparent horizon, although here, and
in the accompanying papers of this sequence [11, 12], we
shall use the term apparent horizon to refer to a MOTS that
is stable in this sense.

Despite their importance as a quasi-local characteriza-

tion of black holes, there remain a number of unresolved
questions pertaining to the evolution of interior MOTSs
during a merger. While it is true that the details of what
occurs within the event horizon (where all MOTSs are lo-
cated) is causally disconnected from the rest of the uni-
verse, this does not mean this question is without relevance.
At the very least, this is important for conceptual purposes,
to understand to what extent MOTSs provide a physically
reasonable description of the merger. Furthermore, the ex-
istence of a connected sequence of MOTSs between the
initial and final states of the merger provides a means by
which physical properties can be tracked throughout the
full evolution of the system. Finally, one may hope that
there exist correlations between the dynamics in the strong
field regime and properties of the distant spacetime. In-
deed, such correlations have been shown to exist under cer-
tain circumstances [5, 13–16].

The behaviour of apparent horizons during the initial
stages of a merger is well-known [1]. Initially there are two
individual apparent horizons corresponding to two separate
black holes. When these holes become sufficiently close to
one another, a common apparent horizon forms surround-
ing the individual horizons, which continue to exist. This
common horizon immediately splits into an inner and outer
branch. The outer branch grows in area and becomes more
symmetric, ultimately asymptoting to the event horizon.
The inner common MOTS moves inward, becoming in-
creasingly distorted.

The bifurcation of the common horizon, combined with
the fact that there are known exact solution examples of
MOTSs weaving back and forth through time [17, 18],
led to the speculative idea that all MOTSs involved in the
merger may in fact be different components of a single
world-tube that weaves its way through time [19, 20]. How-
ever, in most situations of interest MOTSs must be located
numerically. Therefore, improvements in the understand-
ing of the evolution of MOTSs during a merger have been
in lockstep with improvements in the numerical methods
used to locate them. For this reason, progress beyond this
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qualitative picture was limited.
With the advent of more robust numerical finders for

MOTSs [21], it has been possible to go beyond these ini-
tial stages of the merger and better understand the in-
terior dynamics. The inner common MOTS continues to
move inward and merges (non-smoothly) with the two ap-
parent horizons of the individual black holes at the mo-
ment these horizons touch [22–25]. However, all three
of these surfaces continue to exist past this point, with
the two individual horizons interpenetrating and the in-
ner common MOTS developing self-intersections. Identi-
fying these self-intersections was not possible with pre-
vious MOTS finders, as these had implicitly built in the
assumption that the MOTSs are ‘star-shaped’. Such seem-
ingly exotic surfaces have subsequently been shown to be
rather generic. For example, there are an infinite number
of self-intersecting MOTSs present within the horizon of
the Schwarzschild black hole [26]. This raises the question
of whether or not additional, exotic MOTSs are present in
the spacetime of a merger event, and what (if any) role is
played by these surfaces.

In this Letter, we report on three closely connected re-
sults. First, using a novel horizon finder that we develop,
we identify for the first time an apparently infinite number
of MOTSs present in Brill-Lindquist initial data. We then
discuss the role these new MOTSs play in resolving the fi-
nal fate of the apparent horizons of the two original black
holes. Finally, we discuss the stability of these surfaces.
As we will see, stability provides a natural way to discern
which among the multitude of MOTSs present during the
merger can reasonably be called apparent horizons.

A Multitude of MOTSs. To locate MOTSs, we employ a
novel shooting method. The procedure, while in the tra-
dition of methods first developed in the 1970s [27], is
more versatile and applies to general axisymmetric config-
urations [11]. This method has been implemented in [28]
and can be applied to both analytically known initial data
as well as to slices obtained from numerical simulations.
Moreover, it overcomes a limitation of the method intro-
duced in [21] as it does not require an initial guess for the
shape of the surface to be located. As such, our approach is
ideally suited for locating MOTSs with geometries that are
not only unexpected but also arbitrarily complicated.

