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ABSTRACT ARTICLE HISTORY
Efficient transfer of spin polarisation from electron to nuclear spins is emerging as a common target Received 22 February 2020
of several advanced spectroscopic experiments, ranging from sensitivity enhancement in nuclear Accepted 23 April 2020
magnetic resonance (NMR) and methods for the detection of single molecules based on optically KEYWORDS
detected magnetic resonance (ODMR) to hyperfine spectroscopy. Here, we examine the feasibility of ENDOR:; EPR: cross
electron-nuclear cross-polarisation at a modified Hartmann-Hahn condition (called eNCP) for appli- polarisation; spin
cations in ENDOR experiments with spin-1 deuterium nuclei, which are important targets in studies polarisation; NMR

of hydrogen bonds in biological systems and materials. We have investigated a two-spin model sys-

tem of deuterated malonic acid radicals in a single crystal. Energy matching conditions as well as

ENDOR signal intensities were determined for a spin Hamiltonian under the effect of microwave

and radiofrequency irradiation. The results were compared with numerical simulations and 94-GHz

ENDOR experiments. The compelling agreement between theoretical predictions and experimental

results demonstrates that spin density operator formalism in conjunction with suitable approxi-

mations in regard to spin relaxation provides a satisfactory description of the polarisation transfer

effect. The results establish a basis for future numerical optimizations of polarisation transfer experi-

ments using multiple-pulse sequences or shaped pulses and for moving from model systems to real

applications in disordered systems.
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2 I. BEJENKE ET AL.
1. Introduction

Polarisation transfer between electron and nuclear spins
provides the basis of several fundamental spectroscopic
experiments. The amount of transferable spin polarisa-
tion depends on the relative size of the electron and
nuclear gyromagnetic ratios, which is 658:1 and 4286:1
for proton (*H) and deuterium (*H) nuclear spins,
respectively [1-3]. Due to these large factors, polarisa-
tion transfer experiments are being exploited in a vari-
ety of modern applications. These include, for instance,
dynamic nuclear polarisation in NMR and MRI [1],
detection of nuclear spins via EPR spectroscopy [2,3],
ODMR detection of nuclear spins with NV centres [4],
and coherent control of spin states for solid-state quan-
tum technologies [5]. Nevertheless, a theoretical descrip-
tion in conjunction with a quantitative comparison to
experiments and the optimisation of pulse schemes still
remain challenging. This is a consequence of the com-
plex multilevel nature of the spin system, which usually
contains at least one paramagnetic centre coupled to a
number of nuclear spins with sizeable and anisotropic
hyperfine (hf) interaction and different gyromagnetic
ratios. This creates multiple interaction and relaxation
pathways.

Electron-nuclear double resonance (ENDOR) is an
EPR-based technique that transfers polarisation from
electron to nuclear spins to study their hyperfine inter-
actions [6]. Most commonly, the ligand composition and
geometry of an experimental spin system are obtained
from ENDOR spectroscopy for a variety of applications
ranging from material science and quantum informa-
tion processing to protein investigations [7]. The very
first pulsed ENDOR sequences invented by Mims and
Davies in the 60’s and 70’s are nowadays still the most
frequently used [8]. In theory, the polarisation can be
completely transferred in a two-spin system consisting
of an electron and a nuclear spin [9]. However, in prac-
tice, due to technical limitations (e.g. pulse imperfec-
tions) and the large anisotropy of the hf interaction, only
a fraction of this theoretical limit can be achieved. In
addition, electron and nuclear spins have very different
nutation and relaxation time scales. During an ENDOR
pulse sequence, both spin systems are manipulated at
the electron timescale, but the electron spin often relaxes
much faster than the nuclear spin. Thus, nuclear satura-
tion becomes an additional bottleneck [10]. The relax-
ation issues are potentially even more crucial for low
gamma nuclei, such as 2H, which are important targets in
ENDOR spectroscopy. Several biological ENDOR appli-
cations are based on deuterium buffer exchange as, e.g.
demonstrated in hydrogen bond studies of photosystem
II or E.coli RNR [11].

In order to address the sensitivity in ENDOR, we
have previously proposed a so-called cross-polarisation
edited ENDOR (CP-ENDOR) experiment [12]. The
pulse sequence is based on a new polarisation trans-
fer scheme that has emerged from a concept introduced
for dynamic nuclear polarisation [13-16]. Specifically, a
modified Hartmann-Hahn condition is used to achieve
electron-nuclear cross polarisation (eNCP), i.e. to cre-
ate degeneracy and polarisation transfer between energy
states by simultaneous microwave (MW) and radiofre-
quency (RF) irradiation of the two coupled spins. In
analogy to CP in NMR [17,18] and the NOVEL exper-
iment in DNP [19], the electron-spin magnetisation is
locked with MW fields irradiated in the direction perpen-
dicular to the external magnetic field. During eNCP, the
electron spin can conveniently be described in a frame, in
which the quantisation axis is along an effective field that
is given by the combination of hf coupling and MW field.
The polarisation transfer can be monitored in the so-
called eNCP experiment, in which the electron spin echo
is detected as a function of the RF and where CP match-
ing conditions are directly observed [14,15]. In contrast,
a CP-ENDOR experiment consists of an eNCP sequence
at a fixed RF followed by a standard ENDOR read-out
sequence to monitor the polarised nuclear transitions.
Matching conditions and CP-ENDOR were previously
reported for two-spin systems consisting of one electron
and one proton both with spin number %. A theoreti-
cal treatment based on the density operator formalism
predicted four matching conditions [12,16], which give
rise to an asymmetric CP-ENDOR spectrum [12]. These
studies also illustrated that CP-ENDOR is more robust
against nuclear saturation effects and allows for sequence
repetitions on the order of the electron-spin relaxation
rate.

The ability to implement complex MW pulses using
arbitrary waveform generators (AWG) [20] makes it pos-
sible to use sophisticated multiple-pulse sequences and
shaped pulses in EPR and DNP experiments [21,22].
In particular, powerful analytical [23] and numerical
[16,24] approaches based on optimal control theory can
be used to design robust multiple-pulse experiments for
optimal performance in the presence of experimental
limitations and imperfections. We refer to [21,25] for an
overview of the available techniques from optimal con-
trol. However, numerical optimizations require a reliable
model of the underlying coherent spin dynamics and of
relaxation effects. In particular, in applications with vastly
different time scales and disorder, a reasonable com-
promise has to be found between the accuracy and the
computational costs of a model. This may make it nec-
essary to use approximations of the spin dynamics and
to test experimentally if the errors introduced by these



approximations are small enough to yield reliable predic-
tions of the experimental results. In an effort to develop
a general framework to optimise electron-nuclear cross
polarisation, we extend here the analysis of CP-ENDOR
to spin-1 deuterium nuclei using both an analytical and
a numerical approach based on the density operator for-
malism.

We investigate a single crystal of deuterated malonic
acid radical with well-defined EPR and ENDOR tran-
sitions. The main differences between the 'H and *H
case are the larger size of the multilevel system, the
larger difference of their individual Larmor frequencies
with respect to the electron Larmor frequency, and the
presence of a nuclear quadrupole coupling. The present
work describes the eNCP experiment, which originates
from the NMR and DNP literature, within a nomen-
clature and formalism that are consistent with the EPR
and ENDOR literature. Particularly, we apply the ficti-
tious spin-1/2 formalism developed for NMR [26] that
is rarely used in EPR. Moreover, fast numerical sim-
ulation routines are developed that will in the future
enable the consideration of arbitrary optimised pulse
sequences. Using the spin density operator formalism in
conjunction with approximations in regard to spin relax-
ation, we found a good agreement between the analyti-
cal description, numerical simulations, and experimental
results.

We summarise the structure of this paper: We start in
§2 by describing the eNCP and CP-ENDOR experiments
together with the relevant spin system and experimen-
tal details. This sets the stage for §3 where the analyti-
cal treatment of the CP-ENDOR experiment determines
the matching conditions necessary for an eNCP pro-
cess. We complement the analytical treatment in §3 with
numerical simulation techniques in $4 and compare both
theoretical results from §3 and §4 with the experiments
in §5. We conclude in §6 and various details are deferred
to appendices.

2. Description of the experiments and the spin
system

2.1. General description

The two experiments analyzed in this article are illus-
trated in Figure 1. Both pulse sequences consist of an
eNCP polarisation transfer step followed by a polari-
sation read-out sequence. The polarisation transfer is
achieved by simultaneous MW and RF irradiation at a
specific amplitude and frequency offset (matching con-
ditions), which will be derived in §3. The so-called
eNCP experiment (Figure 1(A)) is employed to detect
the RF conditions during eNCP, at which the electron
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spin is depolarised. Here, the electron spin-lock echo
is recorded as a function of the eNCP RE We note
that, except for the detection scheme, this sequence is
closely related to the hyperfine decoupling experiment,
as described in [27] and [3]. Nevertheless, in hyperfine
decoupling ENDOR, a delay between the 90° prepara-
tion and the spin-lock pulse plays a key role, differently
than in eNCP. In the case of the eNCP experiment, the
focus is on the transfer of polarisation between electron
and nuclear spins, while in the decoupling experiment
the focus is on resolution enhancement and spectrum
simplification.

The CP-ENDOR experiment (Figure 1(B)) is per-
formed at a fixed eNCP RF but contains a second RF
read-out pulse, which transfers nuclear polarisation back
into observable electron polarisation. The detection of
the EPR echo as a function of the read-out RF leads to the
detection of the polarised nuclear ENDOR transitions. In
the following, we will first describe the general features of
the spin system involved in these experiments.

