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Supporting Information 
 

Table S1: Wyckoff positions, atomic coordinates, and equivalent isotropic displacement parameters 

Ueq/ Å2 of the single-crystal determination (T = 183(2) K) of K3MnF6. Ueq is defined as one third of the 

trace of the orthogonalized Uij tensor (standard deviations in parentheses). 

Atom Wyckoff position x y z Ueq 

Mn1 8d 0 0 ½ 0.00649(3) 

Mn2 8c 0 0 0 0.00605(3) 

K1 16f 0.23093(2) 0.22648(2) 0.52404(2) 0.01103(4) 

K2 16f 0.24170(2) 0.04249(2) 0.11161(2) 0.01171(4) 

K3 8e 0 ¼ 0.36587(2) 0.01325(5) 

K4 4b 0 ¼ ⅝ 0.01357(7) 

K5 4a 0 ¼ ⅛ 0.01917(8) 

F1 16f 0.01352(4) 0.01147(5) 0.11231(3) 0.01472(11) 

F2 16f 0.08474(5) 0.07011(5) 0.58411(3) 0.01463(10) 

F3 16f 0.09537(4) 0.05500(5) 0.42327(3) 0.01483(10) 

F4 16f 0.14647(5) 0.14162(5) 0.24641(4) 0.01699(11) 

F5 16f 0.37144(5) 0.13381(5) 0.23720(4) 0.01593(11) 

F6 16f 0.41159(5) 0.13441(5) 0.01386(4) 0.01582(11) 
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Table S2: Anisotropic displacement parameters Uij in Å2 (standard deviations in parentheses) of the 

single-crystal determination at T = 183(2) K. 

Atom U11 U22 U33 U23 U13 U12 

Mn1 0.00612(7) 0.00653(7) 0.00682(7) 0.00081(5) 0.00030(5) 0.00041(5) 

Mn2 0.00568(7) 0.00673(7) 0.00574(6) 0.00030(5) −0.00006(5) 0.00105(5) 

K1 0.00993(7) 0.01167(8) 0.01148(7) 0.00175(6) 0.00153(6) 0.00255(5) 

K2 0.01110(7) 0.01077(8) 0.01325(7) −0.00181(6) 0.00013(6) 0.00146(6) 

K3 0.01683(12) 0.01224(11) 0.01070(11) 0 0 −0.00303(9) 

K4 0.00965(9) 0.00965(9) 0.02142(18) 0 0 0 

K5 0.01706(11) 0.01706(11) 0.0234(2) 0 0 0 

F1 0.0134(2) 0.0234(3) 0.0074(2) −0.0025(19) −0.00060(18) −0.0007(2) 

F2 0.0142(2) 0.0144(2) 0.0153(2) 0.0004(2) −0.0019(2) −0.00334(19) 

F3 0.0134(2) 0.0165(3) 0.0146(2) 0.00034(2) 0.0050(2) 0.0003(2) 

F4 0.0174(3) 0.0148(3) 0.0188(3) −0.0022(2) 0.0030(2) −0.0095(2) 

F5 0.0156(3) 0.0147(2) 0.0174(3) 0.0028(2) 0.0042(2) 0.0068(2) 

F6 0.0143(3) 0.0172(3) 0.0159(3) 0.0005(2) −0.00139(19) −0.0037(2) 

 

Table S3: Interatomic distances in Å (standard deviations in parentheses) of the single-crystal 

determination (T = 183(2) K). 

Mn1–F3 1.856(1) 2× 
 

K1–F6 2.537(1)  
 

K2–F2 2.594(1)   K3–F6 2.674(1) 2× 

–F2 1.940(1) 2× 
 

–F1 2.539(1)  
 

–F3 2.699(1)   –F5 2.731(1) 2× 

–F6 1.999(1) 2× 
 

–F5 2.668(1)  
 

–F5 2.748(1)   –F3 2.842(1) 2× 

Ø 1.932 
  

–F1 2.693(1)  
 

–F1 2.763(1)   –F4 2.989(1) 2× 

  
  

–F2 2.764(1) 
  

–F4 2.795(1)   –F1 3.233(1) 2× 

Mn2–F4 1.851(1) 2×  –F3 2.768(1)  
 

–F1 2.843(1)   Ø 289.4  

–F1 1.863(1) 2×  –F2 2.822(1)  
 

–F5 2.849(1)      

–F5 2.086(1) 2×  –F3 3.168(1)   –F6 2.877(1)   K5–F1 2.957(1) 4× 

Ø 1.933   Ø 2.745   –F4 3.092(1)   –F4 3.010(1) 4× 

        Ø 2.80.7   –F5 3.119(1) 4× 

K4–F2 2.546(1) 4×          Ø 3.029  

–F6 2.908(1) 4×             

Ø 2.727              
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Table S4. Bond angles in deg (standard deviations in parentheses) of the single-crystal determination 

at T = 183(2) K. 

