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I. DETAILS OF THE NUMERICAL APPROACH

A. Time-dependent Kohn-Sham equation

The electrons in the crystal are modeled using the
Kohn-Sham (KS) auxiliary system that provides a one-
to-one correspondence of the total electron density
ne (r, t) of the N non-interacting electrons with the elec-
tron density of the many-body problem.1,2 We solve the
time-dependent KS equations for the diamond structure
of Si crystal along with applying periodic boundary con-
ditions in all directions. The dynamics of the N electrons
in the crystal is described by solving a set of N KS equa-
tions, expressed by3
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where ∇r describes the real-space gradient operator, ~
is the reduced Planck constant, me is the bare electron
mass, |e| is the elementary charge, and c is the light ve-
locity in vacuum. Note that the non-local contribution of
the pseudo-potential to the external potential has been
omitted for simplicity. v̂ion is the ionic potential, v̂H is
the Hartree potential, ne (r, t) is the total density of elec-
trons (i.e., all electrons in the valence and conduction
bands) at the position r and instant t, and v̂xc is the
exchange-correlation potential. ψn,k (r, t) is the time-
dependent KS wave-function of an electron located in a
band n with a wave-vector k. The external vector field
A (t) is introduced in the velocity gauge and is taken
homogeneous in the simulation volume (dipolar approx-
imation, see Ref.4). The ground-state KS wave-function
ψGS
n,k (r) is obtained by solving self-consistently the static

KS equations.4 The ground state band structure is given
by the energy representation of the eigenvalues εn,k as
a function of k taken along the path of high-symmetry
points for Si crystal.

B. Calculations of the excited electron density

The excited electron density nexc (r, t) evolving in the
conduction bands can be evaluated by a projection of
the occupied time-evolved KS orbitals ψn′,k (r, t) on the
ground state KS orbitals ψGS

n,k (r) expressed by5,6
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V is the volume of the simulation box (constant in this
work). Ntot is the total number of electrons in the

simulation box, expressed by Ntot =
∑
n,k

∣∣∣ψGS
n,k (r)

∣∣∣2.
Note that initially electrons are absent in the conduction
bands.

C. TDDFT calculations of the excitation rates wPI

To avoid the gauge-dependence during the laser pulse,
we use the results obtained by the end of the laser pulse of
duration τp, and define a pulse-averaged excitation rate
wTDDFT
PI based on the density of excited electrons, ex-

pressed via

wTDDFT
PI =

nexc (t = τp)− nexc (t = 0)

τp
. (3)

nexc (t = 0) = 0 in our case.

D. Numerical details

The presented computation results were obtained for
a bulk Si sample. We employed the primitive cell of
Si composed of two atoms with an experimental lattice
constant, a0 = 5.431 Å. Non-orthogonal periodic bound-
ary conditions in all directions were used to describe the
bulk crystal. Calculations of the ground state Si were
performed using a real-space discretization (with grid
spacing of 0.227 Å) and converged using the local den-
sity approximation (LDA) for the exchange-correlation
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functional. Several TDDFT calculations were performed
using a more accurate but computationally demanding
TB09 meta-generalized gradient approximation for the
functional.7 Assessment of the validity of the LDA and
TB09 functionals to describe the transient properties of
Si is provided in Refs. [8–13]. All calculations were car-
ried out using the open source code Octopus.14–16 The
modeling of induced fields was disabled. The atomic po-
tential of Si is modeled using a norm-conserving pseudo-
potential.17 The k-grid was refined until reaching a con-
stant quantity of excited electrons. The convergence was
reached with using a 24×24×24 grid in the k-space. The
integration of the KS equation was performed using the
enforced time-reversal symmetry (ETRS) algorithm.18
The time step was reduced until convergence of the ex-
cited electron density below 1% variation achieved with
a time step of 6.8 attoseconds for both functionals. Note
that, upon using the TB09 functional, the temporal
integration was performed based on predictor-corrector
method.13 The TB09-based TDDFT results do not con-
siderably differ from those obtained based on the LDA
potential. However, further investigations are needed in
this direction.

E. Introducing laser pulses with a top-hat
temporal profile

The electric field of the laser pulse is introduced in the
KS equation using the dipolar approximation.4 As a con-
sequence, the time-dependent laser field is homogeneous
inside the simulation cell. The vector potential A (t) is
linked with the electric field E (t) via

A (t) = −c
∫ t

−∞
E (t′) dt′. (4)

If to approximate this integral using the slowly varying
envelope approximation, the following relation can be ob-
tained A (t) ∼ icE(t)/ω.