We analyze a two-spin system with an electron spin
Y% (S = %) and a nuclear spin 1 (I = 1). We define w,
and wy, as the Larmor frequencies of the electron (e)
and the nuclear (n) spin, respectively. The spin quantum
numbers mg = +% for S = % are written as o = +%,
Be = —Y¥, where the subscripts denote the electron. The
spin quantum numbers my = 0, 1 for I = 1 are writ-
tenasay = +1, By = 0, ¥y = —1, where the subscripts
denote the nucleus. The spin Hamiltonian is given in the
laboratory frame H%)ab and using the high-field approxi-
mation (only z components of spin operators are used)
by [28]

HE® = 11pgeS.Bo — jingnl.Bo + HAS,I,
+ g CpI2 — 1). (1a)

The first two terms are the electron and nuclear Zeeman
interactions with the electron and nuclear magnetons up
and un;, respectively. The third term is the hf interaction
and the fourth term is the nuclear quadrupolar inter-
action for a spin 1. The electron g factor is considered
isotropic and the gyromagnetic ratio of deuterium is pos-
itive, i.e. goun/h > 0. In angular frequency units with

We = 27T Ve = 27 VEpr and w, = 27V, = a)rle = 27”121H’
one obtains
Hlab
HEE = % = weS; + wnl, + AS. I, + oqChHI2 — 1).
(1b)

We explicitly neglect the anisotropy of hf interac-
tion (usually expressed through an additional term
BS.I. [3]) as this is not required for the discussed
eNCP process, in contrast to the general NMR CP
case [18]. An explicit consideration of this anisotropy
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would considerably complicate the analytical description.
Within this approximation, the quadrupole term is axi-
ally symmetric with hwg = 1/2e2qQ (for I = 1), where
Q is the scalar quadrupole moment and e - g is the zz
component of the field gradient at the nucleus. Here, 1
denotes a 6 x 6 unit matrix. The matrix representations of
the operators S, and I, are tabulated in Appendix 1. The
Hamiltonian (1) gives rise to six energy levels with three
allowed EPR transitions (|Ams| = 1, Amp = 0), as rep-
resented in Figure 1(C). These transitions are denoted by
EPR «, EPR B, and EPR y, as they are associated to the
nuclear spin states oy, B, and yy, respectively. We note
that the sign of the hf coupling A inverts the direction of
the hf shift in the electron spin manifolds. For a positive
A (Figure 1(D)), the EPR y;, transition occurs at a lower
angular frequency than the oy, transition, and vice versa
for a negative A (Figure 1(F)). Most importantly, the spin
states from |1) to |6) are sorted according to decreasing

A)  m2) (spin lock) (m)x B)

we [ W )\

t

(/2)y (spin lock),

w I I

energies, corresponding to the msmy wave functions dis-
played in Figure 1(C). This order, which is unchanged for
A < 0, will substantially simplify the description in $§4,
but requires that a suitable basis change is applied to the
spin Hamiltonian (§3, Appendix 2).

The ENDOR lines arise from the allowed nuclear tran-
sitions with |Amj| = 1, Amg = 0 (Figure 1(C)). As the
ENDOR detection occurs after a selective EPR excitation,
only ENDOR transitions that share one common energy
level with the excited EPR transition are detected. Specif-
ically, the excitation on the EPR y transition [1-4] in
Figure 1(C) results in only the two observable ENDOR
transitions [1-2] and [4-5]. Similarly, the excitation of
EPR o [3-6] gives rise to the two ENDOR transitions
[5-6] and [2-3]. However, the excitation of EPR g [2-5]
gives rise to the four ENDOR lines [1-2], [2-3], [4-5],
and [5-6] (Figure 1(E)). All these ENDOR lines will be
discussed in §3 and §5.
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Figure 1. (A, B) Schemes of the eNCP (A) and CP-ENDOR (B) experiments investigated in this work. The two RF pulses in (B) are not phase-
locked and chosen as +x pulses, see §2.3. (C) First-order energy diagram for S = %5,/ = 1,and hf couplingA > 0.The ordering of energy
levels corresponds to the Hamiltonian 7 in the tilde basis as defined in Appendix 2 (see also §3). (D) lllustration of EPR resonances for
A > 0. (E) lllustration of the ENDOR lines for the excitation of EPR 8 for A > 0. The shape of the spectrum represents the standard Davies
ENDOR experiment. (F) lllustration of the EPR resonances for A < 0, malonic acid case. (G) lllustration of the ENDOR transitions for the
excitation of EPR 8 and A, wg < 0, malonic acid case. (H) 94 GHz echo-detected ESE spectrum of a malonic-acid single crystal (S = 1/2,
I = 1). The ESE spectrum (t; 2-t-t; echo) was recorded with t; , = 20ns and 7 = 500 ns using one scan at T = 40K. Inset: chemical

structure of the perdeuterated malonic acid radical.



2.2. Experimental details

Experiments were performed on a commercial Bruker
Elexsys E680 EPR spectrometer operating at vgpr = 94
GHz (W-band). A commercial Bruker ENDOR probe
head (Bruker TeraFlex) fed with an RF power of about
200 Watt (Amplifier Research) delivered a deuterium RF
inversion pulse of t,; ;¢ & 25 ps, as measured by nuclear-
Rabi nutation experiments. All spectra are centred at the
deuterium Larmor frequency of v = 22 MHz at an
external magnetic field of 3.4 Tesla. All experiments were
performed at a temperature of T ~ 40 K. Detailed exper-
imental parameters are given in the corresponding figure
captions.

The experiments were performed with a single crys-
tal of perdeuterated malonic acid radicals (ETH Ziirich).
The samples were treated by y -irradiation from a ®°Co
source and are stable in air. A small crystal was sliced
to a height of 0.2 cm and inserted into a quartz sample
tube with inner (ID) and outer (OD) diameter of 0.5 and
0.9 mm (Wilmad). The capillary was sealed at both ends.
After the sample tube was inserted into the magnet, a
particular crystal orientation was determined for which
the hyperfine coupling A approximately agrees with the
isotropic value ajso. The sample tube was rotated until
the desired orientation was identified and the resulting
EPR spectrum was recorded. This results in a deuterium
hf and quadrupole coupling of A/2r ~ — 8.9MHz
and wq /2w = —0.04 MHz, respectively. In this case, the
high-field condition in equation (1) approximately holds
because w, > A (while assuming B & 0 at this orienta-
tion).

In the single crystal of the perdeuterated malonic acid,
the molecule contains an unpaired electron spin that
is strongly coupled to one single deuteron (*H) at the
methylene position (Figure 1(H) inset, green). The small
couplings of the deuterons at the carboxyl groups are
not considered in this study and can be neglected. The
echo-detected EPR spectrum of the malonic-acid sin-
gle crystal is displayed in Figure 1(H) and shows three
resolved hf lines with an orientation-dependent hf split-
ting. The hf couplings to the carboxyl-group deuterons
are not resolved but contribute to a visible line broaden-
ing. We note that the spectrum is recorded as a function
of the magnetic field and not of the MW frequency, there-
fore the assignment of the three hf lines is interchanged
as compared to Figure 1(F).

2.3. Specifying the eNCP and CP-ENDOR pulse
sequences

To specify the eNCP and CP-ENDOR pulse sequences
and the corresponding MW and RF irradiation with
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frequencies wyw and wgrg, we first introduce the spin
Hamiltonian

Ho = AweS; + Awnl, + AS, L + wqChl2 — 1) (2)

in the electron-nuclear doubly rotating frame [14] with
Awe = we — wpmw and Awp = wn — wrp. Recall that
the MW and RF amplitudes are given by wj. = <L7];Ble
and w, = —‘%. The MW amplitude w;, could be
in principle varied in the different steps of the pulse
sequence, but it was kept constant for all MW irradia-
tions in the experiments. Note that |wje| > |w1n| (MHz
vs kHz) in contrast to the standard CP case in NMR [18].
Moreover, we have now used definitions consistent with
the EPR literature [3]. According to the definition, the
sign in front of the nuclear offset term is here positive, in
contrast to our previous paper [12]. However, note that
both, nuclear Larmor w, and wgrp are negative, which
must be taken into account in the calculation of §3. A
negative RF arises from the circularly polarised compo-
nent of the linearly polarised RF field in the rotating wave
approximation, which has the same rotation direction as
the nuclear Larmor frequency.