The approach, which is detailed in [11], exploits axisym-
metry to reduce the problem of locating a 2-surface to that
of determining a curve, which we refer to as a MOTS-
odesic. The full MOTS is then obtained as the surface of
revolution of the MOTSodesic. Given an axisymmetric 3-
surface {Σ, hij, Di}, a curve γ(s) in the two-dimensional
space orthogonal to the rotational Killing field ϕ = ∂

∂φ
is a

MOTSodesic provided that

T aDaT
b = (N cDc(lnR) + ku)N b = κ+N b . (1)

Here T a is the unit-length tangent vector to γ, Na is its
unit-length normal, R is the circumferential radius, and ku
is the trace of the extrinsic curvature with respect to the

unit time-like normal u to Σ, and we have chosen an ar-
clength parameterization for γ. Eq. (1) comprises two cou-
pled second-order ODEs that allow one to determine the
MOTSodesics.

Henceforth, we restrict our considerations to the head-
on merger of two non-spinning black holes. For this pur-
pose, we use Brill-Lindquist (BL) initial data [29]. These
describe a Cauchy slice Σ which is time symmetric, i.e.
with vanishing extrinsic curvature. The three-metric is con-
formally flat, hij = ψ4δij , where δij is the flat metric and
the conformal factor is given by

ψ = 1 +
m1

2r1

+
m2

2r2

, (2)

where m1,2 are the bare masses of the black holes and r1,2

are the (coordinate) distances to the respective puncture.
For BL initial data, we work in cylindrical coordinates

(ρ, z, φ) on the spatial slice and consider the curve γ :
(ρ, z) = (P (s), Z(s)). For this, the MOTSodesic equa-
tions reduce to

P̈ =
Ż2

P
+

4ψρ
ψ5
− 6Ṗ (Ṗψρ + Żψz)

ψ
, (3)

Z̈ = − ŻṖ
P

+
4ψz
ψ5
− 6Ż(Ṗψρ + Żψz)

ψ
, (4)

where subscripts denote partial derivatives and the ar-
clength parameterization reads ψ4(Ṗ 2 + Ż2) = 1. The
equations are solved by first obtaining a series solution in
the vicinity of the axis to ensure regularity there. The series
solution is used as initial conditions to solve the system us-
ing Mathematica’s NDSolve. We use the shooting method,
tuning the initial conditions until the surface can be con-
sidered to approximately close, a condition we take to be
an approach to the axis to within a distance of about 10−6

or better. These surfaces are then confirmed to be MOTSs
using the methods of [21].

Using this method, we find in addition to the four ‘stan-
dard’ MOTSs a large number of more exotic MOTSs — see
Fig. 1 for an example. All new MOTSs are found between
the outer apparent horizon and the two original apparent
horizons and can enclose either, both, or neither of the two
punctures. These surfaces tend to ‘hug’ closely the outer
apparent horizon and/or the individual apparent horizons
and can fold or closely wrap around these surfaces a seem-
ingly arbitrary number of times. Indeed, nothing we have
found indicates that there are a finite number of additional
MOTSs, and the number may very well be infinite.

The Fate of the Apparent Horizons. The existence of
new MOTSs in BL initial data raises a number of impor-
tant questions. First, are these surfaces generic during the
merger, or are they artefacts of the high degree of sym-
metry present in the initial data? Second, if generic, what
role (if any) do these surfaces play in the merger? Finally,
with a seemingly infinite number of MOTSs present in a
merger, how can one discern physically relevant surfaces
that demarcate black hole boundaries?
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FIG. 1. MOTSs present in Brill-Lindquist initial data for the case
m1 = 0.2, m2 = 0.8 with a separation of d = 0.65. Left:
The ‘standard’ horizons consisting of the outer apparent horizon
(blue), inner common MOTS (green), and apparent horizons of
individual black holes (orange and purple) reproduced using the
shooting method. Right: An example of a new exotic MOTS.