F3–Mn1–F3 180 
 

F3–Mn1–F2 91.09(3) 2× F4–Mn2–F1 91.12(3) 2× 

F2–Mn1–F2 180 
 

F3–Mn1–F2 88.91(3) 2× F4–Mn2–F1 88.88(3) 2× 

F6–Mn1–F6 180 
 

F3–Mn1–F6 87.99(2) 2× F4–Mn2–F5 87.77(3) 2× 

Ø180 180 
 

F3–Mn1–F6 92.01(3) 2× F4–Mn2–F5 90.23(3) 2× 

  
 

F2–Mn1–F6 89.68(2) 2× F1–Mn2–F5 89.09(2) 2× 

F4–Mn2–F4 180.00(3) 
 

F2–Mn1–F6 90.32(2) 2× F1–Mn2–F5 90.92(2) 2× 

F1–Mn2–F1 180 
 

Ø90 90.00  Ø90 89.67  

F5–Mn2–F5 180.00(4)        

Ø180 180.00        

 

Table S5: Charge distributions according to both the bond-valence sums (∑V) and the CHARDI (∑Q) 

concept. 

 Mn1 Mn2 K1 K2 K3 K4 K5 

∑V +2.92 +2.98 +1.16 +1.05 +0.99 +1.23 +0.74 

∑Q +3.05 +2.85 +1.01 +1.01 +1.07 +1.00 +0.98 

 

 F1 F2 F3 F4 F5 F6  

∑V –1.06 –1.12 –1.00 –0.89 –0.89 –0.96  

∑Q –1.09 –1.04 –1.00 –1.14 –0.83 –0.89  

 

Table S6: Comparison of the calculated MAPLE values of K3MnF6 and the binary compounds KF 

(Fm3̄m) and MnF3 (C2/c). 

Calculated MAPLE value for KF in kJ/mol 905 3× 

Calculated MAPLE value for MnF3 in kJ/mol 6437  

Calculated MAPLE value from the two educt compounds in kJ/mol 9151  

   

Calculated MAPLE value for K3MnF6 in kJ/mol 9209  

Deviation in % 0.6  

 

The MAPLE value (Madelung part of lattice energy) of K3MnF6 was calculated and compared to the 

sum of the MAPLE values of the binary compounds KF[1] and MnF3[2]. The values are in good agreement 

with a deviation of 0.6%. 
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Table S7: Selected crystallographic data and details of the Rietveld refinement of K3MnF6. 

Formula K3MnF6 

Molar mass / g·mol−1 286.2 

Space group (No.) I41/a (no. 88) 

a / Å 12.37367(15) 

c / Å 16.5748(2) 

V / Å3 2537.72(6) 

Z 16 

Pearson symbol tI160 

ρcalc. / g·cm−3 2.9966 

Color of the powder Purple 

T / K 293 

λ / Å 1.54060 (Cu-Kα1) 

2θmin, 2θmax, 2θstep / ° 3.885, 80.355, 0.015 

No. of data points 5099 

No. of parameters 53 

No. of restrains 0 

No. of constrains 0 

Peak shape function Pseudo-Voigt 

Background Manual 

S  1.64 

Rp, Rwp * 11.84, 8.90 

RB(I) 3.25 

Δρmax, Δρmin / e·Å−3 0.35, −0.32 
* Background-corrected R-factors 
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Table S8: Comparison of selected interatomic distances d, gained from single-crystal (T = 183(2) K) 

and powder data (T = 293(2) K), and their multiplicities m for the [MnF6]3− octahedra. 

Atom 1 Atom 2 M dpowder / Å dsingle-crystal / Å 

Mn1 F2 2× 1.910(14) 1.940(1) 

 F3 2× 1.842(14) 1.856(1) 

 F6 2× 1.983(14) 1.999(1) 

Mn2 F1 2× 1.851(9) 1.863(1) 

 F4 2× 1.879(16) 1.851(1) 

 F5 2× 2.068(15) 2.086(1) 

 

Figure S1: The two crystallographically different Mn atoms of K3[MnF6] with distorted octahedral 

coordination spheres. The [Mn(1)F6]3− anion is pseudo-rhombic while the [Mn(2)F6]3− is pseudo-

tetragonal with elongated axial Mn-F bonds. All atoms are numbered. 