We now discuss the pulse sequences starting with
the eNCP case which is illustrated in Figure 1(A).
The experiment was performed with MW excitation
and detection on resonance with one EPR transition
(i.e. Awe = £A/2w or Awe = 0 MHz). Two orthogo-
nal MW channels with the same MW amplitude were
employed. The pulse sequence starts with a selective /2
pulse, here set of the duration t;,, ~ 200ns, on the x
channel and the power on both channels was attenuated
accordingly. In this first time period, the Hamiltonian is
given by Ho + w1eSx. The excitation pulse is followed
by simultaneously irradiated MW and RF pulses (Figure
1(A)). In order to keep the duty cycle below 1% (which
avoids heating effects), the maximal duration was set to
an approximate value of 150 ps. This length is a compro-
mise between eNCP population transfer rates (~ wiy),
T, relaxation and the mentioned heating effects. The
phase of the MW pulse was set on the y channel. The
concomitant RF pulse uses a RF that is stochastically
set for each frequency point of the spectrum. This sec-
ond period can be modelled by the Hamiltonian Ho +
w1eSy + winlx. The third time period is a free evolution
of an approximate duration of 1 ps with the Hamiltonian
Ho. The fourth time period is a selective MW-detection
m pulse of duration t; =~ 400ns, the corresponding
Hamiltonian is Hy + wieSy. Before the detection, the
fifth time period is a free evolution with an approx. dura-
tion of 1 us to refocus the electron spin magnetisation.
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We now discuss the pulse sequence for CP-ENDOR
(Figure 1(B)). The MW part is similar to the eNCP exper-
iment. The RF part employs two frequency channels
that do not need to be phase-locked as the phase of the
ENDOR inversion pulse is irrelevant. The pulse sequence
starts again with a selective preparation /2 pulse of
200 ns duration on the x channel. As in eNCP, the second
time period consists of a spin-lock MW pulse concomi-
tant with an RF pulse, which is set at a fixed RF denoted
by 0% and an approximate duration of 150 ps. Rela-
tive to this, the offset of the nuclear Larmor frequency
is Aw$? = wp — ofE. The corresponding Hamiltonian
is given by Ho + @1eSy + @inly. The third time period is
a short delay, with a free evolution of approximate 1 ps
and the Hamiltonian Hg. The fourth time period is an
ENDOR read-out 7w pulse with an approximate duration
of 30 ps. The frequency wkYPOR of this pulse was stochas-
tically varied over the ENDOR frequency range using one
acquisition shot per RF (1 shot/point). The correspond-
ing Hamiltonian is given by Ho + winIy. It follows a short
delay, with a free evolution of approx. duration of 1 ys.
Afterwards, a MW spin-echo detection sequence of the
form t /,-7-t; is applied, which consists again of a selec-
tive 77/2 pulse of duration 5/, &~ 200 ns on the x channel,
a free evolution of approx. duration of 1 us, and a selec-
tive 7w pulse of t; ~ 400 ns on the x channel. Before the
detection, there is another free evolution of duration 1 ps
to refocus the echo. Using this MW sequence, practically
no EPR echo is observed without an ENDOR effect. The
ENDOR effect results in a non-zero, positive echo. Note,
that the induced ENDOR echo is significantly smaller
than the primary electron-spin echo as the former results
only from spin packets contributing to an ENDOR
effect.

3. Theoretical treatment of the CP-ENDOR
experiment

3.1. eNCP matching conditions for a two-spin
systemwithS = V2and| = 1

To describe the spin system under the effect of MW and
RF irradiation during eNCP (Figure 1(A and B)), we
employ the density operator formalism introduced pre-
viously [12,14,29]. The evolution of the density operator
p(t) under the effect of a time-dependent Hamiltonian
‘H(t) can be analyzed using the Liouville-von Neumann
equation p(t) = —i[H(t), p(t)] and its formal solution
p(t) = U(t)p(0)U1(t) [30]. The first part of the fol-
lowing theoretical treatment aims at finding the relevant
Hamiltonian for eNCP and subsequently the so-called
matching conditions for the polarisation transfer. The
matching conditions describe the conditions for which

energy eigenstates become degenerate under simultane-
ous MW and RF irradiation. This derivation requires the
following three steps: (i) specify the spin Hamiltonian
(1) under the effect of MW and RF and transform it
in a time-independent form, i.e. in a doubly rotating
frame. This will allow us to rewrite the formal solution
as p(t) = e M p(0)e"tt, with U = exp(—iH?); (ii) diag-
onalise the eNCP Hamiltonian (which we denote as the
transformation into a so-called tilted frame) in the limit
of weak RF irradiation; (iii) find the MW and RF irra-
diation conditions in this tilted frame for which pairs
of states become degenerate and which drives the cor-
responding polarisation transfer. Subsequently, the effect
of the eNCP Hamiltonian on p(t) will be evaluated in
Sect. 3.2.

As CP-ENDOR deals with population transfers
between energy levels, its analysis keeps track of individ-
ual states. Hence it is convenient to convert (1) into the
basis 7, in which the elements are numbered according
to the energy scheme of Figure 1(C) (from high to low
energy). The corresponding basis transformation 7 =
PHP is given in Appendix 2, where P = P~!. In this
new representation, EPR transitions oy, B, and y;, occur
between the states [3-6], [2-5], and [1-4], as shown in
Figure 1(C). We note that the same basis transformation
has to be applied also to all spin operators (Appendix 2).
To analyze H under MW and RF irradiation, we rewrite
it in the electron-nuclear doubly rotating frame [14] as in
equation (2)

H = AweS, + Awnl, + AS, L, + wqChI2 — 1)
+ a)legy + wiply. (3a)
Equation (3a) is conveniently reformulated using the fic-
titious spin-%2 operators according to their definitions in

Appendix 3 [26]. To simplify the notation, the tilde on the
single transition operators is omitted:

H = (Awe — AL + A0 2% 4 (Aw, + A)L°
+ o, + 07+ 570
+wUi =4+ 176
—2A0, (I 2+ 2 4+ I 4+ 270)
+ o V2( 2+ P 1 4 576 (3b)

From the above expression, we note that the elec-
tronic part of the Hamiltonian (first four terms of
equation (3b) comprises three manifolds ([1-4], [2-5],
[3-6]) that can be diagonalised independently from
each other, leaving the nuclear part (last three terms)
aside. Diagonalization is performed via three consecutive
unitary transformations UHU™! with U(6,,0p,60,) =



UL=4(0,)U275(05) U2 6(0y) and Uy (9) = e~ ¥x asillus-
trated in detail in Appendix 4. In the following, let 77’
denote the new ftilted Hamiltonian. The total transfor-
mation does not affect the diagonal part (fifth and sixth
term) of the nuclear Hamiltonian (3b), which only shifts
the eigenstates of the electronic part of H'. The last term
of (3b) is considered as a perturbation. The rotation
angles for the individual electronic manifolds are readily
obtained as:

0, = Tan~! _ Pl 0 = Tan~! @le
Awe — A Awe

_ Wile
fy = Tan~! [ 2 4
o = an (Aa)e+A> )

Here, Tan"!(n/d) is the four-quadrant inverse tangent
operation (implemented e.g. in Matlab by the atan2(n,d)
function), which takes into account the individual signs
of the numerator (1) and denominator (d) of the argu-
ment of Tan~!(1n/d) to determine the correct quadrant
of the resulting angle.

This transformation and the rotation angles are best
illustrated by considering the direction of the effective
fields in each electronic manifold of (3b). We refer to
Figure 2 where the corresponding Pythagoras relations
are shown. In the new tilted frame, the new z direction
coincides for each electronic manifold with the direc-
tion of the corresponding effective field. Figure 2 also
illustrates that the effective fields of all three manifolds
depend on the chosen on-resonance irradiation on either
EPRa, B, or y.

The resulting electronic part of this tilted Hamiltonian
is given by

Uecton = (Boe = ) + 2, 117

electron
2 12—5
+ 4/ Awe? + wi. I}

+ \/ (Awe + AP + ?, 27°

= a),,Izl_4 + wﬁ[§—5 + wqy 15_6

with o, = \/(Awe — A + w%e,

wp =/ Awe? + @?, and

Wy = \/(Aa)e + A)2 + w%e' (5)

The zeroth-order diagonal elements of 7{' are subse-
quently obtained from (3) and (5) as

1 1
E|1/> = Ea)y — Aa)n + ECL)Q

1
Epy) = 208~ @Q
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A) General case B) On resonance

5 with EPR a
Awet4 | W 4
Oy
A
Awe Y op
Op
Aa)e—A --------------- a)y
Oy
T4

C) On resonance D) On resonance

with EPR f with EPR y
z 4
\ A
Awectd=24 |, Wy
O
A
Awe=+A kY wp
i
Awe-A=0 _(UTZ Wy

Figure 2. Visualisation of the rotation angles 6, 6g, and 6,
between the z axis and the effective fields, which are used in
the unitary transformation U(6,,6g,6,) to obtain equation (5).
The general case for A > 0 is shown in (A). For A < 0 the on-
resonance irradiation with the EPR hf line of the & manifold, 8
manifold, and  manifold are detailed in (B-D). Axes are labelled
in the rotating frame.

E 1
|4) = _Ewy
1
Bis) = —50p — wq
1 1
E|6/) = —zwa + Awy + EWQ (6)

As indicated by the subscripts, the basis set for the
spin states in the new tilted frame is different from the
one in the laboratory frame [12]. The remaining off-
diagonal terms are proportional to w;, and can be ana-
lytically computed by evaluating the expression v/2wy,, -
U-(II724+ 273+ 275+ 127%) - UL, They are negli-
gible unless their magnitude is on the order or larger



8 I.BEJENKE ET AL.

than the difference of their interconnecting diagonal ele-
ments, which in turn can be tuned by the MW irradi-
ation strength wje and the RF irradiation offset Awy.
This leads to the formulation of CP conditions spec-
ifying when pairs of states in the tilted frame [i' — j']
become degenerate. There also needs to be an off-
diagonal element that is the source of the CP pro-
cess. After numerical inspection of the Hamiltonian
matrix after its transformation into the tilted frame with
U(0y,08,00) = Uy ~4(0,)U2>(0p) U3 ~®(0q), we found
that specific pairs of diagonal elements are always con-
nected by off-diagonal elements. By equating the expres-
sions of these pairs from (6) and solving for Awy, denoted
by AwS?, we obtain the possible matching conditions

AWCPI=5 — wy + wg + 3wq

Awgp[z/_ﬁr] _ top+ C;a + 3wq
Aa)r(ljp[l’—z’] _ +twy — ‘;ﬁ + 3wq
Awﬁ”s/—ﬁ/] _ —wg + C;a + 3wq
Awgp[zﬂ—s’] _ % + ‘;/3 + 3wq
Aa)gp[z’_y] _ +wpg — C;a + 3wq
Awr(ljp[z’—z;’] _ %~ ‘;/3 + 3wq

Rotation angles and matching conditions were calcu-
lated for hf and quadrupole parameters of the malonic-
acid single crystal used in the experiment (Tables 1
and 2). In the crystal orientation selected for this
study, the hf coupling constant of —8.9 MHz is close
to the isotropic value of ~ —9MHz (from the ten-
sor values A,/2m = —4.4 MHz, Ay/2mw = —8.9 MHz,
and A,/2m = —14MHz) and the quadrupole cou-
pling value is wq/2m = —0.04 MHz (from the tensor
with wq /27 = 0.07 MHz, wQy/2mr = —0.03 MHz, and
wQz/2mr = —0.04 MHz) [31]. The MW field strength was
w1e/2w = 1.25 MHz. From equation 4 and for the con-
sidered case of |A| > wie, A < 0, we obtain the set of

Table 1. Rotation angles for the perdeuterated malonic acid (|A|
> wie, A < 0) when the MW excitation is resonant either with
EPR «, B8, or y respectively.