To address these questions, we perform numerical evo-
lutions of the initial data. We focus primarily on the con-
figuration with total ADM mass M = m1 + m2 = 1, a
mass ratio of q = m2/m1 = 2 and a distance parameter
of d = 0.9 corresponding to two black holes that are ini-
tially separate with no common apparent horizon present.
To track the MOTSs in the simulations we use the method
described in [21, 23] and available from [28]. To locate
the MOTSs, we use two approaches: One is the shooting
method described earlier and detailed in [11], while the
other is based on the assumption that MOTSs appear or dis-
appear only in bifurcations. To this end, we try to track each
MOTS to the future and to the past. Whenever a MOTS
cannot be tracked further in either direction, we look for a
“close by” one with which it might annihilate or bifurcate,
respectively.

We perform our simulations with the Einstein Toolkit
[30, 31] and set up the initial conditions using TwoPunc-
tures [32]. The Einstein equations are evolved in the BSSN
formulation using an axisymmetric version of McLachlan
[33], which uses Kranc [34, 35] to generate efficient C++
code. We work with a 1 + log slicing and a Γ-driver shift
condition [36, 37]. Most of our results are obtained with a
spatial grid resolution of 1/∆x = 720. Additional resolu-
tions 1/∆x = 240, 360 and 480 and shorter simulations
with 1/∆x = 960, 1440 and 1920 are used to assess con-
vergence and resolve certain features. Additional details of
our numerical setup are described in [12, 23].

Our main results are illustrated in Fig. 2, which shows
the evolution of the area of several relevant MOTSs, and
Fig. 3 which shows the different MOTSs at a particular mo-
ment of time. Of the curves shown, Souter is the common
apparent horizon, Sinner is the inner common MOTS, and
S1,2 correspond to the apparent horizons of the individual
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FIG. 2. The area of the various MOTSs as a function of time. We
indicate using lines of the same colour continuous world tubes
moving forward and backward in time. The dashed line indicates
the sum of areas of S1,2. For purely numerical reasons, we lose
track of some of the MOTSs — this is the case for the curves that
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FIG. 3. A “snapshot” of Fig. 2 showing a variety of MOTSs. The
three dark lines correspond to Souter and S1,2. Two of the shown
surfaces exhibit self-intersections. Lighter colors indicate a larger
number of negative eigenvalues of the stability operator (see be-
low and [11, 12] for details).
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black holes. In addition to these standard MOTSs, we find
many new MOTSs; the evolution of a selection of these
surfaces is shown in Fig. 2. The surfaces all form through
bifurcations, splitting into an outer and inner branch. They
form dynamically during the course of the simulation, in-
dicating that the exotic MOTSs present in the initial data
are not artefacts of that configuration. The shown surfaces
all form after the outer apparent horizon has formed, and
despite several MOTSs having larger area than Souter, all
are contained inside of it.

The figure makes clear that the new MOTSs are essential
to understanding the final fate of the apparent horizons of
the individual black holes. In the figure shown, both Sinner

and S2 are seen to be independently annihilated by new
MOTSs. We have good indications that S1 is annihilated
by S∗1 , but this could not be fully resolved in our simula-
tion due to the MOTSs becoming too close to the punc-
tures, where the resolution is necessarily worse. Nonethe-
less, it seems clear that the new MOTSs we have located
provide a mechanism by which the apparent horizons of
the original black holes are annihilated. To illustrate this in
greater detail, we present in Fig. 4 several “snapshots” of
the evolution of the horizon S2.

The Role of Stability. The stability operator is key in un-
derstanding the details of the picture so far described. For a
non-spinning axisymmetric MOTS in vacuum, the stability
operator takes the form [11]

LΣψ = −∆Sψ +

(R
2
− 2|σ+|2

)
ψ , (5)

where ∆S is the Laplacian on the MOTS S ,R is its scalar
curvature, and σAB+ is the trace-free part of the extrinsic
curvature of the outward-directed null normal. The eigen-
values LΣψ = λl,mψ of the stability operator determine
the stability properties of the associated MOTS. We find
that, associated to every bifurcation/annihilation is the van-
ishing of an eigenvalue of the stability operator — see
Fig. 5 for the case of the bifurcations. While it is known
that the vanishing of the principal eigenvalue corresponds
to a bifurcation/annihilation event [38], what we see here
is that for all but S2/S∗2 and Souter/Sinner it is one of the
higher eigenvalues that vanishes at the bifurcation or an-
nihilation. This provides robust numerical evidence for the
smoothness of the world tubes shown in Fig. 2.