 



6 
 

 

 

Figure S2: (left) Distorted tetrakis-hexahedral coordination sphere of pseudo-rhombic [Mn(1)F6]3‒. The 

F3 sites are marked dark green. The large bond between F3 and K1 is indicated by a dashed and yellow 

colored line, signaling the 3+1 coordination of F3, which leads to the opening of the bridge at the yellow 

marked edges. Blue edges of the octahedra mark the two edges which are not bridged in a µ2-manner by 

K+ cations. Potassium cations drawn in a darker shade of gray represent the cations, which are just bound 

to one corner of the [Mn(1)F6]3‒ anion. (right) Twofold-capped hexagonal prismatic coordination sphere 

of elongated [Mn(2)F6]3‒. Hereby, the potassium cations of the second shell (cuboid) are drawn in a 

slightly darker gray than the ones of the third shell (octahedron). F atoms are pictured in green/yellow, 

manganese atoms in purple, and potassium atoms in grey. All atoms are numbered. 
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Figure 3: FT-IR spectrum of K3[MnF6] in the range of 400 to 4000 cm−1. experimentally obtained FT-

IR spectrum of a powdered sample of K3[MnF6]. The sharp absorption band at around 550 cm−1 can be 

attributed to the [MnF6]3− unit.[3] Additionally, there are some absorption bands with low intensity. One 

sharp band is located at about 730 cm−1, likely belonging to small amounts of surplus starting material 

MnO2.[4] Another sharp band at 1230 cm−1 and a broader one at around 1430 cm−1, likely belong to KHF2 

(unreacted starting material).[5] In addition, there are no absorption bands visible above 1500 cm−1 and 

therefore, it is reasonable to exclude the presence of O–H bonds, hydroxide ions or H2O molecules 

within the crystal structure. 
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Figure S4: Raman spectrum of K3[MnF6] in the range of 50 to 800 cm−1.  

 

 

Figure S5: (left) Sample of K3[MnF6], which shows a quite intense purple color, with some colorless 

impurities (K2MnF4), synthesized in a copper ampoule. (right) Crystals of K3[MnF6], synthesized via a 

high-pressure/high-temperature approach, viewed through a polarization microscope. 
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Figure S6: (top) Experimental powder pattern of the high-pressure/high-temperature experiment plotted 

against the theoretical powder pattern derived from single-crystal data. Reflections marked with a red 

asterisk stem from an unknown side product. (bottom) Experimental powder pattern of the high-

temperature synthesis plotted against the theoretical powder pattern derived from single-crystal data. 

Reflections marked with a red asterisk stem from the side phase K2MnF4.  
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Figure S7: Simulated diffraction image of the 5kl layer (left) in comparison to the measured data of 

the 5kl layer (right). The extinction conditions (h + k + l = 2n + 1) for a body-centered cell apply.  

 

 

Theoretical calculations 

Angular overlap model analysis of the manganese-fluoride bonding: 

The angular overlap model expressions of eq.1 was used assuming a dependence of the 

paramaters of s and p-bonding –es and ep on the Mn−F bond lengths R of 1/Rn with the power 

n taken as variable. 

For the  [Mn(2)F6]3- site, eq.1 can be rewritten in the following form: 

    (S1) 

In eq.(S1), 𝑒!"and  have been defined with respect to the average Mn−F bond length of the 

hypothetical regular [MnF6]3− octahedron , with , and , the 

Mn−F bonds along the x, y, and z axes of the octahedron. The parameters , , and n have 

been fitted to the ab-initio ligand field orbital energies, see Figure 13 (right) for their values.  
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In the case of the pseudo-rhombic [Mn(1)F6]3- site, eqs.1 have been extended with an extra 

term: 

                                                (S2) 

 

accounting for the mixing of the 3dz2 and 3dx2-y2 orbitals in the D2h pseudo symmetry . This 

leads to a 2x2 off-diagonal block of the 5x5 ligand field matrix (orbital symmetry notations 

pertain to the D2h pseudo symmetry of the ligand field: dxy(b1g), dxz(b2g), dyz(b3g); dz2 and dx2-y2 

(ag)): 

    b1g          b2g          b3g          ag(dz2)        ag(dx2-y2) 

         (S3)) 

 

 

From this analysis one gets for octahedral [MnF6]3− (Ro = 1.933 Å): es = 6255 cm−1, ep = 1630 

cm−1, n = 5.2 ([Mn(1)F6]3-) and es = 5520 cm−1, ep = 1222 cm−1, n = 6.7 (Mn(2)) reported and 

discussed in the text. 

Jahn-Teller Effect in free [MnF6]3− anions embedded in a conductor like polarizable water 

continuum 

The coupling of the octahedral 5Eg electronic ground state of the [MnF6]3− anion to the eg(Qq,Qe) 

vibration (Figure 11) (5EgÄeg –problem), up to second order vibronic coupling is described by 

the following Hamiltonian matrix , adapted from the basic reference [6]:  

     

   (S4) 
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The representation of the adiabatic Jahn-Teller Hamiltonian in the form of the matrix 

is done in the basis of the 5Eg state using the rows of the standard irreducible representations −

 and  which correspong to the the 5A1g and 5B1g electronic ground states for 

the compressed and elongated geometries of D4h symmetry, respectively. Ke, A1 and A2 are 

harmonic force constant, the linear and quadratic vibronic coupling constants, respectively. 