EPR « [3-6] EPR B [2-5] EPR y [1-4]
Oy /2 T T
0p 0 /2 b4
0y 0 0 /2

Table 2. Calculated matching conditions for deuterated malonic
acid parameters A/2r = —8.9MHz, wq /2w = —0.04 MHz, and
w1e/2m = 1.25MHz.

EPRa [3-6] EPRA [2-5] EPRy [1-4]
Aw. = —A/2r Awe =0 Awe = A/2r
AoSP 21 AoSP 21 AoSP 21
Degenerated states [MHZ] [MHZ] [MHz]
['-21 —44 439 +3.9
[1-51 —13.4 —5.1 —5.1
[2'-31 —38 +39 +4.5
[2'-47 +13.5 +5.2 +5.2
[2'-67] —5.1 = —134
[3-5'] +52 - +13.5
[4-5"] +45 —-38
[5-6] +3.9 —3.8 —44

MW offsets Awe = we — wywfor the individual EPR lines are also illustrated
in Figure 1(F). For instance, Awe results in a positive sign for EPR « due to the
negative sign of the hf coupling. The calculation considers that the nuclear
Larmor frequency wnand wgh in AwS? (equation 7) are negative. The high-
lighted matching conditions are efficient only if associated to the respective
EPR line (see text).

angles given in Table 1. The polarisation transfer and
the CP-ENDOR effect can occur if a matching condi-
tion is fulfilled. A matching condition is realised by set-
ting the RF irradiation during MW spin lock at one of
the expected (equation 7) AwSP offsets. However, there
are two additional requirements: (i) there must be a
non-negligible probability for polarisation transfer (see
above) and (ii) the populations of the matched states must
lead to a population re-distribution. This latter point
will be illustrated in §3.2. From a numerical inspection
of the tilted frame Hamiltonian using the malonic acid
parameters, we find that some matching conditions in
Table 2 are only weakly allowed, specifically the ones
at+ 13 MHz, as compared to all others. In §3.2 we will
analyse whether the remaining conditions will lead to
an observable ENDOR effect. The results are anticipated
here, i.e. these matching conditions are highlighted in
Table 2 and are referred to as ‘CP-efficient’.

3.2. CP-ENDOR intensities

We use the density operator formalism introduced in
Sect. 3.1 to predict the intensities of the CP-ENDOR
lines. By selecting a suitable rotating frame and neglect-
ing relaxation, the pulse sequence can be generally subdi-
vided into a finite number of time segments with a time-
independent Hamiltonian, and this evolution might be
examined analytically using the product operator formal-
ism for an electron coupled to one nuclear spin [9]. Due
to the complexity of the CP-sequence, which involves
a long spin-lock pulse in which T, relaxation is non-
negligible, as well as two RF pulses with distinct fre-
quencies, this approach is not feasible. However, it was
previously illustrated [12] that a simpler description of



the eNCP effect on the elements of p can be derived from
a heuristic treatment for both the eNCP RF irradiation
as well as the spin relaxation. This is justified by the fact
that the spin-lock pulse is long enough for coherences
to decay during the pulse. Thus, at the end of the spin
lock, the electron spin can be considered to be aligned
along the direction of its effective field (see Figure 2).
To examine this process, we express p during eNCP in
the eigenbasis of the tilted Hamiltonian. This is achieved
by transforming the eNCP propagator into the tilted
frame [12] (e~ — ¢~H't) with the help of the unitary
matrix U EU’IU =1) as e”;m = U lue™Mty—1lu =
Ul iURUD g = =1~ MY with U, H, and H/ as
given in §3.1. The rotation direction used to diagonalise
H is important and explained in Appendix 4. We insert
this transformation into the computation of the density
matrix during eNCP, (tcp), and obtain

plicp) = e~ Ter p(oh)elTiice

— U—l . {e—i":{/!cp . (U,O(0+)U_l) . e—H'F[’tcp} .U
(8)

where p(07) and p(tcp) are the density matrices in the
doubly rotating frame at the beginning and the end of
the eNCP process, respectively (Scheme 1). The expres-
sion in the curly brackets represents the time evolution of
the density matrix p’(tcp) in the tilted frame (Scheme 1).
In the following, we illustrate this procedure for the spin
system with § = 1/2,1 = 1.

The density operator at thermal equilibrium is given
in the high-temperature approximation by

_ 1-BhH

PB = (1) %)

with B = 1/kpT. (Note: We prefer here the more gen-
eral symbol p for the density matrix [2,32] instead of the

po p(0%) ps?y p(d7y Signal
e Ry A
Yoy ey
(n/2)xg (spin lock)
v
t
P
x I B

Scheme 1. Definitions of the density operators at the analyzed
steps of the pulse sequence. The primed superscript together with
the green colour refers to the tilted frame as compared to the
rotating frame.
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reduced spin density matrix o [3,30] for consistency with
the magnetic resonance literature [12,14,16]). Here, we
have Tr{1} = 6 for the case of a spin system with § = %
and I = 1. It follows that

T 1 -
= — — —BhH. 10
pp=— B (10)
The traceless part
1 hiyeBo « R
=—- Sz = —RS 11
0 6 kol 7 7z (11)

is relevant for the computation of the expectation val-
ues of the spin operators and we set R = %%. Using a
compact notation for diagonal matrices with the diagonal

elements as introduced in Appendix 2, we have

F 12
1/2
1/2
—12| |’
—-1/2

[ —1/2]]

po = —RS7 = —R (12)

where the expectation value of Sy is given by Sy =
RTr{poSz} = —1.5RA. In the following, we transform the
relevant elements of the density matrix according to the
steps in Scheme 1.

The first step in the CP sequence is a selective prepara-
tion (77/2), pulse on one of the three EPR transitions (as
|A| > wie). At the beginning of the sequence, the den-
sity matrix is denoted by p(0) = po. If the MW excitation
acts, for instance, selectively on the EPR « transition
[3-6], the density matrix p(0™) is after the preparation
pulse in Scheme 1 equal to

p(07) = e 2 (RS F
_ e—i%lfjé{_R(I;—z; +I§_5 +I§—6)}ei%lff6
= R} 4127 — 15—6). (13)

Here, we have substituted SZ with single-transition
operators (see Appendix 3) and used the rotation prop-
erties of spin operators (see Appendix 5). In the next
step of the sequence (i.e. during the MW spin lock), the
component [ ; ~6islocked with the on-resonant MW irra-
diation along y. We now transform p(07) into the tilted
frame of the EPR o manifold according to equation 8 with
p'(07) = Up(0HU ™! and U = U,(6,,0p,0,) as given
in Appendix 4. Considering Table 1 for malonic acid, the
angles for the transformation are 6, = %, 0p = 0, and
6, = 0. We obtain (Scheme 1)

o' (0F) = e~y i g0 =0 10
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_ _ _ : 1-4
x {_R(I; 4 4 Ig 5 I}:’,) 6)}e+19ylx
s« et ptibaly ™

—iZ3-0 1—4 2-5 3—6 iZ 36
=e '2% {—R(I, "+ I; —Iy Yyeti2k

= —RI}™* — RIZ™> +RI;C. (14)

Now, we can heuristically examine the effect of the
CP RF pulse on equation (14). When no CP condition
is matched or no RF field is applied during the spin lock,
the diagonal elements of p’ stay locked and decay with the
characteristic relaxation time T7,. Other density-matrix
elements will decay with a shorter time T, and due to
dephasing by the inhomogeneities in w;.. We note that
this step alone leads to an ENDOR effect as it creates a
magnetisation profile of Sy as a function of Aw, after
the spin-lock pulse [33]. If the RF irradiation is applied
during the spin-lock period with one matching condition
met, population is transferred between matched states. In
the presence of relaxation, this will have the net effect of
equalising populations among the matched states at the
end of the long spin-lock pulse [12]. For example, start-
ing from equation (14), the matching conditions [i — j']

at EPR « (see Table 2) result in ,o/(tgp_j/]) (Scheme 1):

—R/2]
—R/2
PO = | s ||

R/2

L L—R/2] ]

[ —R/2 1 - -
—R/2+R/2 —R/2
— 0
+R/2CR/2

- % - R(;Z (15)

L -rz2 || - TS

s
—R/2

0= | s ||

R/2

L L—R/2]

i —R/2 1 - -

—R/2 —R/2
+R/2 —R/2 R/2
2 0

—R2+R2 Lo .