Of all the MOTSs we have located, only three have a
positive principal eigenvalue: Souter, S1 and S2. As a re-
sult, these surfaces act as barriers for trapped and untrapped
surfaces in their vicinity, and they are also the only ones to
have everywhere expanding space-like world tubes. These
properties are precisely what one would associate with
horizons. Therefore stability provides an unambiguous cri-
terion by which the MOTSs corresponding to black hole
boundaries may be numerically identified. It is this result
that underlies our choice of terminology for the apparent
horizon advocated in the introduction. All other MOTSs we
have located have negative eigenvalues. In fact, the picture

that has emerged can be understood rather simply: each
time a given world tube turns around in time, the number
of negative eigenvalues increases.

Interestingly, the stability of the MOTSs can be under-
stood entirely geometrically through the concept of MOTS-
odesics introduced earlier [11]. To do so, one first relaxes
the requirement of closed MOTSodesics, i.e. allowing also
for marginally outer trapped open surfaces. It is then possi-
ble to analyse the deviation between nearby MOTSodesics
in complete analogy with geodesic deviation. As it hap-
pens, the MOTSodesic deviation equation contains pre-
cisely the same information as the stability operator (5).
Negative eigenvalues of the stability operator for a given
MOTS have a geometric interpretation as the number of
intersections of nearby MOTSodesics with the MOTS of
interest. This provides a completely geometric and visual
way by which the stability of a given MOTS can be deter-
mined, and highlights the fact that the stability operator is
to MOTSs what the Jacobi equation is to geodesics.

Summary. Here we have shown that the interior of a
black hole merger is far richer than previously thought,
containing a large (possibly infinite) number of hitherto
unidentified MOTSs. These MOTSs were initially located
using a new generalized shooting method that sidesteps the
drawback in existing finders of requiring an initial guess
for the surface of interest. The additional surfaces play a
crucial role in the interior dynamics of the merger, and are
responsible for the annihilation of the apparent horizons of
the original black holes. As such, these new MOTSs make
possible for the first time to understand how two black
holes become one, giving the analog of the “pair of pants”
diagram for the apparent horizon. The picture is consider-
ably more complex than the equivalent picture for the event
horizon and involves several world tubes that weave their
way back and forth in time. Rather than obscuring the util-
ity of the quasi-local horizon framework, the multitude of
MOTSs present during the merger actually highlights the
rarity of stable MOTSs. Of all the MOTSs we have located,
only three are stable, and these are precisely those that are
most naturally associated with black hole boundaries.

Acknowledgements. We would like to express our grat-
itude to Graham Cox, Jose Luis Jaramillo, Badri Krish-
nan, Hari Kunduri and the members of the Memorial Uni-
versity Gravity Journal Club for valuable discussions and
suggestions. IB was supported by the Natural Science and
Engineering Research Council of Canada Discovery Grant
2018-0473. The work of RAH was supported by the Nat-
ural Science and Engineering Research Council of Canada
through the Banting Postdoctoral Fellowship program and
also by AOARD Grant FA2386-19-1-4077.

[1] S. W. Hawking and G. F. R. Ellis, The Large Scale Struc-
ture of Space-Time, Cambridge Monographs on Mathemat-

http://dx.doi.org/10.1017/CBO9780511524646
http://dx.doi.org/10.1017/CBO9780511524646


5

−0.5 0.0 0.5

x/M

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

z
/M

S2 at t = 0

−0.4 −0.2 0.0 0.2 0.4

x/M

−0.8

−0.6

−0.4

−0.2

0.0

z
/M

S2 at t ≈ 5.3399M

−0.5 0.0 0.5

x/M

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

z
/M

S∗2 at t = 1.5M

FIG. 4. The annihilation of S2. The inset shows, with a red dot, where along the world tube the shown MOTS occurs [see Fig. 2].