Restricting to the diagonal matrix elements, i.e. considering the Qe = 0 plane as a cross section 

along the 2D adiabatic potential energy surface the equation simplifies to: 

      (S5) 

      (S6) 

Minimization of eqs S5 and S6 leads to the following expressions for the stationary points – 

the elongation  and the compression along the q and e sheets of the potentail 

surface: 

         (S7) 

         (S8) 

in which Ke, A1 and A2 are considered to be positive. 

Using eqs. S5 and S6 we get the following expressions for the energies of the vertical (Franck-

Condon) transitions from the ground to the excited split components of the 5Eg ground state at 

the stationary points  and : 

      (S9) 

      (S10) 

Ignoring vibronic activity within the 5T2g excited state of octahedral [MnF6]3− and denoting the 

harmonic force constant for the normal mode in this state by Kt one can write the energy of 

the vertical (Franck-Conon) transition from the stationary point of the lower sheet of the 5Eg 

potential energy surface to the 5T2g excited state as 
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   (S11) 

   (S12) 

Where by D we denote the 10Dq value of the undistorted [MnF6]3− octahedron. DFT geometry 

optimizations yield values for and , 0.225 and 0.316 Å, respectively. NEVPT2 

calculations alow to extract the energie of d-d transitions at the stationary points: 

Compressed: 

 5280 cm−1; 

 17050 (hole on dxz), 17569 (hole on dyz), 18627 (hole on dxy), average 

energy 16973 cm−1; 

Elongated: 

 9499 cm−1; 

 18543 (hole on dxy), 20469 (hole on dyz), 20709 (hole on dxz), average 

energy 18454 cm−1; 

Using eqs. S7-S12 a best fit to the data from the DFT and NEVPT2 calculations yields the 

model parameters: 

A1=15332 cm−1/Å; 

A2=4516 cm−1/Å2; 

Ke=58074 cm−1/Å2;         (S13) 

Kt=34231 cm−1/Å2; 

D=14350 cm−1; 

Standard deviation:511 cm−1 

Let us note softening of the harmonic potential energy surface when transfering one t2g electron 

to the eg orbital when exciting from 5Eg to the 5T2g excited state.  

The parameters A1, A2 and Ke have been used to plot the contour level diagram (Figure 12 top). 
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Vibronic Coupling Model for the compressed, orthorhombically distorted  [Mn(1)F6]3− 

and tetragonally elongated [Mn(2)F6]3− octahedra in K3MnF6 

In the local symmetry Ci of the [Mn(1)F6]3− and [Mn(2)F6]3− complexes in K3MnF6, the 5Eg 

ground state of octahedral free [MnF6]3− splits into two non-degenerate S = 2 states, 5Ag(1) and 
5Ag(2). A vibronic analysis must start from a reference geometry for both [Mn(1)F6]3- and 

[Mn(2)F6]3- with equal bond distances, which can be approximated with the average of 

[MnF6]3− bond lengths given by the structural data. These average distances are almost the same 

for the [Mn(1)F6]3- and [Mn(2)F6]3- anions. For this reason, contributions of the totally 

symmetric a1g octahedral breathing mode to vibronic coupling are neglected. Because of 

influences of different surroundings of the [Mn(1)F6]3- and [Mn(2)F6]3- complex units 

dominated by the electrostatic field due to K+ ions, the 5A(1)[5A1g] and 5A(2)[5B1g] states (D4h 

point symmetry notations) will split in zero order. Let us denote their energies by Eo(5A1g) and 

Eo(5B1g), respectively. Periodic DFT calculations may be used to approximate these energies, 

as was convincingly demonstrated for Cu2+ doped tetragonal host lattices K2ZnF4 [7] and 

Ba2ZnF6.[8] 

However, for K3MnF6 with MnIII with four unpaired electrons, correlation effects requiring 

superposition of Slater determinants needed to describe the five S = 2 states of [MnF6]3− could 

not be captured by single determinant DFT. Thus, while being very successful for solids 

including Cu2+ with a single hole in the d9 configuration, periodic DFT calculations (see last 

part of the ESI) could not reproduce the local geometry of the compressed [Mn(1)F6]3− site, 

which turned to be tetragonally elongated. For this reason, and for the sake of plotting ground 

state potential surfaces for [Mn(1)F6]3− and [Mn(2)F6]3− (Figure 12 middle and bottom, 

respectively), the vibronic coupling Hamiltonian Hvibr (eq. S14) with diagonal elements, eqs. 