LL 2 .

In contrast, the density-matrix elements remain
unchanged if a degeneracy is created between the levels
1" and 2/, i.e.

e
_R)2
d@ = || g || = e
R/2
L L—R/2]
[ —R/2—R/277 o L
— 5 ~R/2
—R/2 —R/2 —R/2
2 R/2

Next, the density matrix after the eNCP step is trans-
ferred back into the doubly rotating frame via the inverse
transformation p(tcp) = U1 p/ (tgp_/])U, according to
equation (8). We note that while p’(tcp) is diago-
nal (i.e. the magnetisation aligns along the effective
field), p(tcp)in the doubly rotating frame is not diag-
onal. However, after the spin-lock pulse, the spin sys-
tem evolves freely for a time 7 > T, and now also
the off-diagonal elements of p(tcp) decay and can be
neglected for the detection scheme. Accordingly, the den-

sity matrix p (tz_j /]) (Scheme 1) after eNCP and prior to
the ENDOR RF pulse is obtained from equation (15) as

- p]
0
—R/4

R2 ||
R/2
| —R/4 ]

Sy
—R/2
p(tf_e]) = Z;}
0
R/4

pt? 7 =

(17)

We can now calculate the ENDOR effect after a selective
RF 7 pulse on one of the allowed ENDOR transitions
connected to the transition EPR « (see Figure 1(b) and
§2). The ENDOR signal for the selective detection on
EPR « is proportional to the expectation value of I37.
For instance, for an RF inversion on the nuclear transition
[5-6] after CP [2" — 3'] we get:
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Table 3. Calculated signal intensities of CP-ENDOR for S = %, | = 1 and parameters from Tables 1 and 2 for malonic acid and

excitation/detection on the given EPR lines.

EPRa [3-6] EPRS [2-5] EPRy [1-4]
ENDOR[2-3]  ENDOR[5-6]  ENDOR[1-2] ~ ENDOR[2-3] =~ ENDOR[4-5]  ENDOR[5-6] = ENDOR[1-2]  ENDOR [4-5]
el i i A I WA = 7
L 2 2 2 2 2 2 1 3
CP[1-57] —2R —2R —2R —2R —2R —2R iR -3R
s 1 3 2 2 2 2 2 2
CP[2"-31] 3R -3R —2R —2R ~2R —2R ~2R —2R
CP[2'-4] —2R —2R —2R —2R —2R —2R -3R iR
SR S BN BN BN B -
¢E-s) -8 -3 R N A = -3
Pus) i - R N SR A Sl
g 3 1 2 2 2 2 2 2
CP[5'-6'] -3R iR -2R —2R —2R -2R -2R —2R
Signal*PR¢ (RF56, CP23) A) ) 2) 7)8) 9)
Po= -RSZ . - * * 'p(techo)
(n/2),  (spin lock), (1)x

_ /_3/ _6.—1 _
~Te((US %) - p(2 3Ny - (U367 . 28

/_ ! _ _1 _ _
~ Tr(pt2 1) . (U6 276 (U0
~ Tr{p? 7). 275} = —3/8R (18)

The first line of equation 18 is identical to the sec-
ond line of equation 18 because the operators under the
trace can be cyclically permuted. The ENDOR intensities
were calculated analogously for all matching conditions
of Table 2. The matching conditions at EPR « that result
in efficient polarisation transfer are highlighted in Table
2. The calculation was also performed for a selective exci-
tation of EPR $ and EPR y as detailed in Appendix 6. All
these results are summarised in Table 3.

The calculation predicts that the polarisation trans-
fer should deliver an antiphase ENDOR spectrum with
absolute intensity ratios 1:3, in analogy to the results
for a two-spin system with S = % and I = %. If, how-
ever, no matching condition is active, the calculation
predicts a symmetric ENDOR effect (so-called spin-lock
ENDOR effect). Interestingly, for an active CP-ENDOR,
quadrupolar coupling doublets in the central (EPR S)
manifold are predicted with an additional antiphase
structure.

4. Numerical density-matrix simulation of a
quantum system consisting of one electron spin
%2 and one nuclear spin 1

4.1. Recalling the eNCP and CP-ENDOR sequence

We start by adding pulses (controls) for Sy, Sy, I, and I, to
the spin Hamiltonian H, from equation (2) in electron-
nuclear doubly rotating frame. This leads to

H(t) = Ho + 27 [ux(£)Sx + Uy(t)sy + v + Vy(t)ly]
(19)

= AweS; + Awpl, 4+ AS,I, + wq(ChHI2 — 1)

|

B)
) s )
(m/2)x

MW

RF), (1)x
v I

t

2) 3 4 50D 8,9
(W2)x (M)

techo)

(spin lock),

!

Figure 3. eNCP (A) and CP-ENDOR (B) simulation steps. The initial
state for all simulations is o9 = —RS, which evolves to p(techo)
at the time of the echo. Five steps are considered in the eNCP
simulation and nine steps in CP-ENDOR.

Note: The numbering of the steps was adapted to represent both sequences.

+ 27 [ux (1) Sx + uy(H)Sy + vx ()L + vy (D, ].
(20)

The pulse amplitudes (control functions) u.(t), u,(t),
vx(t), and vy, (¢) detail how the Hamiltonian changes dur-
ing the time evolution. For the numerical simulation
discussed in this section, we again set wpw on reso-
nance with one EPR transition (i.e. Awe = +£A/27 or
Awe = 0 MHz) but Aw, is set to Aw, = Aa)gP = wy —
w$t for the whole pulse sequence (but see §4.4 for a
more efficient simulation of the ENDOR step). This
is in contrast to the discussion in §2.3 and allows
us to numerically compute the time evolution in a
single and fixed rotating frame. We point out that
the numerical simulation uses the standard basis of
the spin Hamiltonian. To compute the time evolu-
tion of the density matrix, we build on the dis-
cussion in $§2.3 and subdivide the eNCP and CP-
ENDOR sequences into consecutive steps, as defined in
Figure 3.

Both sequences start from the (traceless deviation)
density matrix po = —RS,. The eNCP and CP-ENDOR
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sequence consists of five and nine steps, respectively. We
focus here on the CP-ENDOR sequence as its steps are
similar to the respective steps of the eNCP sequence
(Figure 3). The CP-ENDOR sequence is repeated at
a fixed CP frequency Aw$? while varying the so-
called ENDOR frequency AwENPOR = ¢, — oENDOR,
The corresponding Hamiltonians are

1) Hy := Ho + w1eSx (21)
2) Hy := Hcp := Ho + 1Sy + @1nly (22)
3) Hsz := Ho (23)
4) Ha(t) := Henpor(£)
= Ho + w1n cos(AwRDf;Et)Ix

+ o1 sin(AwRI ], (24)
5) Hs := H3 := H, (25)
6) He := H1 := Ho + w1eSy (26)
7) H7 == Hy (27)
8) Hs := Ho + w1eSx (28)
9) Ho := H7 :="Hy (29)

with

AR = o~ o,

As stated in §2, the two RF channels in the experiment
corresponding to wSE and wERPOR do not need to be
phase locked as the phase of the ENDOR inversion pulse
is irrelevant. In the simulation, we arbitrarily choose
the phase of the ENDOR pulse to be x, see Figures 1
and 3.

Similar to §2.3, equations (21) to (29) describe the
time evolution in the various steps of the CP-ENDOR
pulse sequence shown in Figure 3. It starts with a selec-
tive 7/2 pulse on the electron spin along the +x direc-
tion in equation (21) and continues with the eNCP step
where constant irradiation is applied to the electron spin
along the +y direction and to the nuclear spin along
the +x direction. Recall from above that Aw, in Hy
is set to the eNCP frequency AwSP. It follows a free
evolution [equation (23)] and the ENDOR step which
applies a modulated irradiation H4(t) = Henpor(t) on
the nuclear spin, where AwRDli:ff specifies the ENDOR fre-
quency whkNPOR relative to the eNCP frequency wgy.
Equations (25) to (29) detail free evolutions and selec-
tive irradiations on the electron spin. Recall from §2.3
that the pulse durations are t; = 200ns, t, = 150 ps,
3 =1ts=1t; =1ty ~ 1lys, t4 ~ 30us, tc = 200ns,
tg = 400 ns.

4.2. General numerical simulation strategy

Our general simulation strategy critically relies on the
doubly rotating frame that we have chosen to model our
experimental setup. The chosen rotating frame allows us
to treat almost all Hamiltonians #; that act during the
time steps of the CP-ENDOR sequence as time inde-
pendent. Only the Hamiltonian H4(f) = Henpor(f) for
the ENDOR step is not constant. We now describe the
general strategy for time-independent Hamiltonians and
subsequently discuss the ENDOR step.

Consider a time-independent Hamiltonian H; with j
# 4 as specified in Equations (21)-(29). In a time step
of duration ¢, the density matrix p is mapped to p; =
Ui - pj1 - Uj_l. The unitary matrix U = exp(—iHjtj)
is computed by numerical matrix exponentiation. This
straightforward strategy is effective as long as the occur-
ring matrices are small enough and this certainly applies
to the case of 6x6 matrices used here. In princi-
ple, the same strategy could be also applied to the
ENDOR step by splitting it into small enough sub-
steps, for which one could assume a time-independent
Hamiltonian. One would however have to use a very
fine resolution to sufficiently capture the modulation.
This would lead to a very inefficient approach to
numerically simulate the ENDOR step. For example,
for a difference frequency Aw%ﬂ/ Q2mr) = (w%}]DOR —
w%)/ (2m) of 10 MHz, one oscillation period corre-
sponds to Toge = 1/ (w%}IDOR/ (2)) = 100 ns. Thus the
time steps would need to be smaller than Tys./10 = 10 ns
in order to faithfully approach the modulation by a
piecewise constant function. For a typical ENDOR
period of 30 s, this would require at least 3000 time
steps to be calculated! A much more efficient approach
is detailed in the following Section 4.3.