0.70 0.75 0.80 0.85 0.90 0.95

t/M

−0.3

−0.2

−0.1

0.0

0.1

0.2

λ
l,
m
M

2

to
u
t
e
r

b
if

u
r
c
a
t
e

λ0,0 for Souter

λ0,0 for Sinner

λ1,0 for S∗1
λ1,0 for S∗∗1

λ2,0 for S∗inner

λ2,0 for S∗∗inner

λ1,0 for S∗2
λ1,0 for S∗∗2

λ2,0 for S∗0
λ2,0 for S∗∗0

FIG. 5. Eigenvalues (with m = 0) of the stability operator for the
ten MOTSs participating in the five bifurcations shown in Fig. 2.
For each MOTS, we show the respective eigenvalue which tends
to zero.

ical Physics (Cambridge University Press, 1973).
[2] Roger Penrose, “Gravitational collapse and space-time sin-

gularities,” Phys. Rev. Lett. 14, 57–59 (1965).
[3] Olaf Dreyer, Badri Krishnan, Deirdre Shoemaker, and Erik

Schnetter, “Introduction to isolated horizons in numeri-
cal relativity,” Phys. Rev. D 67, 024018 (2003), arXiv:gr-
qc/0206008.

[4] Badri Krishnan, “Fundamental properties and applications
of quasi-local black hole horizons,” Class. Quant. Grav. 25,
114005 (2008), arXiv:0712.1575 [gr-qc].

[5] Anshu Gupta, Badri Krishnan, Alex Nielsen, and Erik
Schnetter, “Dynamics of marginally trapped surfaces in a
binary black hole merger: Growth and approach to equilib-
rium,” Phys. Rev. D97, 084028 (2018), arXiv:1801.07048
[gr-qc].

[6] Abhay Ashtekar and Badri Krishnan, “Dynamical horizons:
Energy, angular momentum, fluxes and balance laws,” Phys.
Rev. Lett. 89, 261101 (2002), arXiv:gr-qc/0207080.

[7] Abhay Ashtekar and Badri Krishnan, “Dynamical hori-
zons and their properties,” Phys. Rev. D68, 104030 (2003),
arXiv:gr-qc/0308033.

[8] Abhay Ashtekar and Badri Krishnan, “Isolated and dynam-
ical horizons and their applications,” Living Rev. Rel. 7, 10
(2004), arXiv:gr-qc/0407042.

[9] Lars Andersson, Marc Mars, and Walter Simon, “Local ex-
istence of dynamical and trapping horizons,” Phys.Rev.Lett.
95, 111102 (2005), arXiv:gr-qc/0506013 [gr-qc].

[10] Lars Andersson, Marc Mars, and Walter Simon, “Stabil-
ity of marginally outer trapped surfaces and existence of
marginally outer trapped tubes,” Adv.Theor.Math.Phys. 12
(2008), arXiv:0704.2889 [gr-qc].

[11] Ivan Booth, Robie A. Hennigar, and Daniel Pook-Kolb,
“Ultimate fate of apparent horizons during a binary black
hole merger I: locating and understanding axisymmetric
marginally outer trapped surfaces,” (2021).

[12] Daniel Pook-Kolb, Ivan Booth, and Robie A. Hennigar,
“Ultimate fate of apparent horizons during a binary black
hole merger II: Horizons weaving back and forth in time,”
(2021).

[13] Luciano Rezzolla, Rodrigo P. Macedo, and Jose Luis
Jaramillo, “Understanding the ’anti-kick’ in the merger of
binary black holes,” Phys. Rev. Lett. 104, 221101 (2010),
arXiv:1003.0873 [gr-qc].

[14] Jose Luis Jaramillo, Rodrigo Panosso Macedo, Philipp
Moesta, and Luciano Rezzolla, “Black-hole horizons as
probes of black-hole dynamics I: post-merger recoil in
head-on collisions,” Phys. Rev. D 85, 084030 (2012),
arXiv:1108.0060 [gr-qc].

[15] J. L. Jaramillo, R. P. Macedo, P. Moesta, and L. Rezzolla,
“Towards a cross-correlation approach to strong-field dy-
namics in Black Hole spacetimes,” AIP Conf. Proc. 1458,
158–173 (2012), arXiv:1205.3902 [gr-qc].