S15, S16, and off-diagonal element eq. S17 can be used. 

                                              (S14) 

diagonal elements: 

                                           (S15) 

                                            (S16) 

Off-diagonal matrix element: 

5
1 12
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12 1

( )
( )

g
vibr

g

E A V
H

V E B
é ù

= ê ú
ê úë û
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                                                              (S17) 

In the eqs. S15-S17, nuclear displacement  and (Figure 11) become totally symmetric in the Ci 

site symmetry of [Mn(1)F6]3− and [Mn(2)F6]3−. Focussing on the ground state only, neglecting 

the mixing term  and approximating the harmonic term  in terms of 

single effective harmonic force constant K, , we arrive at 

  

 

 

 

 

 eq. 3 of the main text, describing the adiabatic potential of a two dimensional harmonic 

oscillator shifted along the totally symmetric in Ci symmetry  nuclear displacements  and 

. We applied this simple model to the [Mn(1)F6]3− and sites [Mn(2)F6]3− separately and 

extracted values for the parameters K, and from the knowledge of the shifts along the 

coordinates and corresponding to the observed two structures - ; 

 Å (pseudo-rhombic (rh) site [Mn(1)F6]3-) and ;  Å 

(pseudo-tetragonal (tetr) site [Mn(2)F6]3- ) and the vibronic stabilization energies Evibr −1866 

and −2434 cm−1, computed using NEVPT2 state specific [MnF6]3− cluster calculations for the 
5Ag(1) and 5Ag(2) ground states of [Mn(1)F6]3− and [Mn(2)F6]3−, respectively.  

      (S18) 

Minimizing the energy E with respect to and  than yields: 

         (S19) 

and 

         (S20) 

from which we get 

12 12 12
12 oV E A Q A Qq q e e= + +
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12V
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Aq Ae

Qq Qe 0.014rhQq =

0.143rhQe = 0.265tetrQq = 0.012tetrQe =

2 2(1/ 2) ( )E K Q Q A Q A Qq e q q e e= + + +

Qq Qe

( ) ( ) /tetr rh tetr rhQ A Kq q= -

( ) ( ) /tetr rh tetr rhQ A Ke e= -
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  (S21) 

 and therefore: 

(S22) 

         (S23) 

         (S24) 

Substituting the values of and  and EJT into the set of eqs. (S22)-(S24) values of K, 

and  result which are sumarized in Table S9. 

 

Table S9. and values (in Å) for the stationary points for the pseudo-rhombic [Mn(1)F6]3− and pseudo-

tetragonal [Mn(2)F6]3− complex units, vibronic stabilization energies Estab (in cm−1) from ground state specific 

NEVPT2 calculations and the resulting K (in cm−1/ Å2), , and  (in cm−1/ Å) values, utilized in the analysis 

of the vibronic forces which lead to the stabilization of the two sites in K3MnF6.  

 [Mn(1)F6]3− [Mn(2)F6]3− 

  0.014 0.265 

  0.143 0.012 

Estab −1866 −2434 

K 180770 69178 

 -2530 −18332 

 -25850 −830 

 

  

( ) ( )2 ( )2 ( )2 ( )2(1/ 2) / (1/ 2) / (1/ 2) ( )e c e c e c e c e c
stabE A K A K K Q Qq e q e= - - = - +

( ) ( )2 ( )22 / ( )e c e c e c
stabK E Q Qq e= = +

( ) ( )tetr rh tetr rhA KQq q= -

( ) ( )tetr rh tetr rhA KQe e= -

Qq Qe Aq

Ae

Qq Qe

Aq Ae

Qq
Qe

Aq
Ae



17 
 

 

Geometry optimization/frequency calculation for the tetragonally elongated geometry 

!UKS  BP86 DKH  DKH-DEF2-TZVPP def2/J NoFinalgrid  PAL8 PrintBasis opt numfreq uno D3BJ 

 

%cpcm epsilon 80 

refrac 1.33 

surfacetype vdw_gaussian 

end 

 

*xyz -3 5   # site 1 : compressed 

25 0.000000000 0.000000000 0.000000000 
9 1.857  0.00000 0.000000000 
9 -1.857  0.0  0.000000000 
9 0.0  1.857  0.000000000 
9 0.0  -1.857  0.000000000 
9 0.000000000 0.000000000 -2.085517223 
9 0.000000000 0.000000000 2.085517223 
* 

Geometry optimization/frequency calculation for the tetragonally compressed geometry 

!UKS BP86 DKH  DKH-DEF2-TZVPP def2/J NoFinalgrid  PAL8 PrintBasis opt numfreq uno D3BJ 