4.3. Efficient simulation of the ENDOR step

In the numerical simulations, the CP-ENDOR sequence
is described in a doubly rotating frame. For the nuclear
spin I, the rotating frame frequency is chosen to be
identical to the RF wgf that is applied during the CP
period (step 2). Hence, in this rotating frame, the off-
set frequency of spin I is given by AwS’. However,
during the ENDOR period (step 4), the irradiated RF
wENPOR s in general different from w$t which results
in a time-dependent, oscillating RF Hamiltonian in the
rotating frame defined by Aw$P. A computationally effi-
cient approach consists of two simple steps:

(I) Perform the calculation during the ENDOR period
(step 4) in the rotating frame defined by the nuclear



irradiation RF a)}FﬁEIDOR, in which the RF Hamilto-
nian is constant and for which the offset frequency
of the nuclear spin is AwENPOR during step 4. Hence
the Hamiltonian H4 = HEgnpor(#) given in the CP
rotating frame in equation (24) corresponding to the

RF irradiation at the difference frequency AwRi =

a)lFiIl}ID OR _ a)%:) is translated into the constant term

Hia = Aw,S, + AwENPORL, 4 AS,I,
+ wqChIl — 1) + winly (30)

and the corresponding propagator is Uyg, = exp
(—iHaats).

(II) In order to take into account the different rotat-
ing frame frequency during the ENDOR period of
duration t4, the density matrix is subsequently trans-
formed by Ug, = exp(—iHapts) with

Hap = AwnifT,. (31)

In summary, the density matrix p is mapped in the
ENDOR step to the density matrix Us,(Usap Uy, ) Uy
using two substeps which can both be modelled using
a time-independent Hamiltonian. This provides an effi-
cient approach to compute the coherent effect of the
ENDOR step.

4.4. Heuristic simulation of the effect of B,
inhomogeneity and relaxation

We now discuss how the effect of B; inhomogeneity and
relaxation was taken into account in our simulations.
For example, we could numerically simulate the effect of
B; inhomogeneity by averaging over repeated numeri-
cal simulations for a range of B; amplitudes. This would
however lead to a significant simulation overhead and a
decrease in efficiency. Here, a heuristic approach is used
to model the effect of the B; inhomogeneity and relax-
ation accumulated during the second (i.e. CP) and the
third step, which are assumed to be the primary incoher-
ent contribution during the CP-ENDOR sequence. After
the application of the Hamiltonian H, = Hcp during the
second step, (a) we transform the density matrix into the
eigenbasis of Hy = Hcp, (b) remove all non-diagonal
entries of the density matrix, and (c) transform the den-
sity matrix back to its original basis. Physically, it means
that we assume complete relaxation/defocusing of mag-
netisation components transverse to the spin-lock field
(or dressed-spin coherence), in other words T5, < ts1.
To simulate the third time step, we apply the unitary U;
to the density matrix and (d) remove again all of its non-
diagonal entries afterwards. We subsequently continue
with the fourth step as before. The new substeps (a) to
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(c) emulate the averaging effect of the B; inhomogene-
ity and relaxation during the CP step. After the third
time step, the substep (d) is supposed to model the effect
of fast transverse T relaxation. This heuristic approach
leads to only a minor computational overhead while cap-
turing important experimental contributions during the
CP-ENDOR sequence.

5. Comparison with the experimental results

Figure 4 illustrates the experimental eNCP spectra
recorded with the sequence in Figure 1(A) (experimen-
tal settings given in Sec. 2) and their comparison with
the analytical predictions (Sec. 3) and the numerical sim-
ulations (Sec. 4). Experimental spectra are normalised
to the intensity of the spin-lock echo without CP and
show peaks at the matching conditions for the depolar-
isation of the electron spin as a function of the RF offset
A&SP = wy — wSE. For the numerical simulations, the
intensities represent the expectation value — (Sy>, which
is produced under the effect of the MW 7 pulse with +x
phase after the spin lock along +y. Since the excitation is
selective, the probed magnetisation — (Sy) (without relax-
ation and CP) amounts to 1/3 of the initial (S,) = |1.5RA)|
(Sec 3.2). For the simulation we have employed param-
eters for malonic acid radical as given in Section 3.1
(see Figure caption). The analytical solutions represent
the AwSP /27 from Table 2 as stick spectra and their
intensities are arbitrary.

From Figure 4, we observe eight matching conditions
in the region Aw$P/27 > [2| MHz arising from the
interaction with the strongly coupled deuteron (Figure
1, inset; labelled with D1 in the caption of Figure 4)
which satisfy |A] > |wiel, A <0, and [A] > |oq]l.
The peak positions are in excellent agreement with the
analytical predictions from Table 2 and the numerical
simulations. Consistent with the theoretical prediction,
resonances of matching conditions with low transition
probabilities (e.g. at =13 MHz) are not detected in the
eNCP experiment. The additional peaks around the cen-
tre of each eNCP spectrum (AwSP/2m = £1.18 and
0MHz) are assigned to polarisation transfer to distant,
weakly coupled nuclei (labelled with D2 in caption of
Figure 4) in analogy to previously published work on a
BDPA [14,15] and protonated malonic-acid single crys-
tal [34]. The resonances were numerically simulated with
hf and quadrupole parameters A(D2)/2m = —0.1 MHz,
wq(D2)/27 = 0.0 MHz.

In the experiment, the intensity of the echo
depolarisation is about 10% of the available echo, whereas
in the simulation this effect is up to 50% of the observed
echo. We suggest that the experimental efficiency is
limited by sample imperfections. We observe these
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Figure 4. Experimental eNCP spectra recorded selectively on each EPR line (@, B, and y), transitions according to Table 2
(analy.), and numerical simulations (sim.). Note that the x axis follows the definition AwgP = wy —a)%:). Note also that
the different scales of the y axes (left and right) were adapted for a better comparison. Exp. Conditions: vepr = 94 GHz,
shot repetition time = 100ms; t;/2mw = 200ns, tcp = 150 ps, one shot/point, random RF acquisition, 100-250 scans. Sim.
parameters: wie/2mw = 1.18 MHz, w1,/2w = 10 kHz, A(D1)/2n = —8.9MHz, A(D2)/2m = —0.1 MHz, wq(D1)/2w = —0.04 MHz,
wq(D2)/2r = 0.00 MHz, Aw, = £A/2m, 0 MHz. Line width in the simulated spectra results from power broadening due to the RF

pulse.

imperfections in two ways: (1) the EPR spectrum shows
additional absorptions (Figure 1) and (2) the three EPR
lines shows a line width of about 2 Gauss, which is indica-
tive for some inhomogeneous broadening. It means that
there is a little distribution of molecular orientations,
which contributes to the CP-ENDOR experiment. These
inhomogeneities could lead to spin diffusion after the
preparation pulse and echo depolarisation, not consid-
ered in the simulations. We believe that additional forth-
coming experimental data will help to clarify this point
in the future.

Some effect of the parameters wje and w1y, on the line
shape is illustrated in Appendix 7. While wj, shifts the
position of the matching conditions, as expected, wip
contributes to its line width. Moreover, in the experi-
ment the intensities at the high-frequency side (negative
AwSP) appear slightly higher. This trend is also observed
in the non-matched CP-ENDOR spectrum (e.g. Figure
5(A), top) and in the control Davies-ENDOR experi-
ments (Appendix 8). It is attributed to a deviation from

the high-field approximation, i.e. a so-called hf enhance-
ment [35]. Indeed, an asymmetry of the ENDOR line
could be reproduced in a simulation of the Davies-
ENDOR spectrum using the software Easyspin [36] and
complete Hamiltonian diagonalization, Appendix 8. As
expected, this asymmetry effect is not seen in our numer-
ical simulations (Figures 4 and 5) which assume high-
field conditions.

Subsequently, CP-ENDOR spectra were recorded
using the sequence in Figure 1(B) and by setting the RF
offset AwS? at one of the various detected matching con-
ditions in Figure 4. The spectra and their comparison
with theoretical predictions (Table 3) as well as numerical
simulations are displayed in Figure 5. We observed two
types of ENDOR signals: one for the CP-matched and
one for the non CP-matched RF during eNCP. As pointed
out in Sec. 3.2, for no ENDOR effect, the electron-spin
echo is zero at the detection time, which is reflected in
the experiment as well as in the numerical simulation.
For the non-matched case, ENDOR signals result in an
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Figure 5. Experimental CP-ENDOR spectra (top lines) on a deuterated malonic-acid single crystal (S = 1/2,1 = 1), numerical CP-ENDOR
simulations (middle lines) and peak intensities according to the analytical prediction in Table 3. Results are shown for the selective excita-
tion of the EPR v in (A) and 8 in (B), respectively. They are plotted in the ENDOR frequency domain with vrr = wrp/27. Experimental RF

CP

offsets AwSF = w, — wg according to Figure 4 and their assignments from Table 2 are indicated in each sub-spectrum. Exp. conditions:
vepr = 94 GHz, t; 2mw = 200ns, tcp = 150 ps, tenpor = 25 s, shot repetition time = 100 ms, 1 shot/point, random RF acquisition,
100 scans each. Sim. parameters: w1e/2wr = 1.18 MHz, w1, /2w = 13kHz,A/27 = —8.9MHz, wq /2w = —0.04 MHz, Awe = £A/27,

0 MHz.

increase of the echo (Figure 5 top) and the lines have a
similar intensity, which is consistent with the predictions
of Table 3 and the numerical simulations (Figure 5). As
in Figure 4, the low-frequency lines appear weaker than
the high-frequency lines.

