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I. EQUATION OF MOTION OF THE CHARGE
CURRENT

As explained in the main text, we start from the single-
particle Pauli Hamiltonian describing a particle of mass
m and charge e in an external electromagnetic field,

h(t) = 2mH (t) — eV (t) + Qewch(t)‘&
+8,27§C2 [TI(t). (6 x E(t)) + (6 x E(t)).II(t)], (1)

While the previous Hamiltonian has been considered
in many theoretical work, it is possible to obtain a local
U(1)x SU(2) symmetry by including a term of the higher
order O(1/m?) as explained in Ref. 1. The motivation for
this choice lies in the fact that this will allow us later to
define a U (1) x SU (2) gauge-invariant spin-current, which
we defined in this work as the physical spin current. For

this we add the term ol (6 x E(t). (6 x E(t)) =
10m364 |E(t)|?, which is half of the corresponding term
in the Foldy-Wouthuysen expansion [1]. Doing so, one
arrives to a locally U(1) x SU(2) gauge-invariant single-

particle Hamiltonian

ht) = - [ﬂ(t)+ ch

2m

D (oxB(t)]

4mc? 2me

(2)
which is the one we consider in the following.

In second quantization, all operators are expressed in
terms of the field operators t(x) and %' (x). The many-
body Hamiltonian H () consists of the time-dependent

one-body part ﬁ(t) and the particle-particle interaction
term w(x,x’), and reads as
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We now define the operators

() = o (V) (Vi)

() = 01 () ().
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which are respectively the kinetic energy, density, mag-
netization, current and spin-current operators.

In order to derive the equation of motion of the different
observable, we start by writing the equation of motion of
the creation and annihilation operators in the Heisenberg
picture[2]

ih%d}(x,t = z? ) (x,0',t)

)= hoo
+ / dx"w(x, x)a(x)p(x,t),  (4)

and
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- / dx’w(x, x )t (x, )a(x") . (5)

Following Ref. 2, we split the equation of motion of the
field operators in terms of a contribution without any ex-
ternal potential nor field, and the part containing them.
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‘We obtain that

d - d -
ihZ (1) = ih i (x t)‘

+ (Bp Ay ()| D%, 1) + uid(x, 1)
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where we defined

e? 9 e?h? 9

u=—eV (1) + 5 G - T (BB, (8)

Before obtaining the equation of motion for the physical
charge current, we first need to define it. Such definition
can be obtained from the continuity equation, which de-
fines the conserved charge current for a given Hamilto-
nian. After some algebra, we arrive to the equation of
motion of the charge density, the continuity equation,

%ﬁ(x,t)
where the physical, conserved, charge current in presence
of spin-orbit coupling, contains the paramagnetic current
(j), the diamagnetic current (j,), and a spin-orbit cur-
rent, jso (X, t) = 41 x E(2).

ThlS equation determines the physical conserved current
up to a rotational part. However, as we are interested
in the time-derivative of the macroscopic current (source
term of the Maxwell equations), this rotational part of
the current is irrelevant, and in the following, we use
Eq. 9 to define the physical current associated with the
Hamiltonian of Eq. 2.

In order to obtaln the equatlon of the conserved total
physical current _]phyb Jt+is+ JSO, we need the equa-
tion of motion of the magnetization density and of the
paramagnetic current. Following the same approach as
for the charge density, we obtain the equation of motion
of the k component of the magnetization density
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where, by analogy to the continuity equation for the
charge, we can defined a physical spin current as
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where we recognize a paramagnetic, a diamagnetic, and
a spin-orbit spin current. The motivation for this def-
inition lies in the fact that the spin current defined in
Eq. 11 is a mixed space and spin quantity, which is for
our definition locally U(1) x SU(2) gauge invariant. This
symmetry is the same as the one of the Hamiltonian of
Eq. 2 and motivates us to use this expression to define the
physical spin current, in the same way that the physical
charge current, which is a spatial quantity only, is invari-
ant under U(1) gauge transformation. Here €;;;, denotes
the Levi-Civita symbol.

The equation of motion of the paramagnetic current is
found to be
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where Tpk is the so-called momentum-stress tensor [2]

. 1 - N A A 1 .
Tor = 55 | ") (D) + (Dp0) (D)) = 50407

(13)
while the operator Wy, is defined by [2]

Wi(x,t) = % / dx" )T (x)pT (x) (Opv(x —



Putting everything together, we get the following expression for the equation of motion of the physical charge
current
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We note that the conserved current is only defined up to a rotational part in the above discussion, and we need to
add to it the magnetization current jm = %V x m. This current only contributes to the microscopic current, and
not to the macroscopic current. Moreover, adding the contribution from the magnetization current, only adds a term
to the stress tensor, as

d -
dt]m k X, t [ Z 6p2 Z 8 €kst |: phys, tp:|
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which implies that the magnetization current does not contribute to the radiated light.
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