[16] Vaishak Prasad, Anshu Gupta, Sukanta Bose, Badri Krish-
nan, and Erik Schnetter, “News from horizons in binary
black hole mergers,” Phys. Rev. Lett. 125, 121101 (2020),
arXiv:2003.06215 [gr-qc].

[17] Ishai Ben-Dov, “The Penrose inequality and apparent
horizons,” Phys. Rev. D 70, 124031 (2004), arXiv:gr-
qc/0408066.

[18] Ivan Booth, Lionel Brits, Jose A. Gonzalez, and Chris Van
Den Broeck, “Marginally trapped tubes and dynamical hori-

http://dx.doi.org/ 10.1103/PhysRevLett.14.57
http://dx.doi.org/ 10.1103/PhysRevD.67.024018
http://arxiv.org/abs/gr-qc/0206008
http://arxiv.org/abs/gr-qc/0206008
http://dx.doi.org/10.1088/0264-9381/25/11/114005
http://dx.doi.org/10.1088/0264-9381/25/11/114005
http://arxiv.org/abs/0712.1575
http://dx.doi.org/10.1103/PhysRevD.97.084028
http://arxiv.org/abs/1801.07048
http://arxiv.org/abs/1801.07048
http://dx.doi.org/10.1103/PhysRevLett.89.261101
http://dx.doi.org/10.1103/PhysRevLett.89.261101
http://arxiv.org/abs/gr-qc/0207080
http://dx.doi.org/ 10.1103/PhysRevD.68.104030
http://arxiv.org/abs/gr-qc/0308033
http://arxiv.org/abs/gr-qc/0407042
http://dx.doi.org/ 10.1103/PhysRevLett.95.111102
http://dx.doi.org/ 10.1103/PhysRevLett.95.111102
http://arxiv.org/abs/gr-qc/0506013
http://arxiv.org/abs/0704.2889
http://dx.doi.org/10.1103/PhysRevLett.104.221101
http://arxiv.org/abs/1003.0873
http://dx.doi.org/10.1103/PhysRevD.85.084030
http://arxiv.org/abs/1108.0060
http://dx.doi.org/10.1063/1.4734411
http://dx.doi.org/10.1063/1.4734411
http://arxiv.org/abs/1205.3902
http://dx.doi.org/10.1103/PhysRevLett.125.121101
http://arxiv.org/abs/2003.06215
http://dx.doi.org/ 10.1103/PhysRevD.70.124031
http://arxiv.org/abs/gr-qc/0408066
http://arxiv.org/abs/gr-qc/0408066


6

zons,” Class. Quant. Grav. 23, 413–440 (2006), arXiv:gr-
qc/0506119.

[19] Sean A. Hayward, “Black holes: New horizons,” in Recent
developments in theoretical and experimental general rel-
ativity, gravitation and relativistic field theories. Proceed-
ings, 9th Marcel Grossmann Meeting, MG’9, Rome, Italy,
July 2-8, 2000. Pts. A-C (2000) pp. 568–580, arXiv:gr-
qc/0008071 [gr-qc].

[20] Ishai Ben-Dov, “Penrose inequality and apparent horizons,”
Phys. Rev. D 70, 124031 (2004).

[21] Daniel Pook-Kolb, Ofek Birnholtz, Badri Krishnan, and
Erik Schnetter, “Existence and stability of marginally
trapped surfaces in black-hole spacetimes,” Phys. Rev. D 99,
064005 (2019).

[22] Daniel Pook-Kolb, Ofek Birnholtz, Badri Krishnan, and
Erik Schnetter, “Interior of a binary black hole merger,”
Phys. Rev. Lett. 123, 171102 (2019).

[23] Daniel Pook-Kolb, Ofek Birnholtz, Badri Krishnan, and
Erik Schnetter, “Self-intersecting marginally outer trapped
surfaces,” Phys. Rev. D 100, 084044 (2019).

[24] Daniel Pook-Kolb, Ofek Birnholtz, José Luis Jaramillo,
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