In contrast, the CP-ENDOR intensities for the
matched CP RF offset displayed quite different line
shapes. Analytical and numerical analysis consistently
predicted an antiphase doublet with relative intensities
(3:1) (Figure 5(A), Appendix 9 for EPR y). Similar to
the analytical results, the numerically predicted maxi-
mal CP-ENDOR effect amounts to % of the available
magnetisation on one line (left axis). The experiment
well reproduced this asymmetry. The weaker negative

line was however not detectable. We assign this effect
to sample inhomogeneities, which would readily lead to
a cancellation of the negative peaks. For CP-ENDOR
with a detection on EPR g (Figure 5(B)), the analyti-
cal and numerical techniques consistently predicted four
lines (Figure 1(E)) with one antiphase doublet of lower
intensity. Experimentally, this pattern was also observed
but only the absorptive line of the antiphase doublet
was visible. Again, we suggest that the absence of the
negative peak is due to a cancellation resulting from
sample inhomogeneities, which are not considered in
the analytical treatment, as we neglect any off-resonance
effects. Recent analysis of powder patterns [33,37] indi-
cated that negative peaks disappear in the presence of
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such inhomogeneities. Nevertheless, the overall agree-
ment between different theoretical predictions and the
experimental data is striking and not obvious, as the ana-
lytical prediction of intensities (Table 3) does not explic-
itly calculate a time evolution of the density operator
during the spin lock, whereas the numerical simulation
does. This underlines the validity of our model for the
effective description of this experiment.

Finally, it is interesting to compare the results with
a standard Davies ENDOR experiment. The observed
theoretical and experimental Davies ENDOR intensi-
ties are stronger than the CP effect (Figure A2), i.e. the

echo change amounts to approx. <§Z> /3. This means

that in principle, Davies ENDOR delivers the most effi-
cient ENDOR effect, at least in this single crystal case.
However, in the case of disordered systems and for slow
nuclear relaxation, CP-ENDOR might be an attractive
alternative [37].

6. Conclusion

We have theoretically and experimentally demonstrated
CP-ENDOR on a 2H nuclear spin, which is an impor-
tant target in structural studies of biological systems and
materials. In particular, we have used a single crystal of
deuterated malonic acid to experimentally identify the
matching conditions for cross-polarisation between an
electron S = % and a nuclear spin I = 1 under con-
sideration of a small quadrupolar interaction (|Q| <
|A]). Probing the resulting ENDOR intensities after the
eNCP transfer resulted in asymmetric spectra with inten-
sity trends similar to that reported in 'H studies. The
predicted and simulated matching conditions agreed
well with the experiment. The line shape of the CP-
ENDOR spectra was reasonably consistent with the the-
oretical prediction of an ideal two-spin system. There-
fore, the presented analytical investigation and the sim-
ulation strategy provide a framework to expand studies
to more advanced polarisation transfer schemes, using
for instance optimised pulses and to analyze results in
disordered, powder-like systems as in frozen protein
solutions.
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Appendices

Appendix 1. Spin-operator definitions

We consider a quantum system that consists of one electron
spin S = 1/2 and one nuclear spin I = 1. The correspond-
ing density-matrix description relies on the generalised Pauli

matrices
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the S and I spins:

0 0 0 1 0 0
0 0 0 0 1 O
110 0 0 0 0 1

e Sl &

Ss=0x @b =511 9 0 0 0 of
0 1 0 0 0 O
0 01 0 0 0

0 0 0 —i O 0

0 0 0 0 —i O

110 0 0 O 0 —i

e Sl &

S=oy@li=c17 90 0 0 o]
0 i 0 O 0 0
L0 0 i O 0 0
M 0 0 0 0 0
01 0 O 0 0
I1o 0 1 o0 0 0
— 53 A
Semoz®@l=510 00 -1 0 o
0 0 0 0 -1 0
L0 0 0 O 0 -1
0 1 0 0 0 O
1 0 1 0 0 O
1 01 0 0 0 O

— 1S I -

L=T"®@oc="210 0 0 0 1 o
0 0 0 1 0 1
00 0 0 1 0
0 —i 0 0 0 0
i 0 —i 0 0 0

1 0 i 0O 0 O 0
—_ 19 -

=10 ="210 0 0 0o —i o]
0 0 0 i 0 —i
10 0 0o 0 i 0




18 |. BEJENKE ET AL.

10 0 00 0
00 0 00 0
s ;. oo -1 00 o0
=1"®0z=1o o o 1 0 o
00 0 00 0
00 0 0 0 —1

We also introduce the 6 x 6 identity matrix 1 := 15 ® 1.

Appendix 2. Transformation of the Hamiltonian
into the tilde basis

We will also use a so-called tilde basis for spin operators, which
is adapted for a more practical order of the energy levels, where
they are numbered from 1 to 6 according to descending energy.
The elements in the tilde basis are easily obtained using the
transformation M = PMP with
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and the general matrix
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In particular, all spin operators are given in the tilde basis as

—1
- 1 -
S;=8, = -1 » S = Sx
0
1
0O 0 0 1 0 O
0 0 0 0 1 O
_ljoo o000 1|5 _,
5011 0 0 0 0 of>xT
01 0 0 0 O
0O 0 1 0 0 O
o 1 0 0 0 O
1 0 1 0 0 O
1o 1.0 0 0 0] = <
= E 0 0 0 0 1 0 ,I)/ = —Iy, S}; = S};. (A2)
0O 0 0 1 0 1
o 0 0 0 1 O

Here, double-square brackets [[]] denote a diagonal matrix
with the given diagonal entries.

Appendix 3. Definition of the fictitious spin-1/2
operators

The spin operators defined in the Section A2 can be decom-
posed into fictitious spin-% operators

S, =L+ + 175, (A3)
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using the definitions of the fictitious spin-%2 operators
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We rewrite the hyperfine and the quadrupole term using the
fictitious spin-1/2 operator formalism:

AS, L, =AU+ 27+ 1279
X (20172 — 21277 — 21270 — 21576)

1 0 0
0 1 0
1 0 1 0 1
=205 || T2 0 0
0 - 0
0 0 -1
1 07 0
-1 1 0
1 0 -1 0
) 0 ) 0 1
0 0 —1
0 0 |
0
0
1 0 1
_E 0 =2A 1 =
1
-1
1 —1/2
0
1]] -1 1/2
) 1 1/2
0
-1 —1/2

=A(-I1*+279)

2

~1 1 1/2

0 1 ~1

3 1 1 1/2
=590 -1 |1 =®Q 1/2
0 1 ~1

1 1 1/2

=wUl - 40 7).

Appendix 4. Definition of the unitary
transformation U(0,, 63, 0)
In section 3.1, we diagonalise the electronic part of the Hamil-

tonian (3) individually for each electronic manifold. The trans-
formation matrix U is found by recalling the rotation rules
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e ABe®A — Bcos® — i[A, B] sin6 for angular momentum
operators A, B and considering the components of the individ-
ual manifolds in (3) and the commutator [A, B] = AB — BA.
The z direction of the tilted frame, in which the electronic part
of the Hamiltonian is diagonal, is defined by the effective field
direction of each manifold. For example considering the case
of the y manifold, the single transition [1-4] operators 1;1’4,
L'~*,and I’ ~* in the tilted frame are related to the I; ™%, I;™*,
and I}~ operators by a rotation around the x axis with rotation
angle 0, with cosf, = (Aw, — A)/w, and sinf, = wi./w,,
c.f. Figure 2.

Overall, the unitary matrix U that diagonalises the elec-
tronic part of the Hamiltonian is given by

U(6y,0p,00) = U (0,) U (0p) U4 (0) (A9)

and

U(9y>9ﬁ,6a)
_ e—ieyl};“ e—i9ﬂ1§—5 e—iealg—ﬁ
— 97/ o 0 —_
c057 0 0 —isin— 0 O
0 1 0 0 0 0
_ 0 0 1 0 0 0
= 0
—isinX 0 0 cos~ 0 0
2 2
0 0 0 0 1 0
L0 0 0 0 0 1]
M1 0 0 0 0 07
0 0
0 cos—ﬁ 0 0 —isin—ﬂ 0
2 2
« 0 0 1 0 0 0
0 0 0 1 0 0
0 0
0 —isinl 0 0 cosL 0
2 2
L0 0 0 0 0 1
M 0 0 0 0 0 N
0 1 0 0 0 0
0, 0
0 O cos— 0 0 —isin—
% 2 2
0 0 0 1 0 0
0 0 0 0 1 0
0, 6,
0 0 —isin— 0 0 cos—
L 2 2
B 0
cos% 0 0
0
0 cosjﬂ 0
0,
0 0 cos?a
= 0
—isin-~ 0 0
2
0 —1isin— 0
0
0 0 —i sin—
- 2

9 -
—isin% 0 0
0
0 —isin—ﬂ 0
2
0 0 —isin—
9 (A10)
cos% 0 0
0
0 cos—'3 0
2
0 0 cos—
2 -

Each individual matrix was built according to the proper-
ties of rotation operators [38], here specifically exp(—iSy0) =
1cos 9& — 128, sin '9/2 and we have used Sy = S, from Al.