 

%cpcm epsilon 80 

refrac 1.33 

surfacetype vdw_gaussian 

end 

 

*xyz -3 5   # site 1 : compressed 

25 0.000000000 0.000000000 0.000000000 
9 0.000000000 1.969218489 0.000000000 
9 0.000000000 0.000000000 1.855567005 
9 0.000000000 -1.969218489 0.000000000 
9 0.000000000 0.000000000 -1.855567005 
9 -1.969218489 0.000000000 0.000000000 
9 1.969218489 0.000000000 0.000000000 
* 
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Computational studies on the solid-state vibrational spectroscopy of K3[MnF6] 

Computational details 

We carried out quantum chemical vibrational spectroscopic studies on K3[MnF6] in the solid state with 
the CRYSTAL17 program package.[9] We also compared K3[MnF6] with the related compound 
Na3[MnF6].[10] PBE0 hybrid density functional method and Gaussian-type basis sets were used.[11-12] The 
basis sets for Mn, F, K, and Na have been previously derived from the molecular Karlsruhe def2 basis 
sets.[13]Polarized triple-zeta-valence (TZVP) basis sets were used for Mn and F, and polarized split-
valence basis set for K and Na.[14-16] The following Monkhorst-Pack-type k-meshes were used for 
sampling the reciprocal space: 2×2×2 for K3MnF6 and 4×4×3 for Na3MnF6.[17]

 For the evaluation of the 
Coulomb and exchange integrals (TOLINTEG), tight tolerance factors of 8, 8, 8, 8, and 16 were used. 
Both the atomic positions and lattice constants were fully optimized within the constraints imposed 
by the space group symmetry. The harmonic vibrational frequencies and IR intensities were obtained 
by using the computational schemes implemented in CRYSTAL.[18-20] The optimized structures of 
K3[MnF6] and Na3[MnF6] were confirmed to be true local minima with no imaginary frequencies. A 
denser 4×4×4 k-mesh was used for the analytical IR intensity calculations within the Coupled-Perturbed 
Kohn-Sham scheme. The final IR spectra were obtained by using Lorentzian peak profile with FWHM 
of 8 cm−1. 

Structural properties 

We optimized the crystal structure of K3[MnF6] in two different magnetic configurations: 
ferromagnetic (spin up for both Mn1 and Mn2) and antiferromagnetic (spin up for Mn1, spin down for 
Mn2). The crystal structure contains quasi-isolated (distorted) [MnF6]3− octahedra and at the used level 
of theory there is no magnetic coupling between the octahedra. The FM and AFM configurations are 
isoenergetic and their optimized geometries are in practice identical. Na3[MnF6] was studied only in 
ferromagnetic configuration. The optimized lattice parameters are in good agreement with the 
experimental lattice parameters of K3[MnF6] and Na3[MnF6], showing differences of less than 1% (Table 
S10).  

Table S10. Optimized lattice parameters of K3[MnF6] and Na3[MnF6], together with a comparison to 
experimental lattice parameters. 

Compound Parameter Exp. 
(183 K)  

DFT  
(0 K) 

Diff. (%) 

K3[MnF6] a (Å) 12.34 12.46 +0.9 % 
 c (Å) 16.47 16.47 +0.0 % 
     
Na3[MnF6] a (Å) 5.47 5.45 –0.3 % 
 b (Å) 5.68 5.64 –0.7 % 
 c (Å) 8.07 8.13 +0.7 % 
 β (°) 89.0 88.3 –0.8 % 

 

Table S11 shows the Mn–F distances in the optimized structures of K3[MnF6] and Na3[MnF6]. In the 
case of K3[MnF6], the Mn2–F distances predicted by DFT are systematically 0.6–1.0% longer in 
comparison to the experimentally observed distances. For Mn1, the Mn1–F3 distance is almost 
unchanged, while the Mn1–F2 distance shortens slightly. The Mn1–F6 shows the largest change, 
elongating by 3.4%. The coordination octahedron around Mn1 does not, however, become similar to 
Mn2, where the octahedron shows one elongated Mn–F distance and two shorter, practically identical 
Mn–F distances. In the case of Na3[MnF6], the axial Mn–F1 distance is elongated by 3.1% and the two 
equatorial Mn–F distances become practically similar.  
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Table S11. Mn–F distances (Å) in the optimized structures of K3[MnF6] and Na3[MnF6], together with a 
comparison to experimental distances. 