Appendix 5. Selective 7 /2 excitation on EPR 3-6
(o)

We start with the equilibrium density matrix
p(0) = —RI}™ — RI>™> —RIZ™¢

and apply a MW (7/2)x pulse selective on the o manifold.
According to the transformation Up(0)U~! with the propa-
gator U(6),6p,0,) from equation (A10) and setting 6, = 7,
0 = 0,and 6,, = 0, we obtain the density matrix in the doubly
rotating frame after a selective /2 excitation:

p(0%) = e i3 B[R} — RIZ5 — R}l T B °

b b
= —Rcos 513*6 + Rsin 515*6 —RIZ5 —RII

= —RL " =R 4+RI°

Appendix 6. Polarisation transfer during CP for
EPR y and EPR 8

EPR 2-5 (B):

When EPR excitation occurs, e.g. selectively on the 8 transition
by means of a MW () pulse, the initial density matrix p(07)
in the doubly rotating frame becomes

p(0%) = e 3 B (RII* — RIZ5 — RO}l T K

= —RI "+ R[> —RE°

which is subsequently transformed to the tilted frame of the
B manifold via the transformation p’(0%) = Up(0T)U~! and
U = Ux(6,,08,0,) defined in A4. The angles for |[A| > wie
(malonic acid) are given in Table 1 as 6, = 7, 0 = %, and
0, = 0:

—R)2
R/2

/ _ R/2
p'(0h) = R/
—R)2

—R)2

The eNCP process equalises the populations of degenerate
energy levels and we obtain for CP[1'-2'], CP[2/-6/], CP[3'-5],



and CP[4'-5'] the density matrices

' 0 77 [—R/277]
0 0
/ — R 2 / — R 2
da = | ws || P& =] x5 ||
—R)2 —R)2
LL—R/2] | 1L o ]
F—R/277 FM—R/27
R/2 R/2
/ — 0 / —_ R 2
dE = || P =] )
0 0
L[R2l LR/

After transforming back into the doubly rotating frame

p(tcp) = U’lp/(tg;;j,])U and neglecting off-diagonal ele-

ments, we obtain the density matrices

[ 0 77 [[—R/277
_R/4 _R/4
e = | 2 |1+ p@&O = 2 | |-
_R/4 _R/4
LL R/2 1] L R/2 ]
T—R/277 FT—R/27T
R/4 R/4
R e I G e e
R/4 R/4
LL o ] LL R/2 1]

EPR 1-4 (y):

When EPR excitation occurs, e.g. selectively on the y transition
by means of a MW (%)X pulse, the initial density matrix p(07)
in the doubly rotating frame becomes

p(0%) = e T LRI — RIZ5 — RO}l T h
= 4RI, — R —RE°

which is transformed to the tilted frame of the y mani-
fold via the transformation p’(07) = Up(0t)U~! and U =
Ux(6y,0p,0y) defined in A4. The angles for |[A| > w, (mal-
onic acid) are (see Table 1) 6, = 7,6 = m,and 0, = 7 /2:

R/2
R/2
R/2

—R/2

—R/2

—R/2

p'(0h) =

The eNCP process equalises the populations of the degenerate
energy levels and for CP [1-5] and CP [2-4] (Table 2) we obtain

0 R/2
R/2 0
s = | Sy || o= |
0 —R)2
—R)2 —R)2
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According to equation (8), transforming p(tcp) = U~y

(tg/P_j /])U back into the doubly rotating frame and neglecting

off-diagonal elements leads to the density matrices

R/4 _R/4
—R)2 0
o = | | W2 | [oo=| | 22
0 R/2
R/2 R/2

Appendix 7. eNCP simulation parameters
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Figure A1. Comparison of the experimental eNCP spec-
trum recorded selectively on EPR y and corresponding
simulations by varying wie/2r (A) and win/2w (B). Exp.
Conditions: vgpr = 94 GHz, shot repetition time = 100 ms;
tz/2mw = 200ns, tcp = 150 us, one shot/point, random
RF acquisition, 100-250 scans. Simulation parameters: (A2)
tz2,mw = 250Ns, w1e/2m = 1.00 MHz, w1n/2 = 10 kHz; (A3)
tr2,mw = 200ns, w1e/2 = 1.25 MHz, w1n/27 = 10 kHz; (A4)
tr/2mw = 200ns, wie/2m = 1.18 MHz, w1n/2r = 10 kHz; (B1)
tz2,mw = 200Ns, w1e/2m = 1.18 MHz, w1n/2r = 40 kHz; (B2)
tr/2,mw = 200ns, w1e/2m = 1.18 MHz, w1n/2m = 4 kHz.
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Appendix 8. Davies ENDOR experiment and
simulations

We start by shortly summarising the structure of the Davies-
ENDOR pulse sequence (Figure A2, A). Two MW channels
with the same phase but different amplitudes were employed.
The amplitude of the first MW channel was adjusted to deliver
a selective inversion pulse of t; = 400ns. A RF read-out &
pulse of 25 ps was set with a delay of approx. 1 us follow-
ing the MW inversion pulse. The frequency of this pulse was
stochastically swept over the ENDOR frequency range using
one acquisition shot per RF (1 shot/point). A non-selective MW
detection sequence of the form t;5-7-t; and with t; = 60ns
was applied on the second MW channel at an approximate delay
time of 1 ps following the ENDOR RF pulse.

A) (@)
MW

We performed standard Davies ENDOR experiments and
simulations as a control for the new experiments and sim-
ulations. The core of our Davies simulation routine is very
similar to the CP-ENDOR simulation. However, the eNCP
step is replaced by a selective microwave pulse, similar as
for the experimental procedure. The simulated ENDOR effect

is consistent with the theoretical expectation [9] of <S3—’>0r
0.5-R. Here, some asymmetry of the experimentally observed
ENDOR peaks is evident (Figure A2). This asymmetry can be
reproduced by considering the so-called hf enhancement factor
[35] in the simulation with Easyspin [36] (Figure A3). This fac-
tor, however, is not considered in our Davies simulation routine
(Figure A2), thus lines are predicted to have equal intensities of
1/2 R.

(n/2)y (M)
N

RF sweep (),

RE t
B) 0.00
< _0 5 '035 o;;
& -0.70 5
A €XP. S
g -1 O }k k ‘100 O%
3 .
< 15 Sim.
%
: A2m : 0,00 &5
O 32'%/211 0.35 T
< 05 -0.70 o5
= 4 exp. g
% L6 -1.00 °g
S -1.01
= sim.
t\//);\ -1.5
D) -0.00 &_E
= 0.5 0358
. '070 g)%
& { exp. S
E -1.0- -1.00 " &
8 1 sim
;S\ -1.54 T : T T T T T T T T T 1
v -6 -4 D 2 4 6

ENDOR

VRF

T
0
- v [MHz]

Figure A2. (A) Schematic pulse sequence for Davies ENDOR. EPR line selective Davies ENDOR spectra and simulations (EPR « (B),
EPR B (C), and EPR y (D)) plotted in the convenient ENDOR frequency domain. Exp. Conditions: vepr = 94 GHz, t mw,prep = 400 ns,
tENDOR = 25 HS, B mw,detect = 60 s, shot repetition time = 100 ms, 1 shot/point, random RF acquisition, 20 scans each. Sim. parameters:
w1e/2m = 1.25MHz, w1n/2m = 13 kHz, A/2m = —8.9MHz, wq /27 = —0.04 MHz, Awe = +A/2m, 0 MHz.
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tim]
e 2 -0.00+
Ko -8.3(5)-_ exp. Davies ENDOR f
= -0.70
=2 -1.001 S
B3
—  2.04
15 sim. with hf enhancement
? .
=
£ 1.0,
=)
Q
g
é. 0.5 sim. without hf enhancement
g
0.0

I ' T % T L] T y T . T % 1
-6 -4 -2 0 2 4 6
VR OF - v [MHz]
Figure A3. Davies ENDOR spectrum with selective excitation on EPR B and Easyspin simulations with and without considering
the hf-enhancement factor. Exp. Conditions: vepr = 94 GHz, t; mw,prep = 400 s, teNpOR = 25 WS, tr,mw,detect = 60 NS, shot repetition
time = 100 ms, 1 shot/point, random rf acquisition, 20 scans each. Sim. parameters: vepg = 94 GHz, g. = 2.0023, A/27r = —8.9 MHz,
wq/2w = —0.04 MHz, Aw, = 0MHz. EasySpin simulations were performed using the ‘salt’ routine and full matrix diagonalization.
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Appendix 9. CP-ENDOR experimental and theoretical results for EPR y

7

CP-ENDOR vy 1.00 5%
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Figure A4. Experimental CP-ENDOR spectra on a deuterated malonic-acid single crystal, numerical CP-ENDOR simulations, and
peak intensities according to our analytical solutions plotted in the ENDOR convenient frequency domain. Results are shown for
the selective excitation of the EPR y transition. Exp. Conditions: vepr = 94 GHz, t;/2,mw = 200 NS, w1e/2m = 1.25MHz, tcp = 150
us, tenpor = 25 s, shot repetition time = 100ms, 1 shot/point, random RF acquisition, 100 scans each. Sim. parameters:
wie/2r = 118 MHz, w1, /2 = 13kHz, A/2n = —8.9MHz, wq /2w = —0.04 MHz, Aw, = +A/27, 0 MHz.
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