Compound Mn–F pair Exp. 
(183 K)  

DFT  
(0 K) 

Diff. (%) 

K3[MnF6] Mn1–F3 1.86 1.86 +0.2 % 
 Mn1–F2 1.94 1.92 –1.2 % 
 Mn1–F6 2.00 2.07 +3.4 % 
     
 Mn2–F5 2.09 2.11 +1.0 % 
 Mn2–F4 1.85 1.86 +0.7 % 
 Mn2–F1 1.86 1.87 +0.6 % 
     
Na3[MnF6] Mn–F1 2.02 2.08 +3.1 % 
 Mn–F2 1.86 1.87 +0.3 % 
 Mn–F3 1.90 1.88 –0.8 % 

 

Vibrational spectroscopy 

The calculated IR spectrum of K3[MnF6] is shown in Figure S8. Only vibrational modes belonging to the 
irreducible representations Au and Eu are IR active in space group I41/a. Detailed interpretation of the 
vibrational modes is rather complicated due to the relatively large primitive cell and due to the rather 
low site symmetry (–1) of the Mn1 and Mn2 atoms. The highest-energy modes are Mn–F stretching 
modes at about 600 cm–1. This confirms the experimental assignment that modes above 600 cm–1 likely 
arise from unreacted starting materials. The modes between 350 and 600 cm–1 are all various Mn–F 
stretching modes (details in Table S12). The Mn–F stretching modes at around 550 cm–1, clearly visible 
in the experimental IR spectrum, arise from a complex mixing of both Mn1–F and Mn2–F stretching 
modes. The mode at around 510 cm–1, possibly visible as a shoulder in the experimental IR spectrum, 
mainly arises from Mn1–F stretching modes. The experimental IR spectrum ends at about 400 cm–1, 
but the mode partially shown at that point could be Mn1–F6 stretching mode seen at 393 cm–1 in the 
calculated spectrum (the longest Mn1–F distance). The stretching vibration for the Mn2–F5 distance 
occurs at 353 cm–1 (the longest Mn2–F distance). 

 

Figure S8. Calculated IR spectrum of K3[MnF6] 
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Table S12. IR active vibrational modes in K3[MnF6]. Only vibrational modes belonging to the irreducible 
representations Au and Eu are IR active (space group I41/a). See text for more details. 

Mode 
Freq.  
(cm-1) Irrep 

IR intensity 
(km mol-1) Comment 

8 59 Au  98  
9-10 61 Eu  95  
11 62 Au  73  

13-14 68 Eu  87  
19 73 Au  5  

23-24 77 Eu  44  
27 80 Au  3  

29-30 82 Eu  227  
34-35 84 Eu  79  
43-44 95 Eu  60  

46 95 Au  25  
52 107 Au  140  

53-54 107 Eu  355  
58-59 111 Eu  44  

62 115 Au  8  
63 120 Au  201  

70-71 127 Eu  50  
72 128 Au  67  

73-74 130 Eu  267  
76 132 Au  5  

80-81 136 Eu  103  
84 139 Au  61  

91-92 148 Eu  46  
95 152 Au  371  

96-97 154 Eu  392  
102-103 160 Eu  110  

105 163 Au  339  
107-108 165 Eu  177  

114 170 Au  1  
119 180 Au  17  
120 181 Au  19  

121-122 181 Eu  16  
124-125 186 Eu  157  

128 193 Au  161  
131-132 195 Eu  116  
133-134 198 Eu  200  

135 199 Au  29  
137-138 208 Eu  134  

142 216 Au  42  
149 237 Au  0  

154-155 247 Eu  198  
162-163 277 Eu  18  

167 281 Au  191  
168-169 283 Eu  118  

175 288 Au  47  
177-178 292 Eu  283 Mn2–F bending (mainly) 

180 294 Au  10  
184 297 Au  20  

185-186 298 Eu  246 Mn1–F bending (mainly) 
189 307 Au  0  

190-191 307 Eu  155 Mn2–F bending (mainly) 
194-195 321 Eu  474 Mn1–F bending (mainly)  

198 323 Au  1  
202-203 353 Eu  1070 Mn2–F5 stretching (mainly) 

204 361 Au  10  
210-211 393 Eu  1472 Mn1–F6 stretching (mainly) 

216 409 Au  0  
217 507 Au  1264 Mn1–F stretching (mainly) 

218-219 511 Eu  545 Mn1–F stretching (mainly) 
229-230 547 Eu  812 Mn1–F and Mn2–F stretching  

231 549 Au  2044 Mn1–F and Mn2–F stretching 
244 558 Au  2  

234-235 562 Eu  1442 Mn1–F and Mn2–F stretching 
238-239 604 Eu  204 Mn1–F and Mn2–F stretching 

240 609 Au  1  



21 
 

 

The experimental Raman spectrum only shows intensive modes below 100 cm–1. Based on the 
calculated vibrational properties, the Raman-active symmetric Mn–F stretching modes would be 
expected at around 540 cm–1 (Mn2) and 520 cm–1 (Mn1). 

Optimized structures in CIF format 

Note that the CIFs below have been standardized by FINDSYM 
(https://stokes.byu.edu/iso/findsym.php) after the geometry optimization. The calculations have 
been run starting from the experimental CIF (Mn1 in position 8d) and the computational discussion 
above also refers to that situation. 

data_K3MnF6_DFT-PBE0_TZVP 
_audit_creation_method FINDSYM 
  
_cell_length_a    12.4590637984 
_cell_length_b    12.4590637984 
_cell_length_c    16.4717295232 
_cell_angle_alpha 90.0000000000 
_cell_angle_beta  90.0000000000 
_cell_angle_gamma 90.0000000000 
  
_symmetry_space_group_name_H-M "I 41/a (origin choice 2)" 
_symmetry_Int_Tables_number 88 
_space_group.reference_setting '088:-I 4ad' 
_space_group.transform_Pp_abc a,b,c;0,0,0 
  
loop_ 
_space_group_symop_id 
_space_group_symop_operation_xyz 
1 x,y,z 
2 -x,-y+1/2,z 
3 -y+3/4,x+1/4,z+1/4 
4 y+1/4,-x+1/4,z+1/4 
5 -x,-y,-z 
6 x,y+1/2,-z 
7 y+1/4,-x+3/4,-z+3/4 
8 -y+3/4,x+3/4,-z+3/4 
9 x+1/2,y+1/2,z+1/2 
10 -x+1/2,-y,z+1/2 
11 -y+1/4,x+3/4,z+3/4 
12 y+3/4,-x+3/4,z+3/4 
13 -x+1/2,-y+1/2,-z+1/2 
14 x+1/2,y,-z+1/2 
15 y+3/4,-x+1/4,-z+1/4 
16 -y+1/4,x+1/4,-z+1/4 
  
loop_ 
_atom_site_label 
_atom_site_type_symbol 
_atom_site_symmetry_multiplicity 
_atom_site_Wyckoff_label 
_atom_site_fract_x 
_atom_site_fract_y 
_atom_site_fract_z 
_atom_site_occupancy 
Mn1 Mn   8 c 0.00000 0.00000 0.00000 1.00000 
Mn2 Mn   8 d 0.00000 0.00000 0.50000 1.00000 
K1  K   16 f 0.47622 0.01747 0.27459 1.00000 
K2  K   16 f 0.79494 0.50639 0.36066 1.00000 
K3  K    8 e 0.00000 0.25000 0.86726 1.00000 
K4  K    4 a 0.00000 0.25000 0.12500 1.00000 
K5  K    4 b 0.00000 0.25000 0.62500 1.00000 
F1  F   16 f 0.76277 0.73491 0.36280 1.00000 
F2  F   16 f 0.31913 0.16619 0.33241 1.00000 
F3  F   16 f 0.30386 0.15578 0.17255 1.00000 
F4  F   16 f 0.89168 0.60304 0.49584 1.00000 
F5  F   16 f 0.88414 0.37805 0.48662 1.00000 
F6  F   16 f 0.88772 0.34070 0.26391 1.00000 
 
data_Na3MnF6_DFT-PBE0_TZVP 
_audit_creation_method FINDSYM 
  
_cell_length_a    5.4535879600 
_cell_length_b    5.6447098600 
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_cell_length_c    9.6508643531 
_cell_angle_alpha 90.0000000000 
_cell_angle_beta  122.6752134498 
_cell_angle_gamma 90.0000000000 
  
_symmetry_space_group_name_H-M "P 1 21/c 1" 
_symmetry_Int_Tables_number 14 
_space_group.reference_setting '014:-P 2ybc' 
_space_group.transform_Pp_abc a,b,c;0,0,0 
  
loop_ 
_space_group_symop_id 
_space_group_symop_operation_xyz 
1 x,y,z 
2 -x,y+1/2,-z+1/2 
3 -x,-y,-z 
4 x,-y+1/2,z+1/2 
  
loop_ 
_atom_site_label 
_atom_site_type_symbol 
_atom_site_symmetry_multiplicity 
_atom_site_Wyckoff_label 
_atom_site_fract_x 
_atom_site_fract_y 
_atom_site_fract_z 
_atom_site_occupancy 
Mn1 Mn   2 a 0.00000 0.00000 0.00000 1.00000 
Na1 Na   2 d 0.50000 0.00000 0.50000 1.00000 
Na2 Na   4 e 0.75919 0.44552 0.75089 1.00000 
F1  F    4 e 0.35624 0.56379 0.73661 1.00000 
F2  F    4 e 0.77760 0.67249 0.55883 1.00000 
F3  F    4 e 0.09339 0.77932 0.43162 1.00000 
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