We are interested in the excitation rate of the elec-
trons transferred from the valence bands to the conduc-
tion bands. In order to provide this value on a similar
basis as in the Keldysh theory where the ionization rate is
averaged over laser cycles in a constant-amplitude field,19
we introduce a “softened” top-hat (STH) laser pulse of a
duration τp. The main part of STH pulse represents a
plateau of the duration τp with rising and decay phases,
both of the duration of τr, which are short compared with
τp. The pulse is expressed as:

E (t) = E0 cos (ωt+ φ)× (5)
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The laser frequency is given by ω = 2πc/λ and φ is the
carrier envelope phase (CEP), which was set to 0.

The rising time τr for the STH pulses is used here
to avoid a temporal discontinuity in the field amplitude
when the laser pulse starts and terminates. The τr value
was optimized to obtain the minimum final excited elec-
tron density. This optimum was reached for τr = 4π/ω.

II. DETAILS OF THE ANALYTICAL MODELS

A. Keldysh-Gruzdev excitation model for crystals

To calculate the number of excited electrons, several
theories of electron excitation for solids were proposed20.
Gulley et al. summarized the Keldysh theory without
amending modifications,21–24 whereas corrections were
proposed by Gruzdev et al.,25–28 to account for spin de-
generacy. More recently, McDonald et al.29,30 have used
a model based on semiconductor Bloch equations31 to
further study the effect of band dispersion in electron ex-
citation where not only the envelope of the pulse but also
the phase of the laser pulse can be accounted for.

In this Section the analytical model is detailed, which
was used to calculate the wKG

PI values which are shown in
Figs. 2–3 of the main manuscript. The Kane band struc-
ture, which is applicable for narrow band gap materials,27
is considered in this model. In the general form, the
nonlinear photoionization rate wPI(I) in a constant-
amplitude field is expressed as

∂nexc(I)

∂t
= wPI(I). (7)

According to the Keldysh-Gruzdev excitation model, the
photoionization rates are expressed as

wKG
PI (I) = 2× 2ω
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.

Here m∗ = 0.2226me is the electron effective mass with
me to be the electron mass in vacuum;32 n = dUeff/~ωe
is the number of photons per electron for overcoming the
effective potential barrier. Expression (9) employs the
Dawson integralG (z) =

∫ z
0
dy ey

2−z2 , which is calculated
numerically. K̂ (x) and Ê (x) are the complete elliptic
integrals of the first and second kind respectively, which
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have the forms K̂ (x) =
∫ π/2

0

[
1− x2 sin2 θ

]−1/2
dθ and

Ê (x) =
∫ π/2

0

√
1− x2 sin2 θdθ. The effective ionization

potential Ueff accounts for the energy shift induced by
the Stark effect that can be written as Ueff =

2Eg

πF1
Ê (F2).

F1 and F2 are the functions of the adiabaticity parameter
γ: F1 = γ/

√
1 + γ2, F2 = F1/γ. The γ value is given by

γ =
ω
√
m∗Eg

eEpeak
=
ω
√
m∗Eg

e
√

2Ipeak
cε0

. (10)

It characterizes irradiation regimes via the peak intensity
Ipeak or the electric field amplitude Epeak. When γ �
1, the electron excitation from the valence band to the
conduction band occurs via tunneling ionization whereas
γ � 1 corresponds to multiphoton ionization. For γ � 1,
the Keldysh model for crystals describes the tunneling
mechanism of photoionization in the form

wtun
PI =

2

9π2

Eg
~
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m∗Eg
~2

)3/2
(

e~Epeak

(m∗)1/2E
3/2
g

)5/2

(11)

× exp

[
−π

2

(m∗)1/2E
3/2
g

e~Epeak

(
1− 1

8

m∗ω2Eg
e2E2

peak

)]
,

where Eg is the bare band gap energy.27 Note that this
formula is not applicable at low fields where ionization is
governed by the multiphoton mechanism.33

B. Keldysh ionization model for atomic gases:
analytical and numerical integration

In this section, the formulas of the Keldysh theory for
ionization of an atomic gas are provided. We have em-
ployed the analytical atomic Keldysh model given by Eqs.
(16)-(18) from Ref. [19] to compare this theory with both
TDDFT and the Keldysh theory for excitation of band
gap solids (see Fig. 2 of the main manuscript):

wat
PI = ρ× ω

√
2Eg
~ω
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γ√

1 + γ2

)3/2

S

(
γ,
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)
× (12)

× exp
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√
1 + γ2

1 + 2γ2

]
,

where

S (γ, x) =

∞∑
n=0

exp [(−2 dx+ 1e − x+ n)×

×

(
arcsinh (γ)− γ√

1 + γ2

)]
×

×G

(
2γ√

1 + γ2

√
dx+ 1e − x+ n

)
.

The Dawson integral G (z) is given in Section IIA.

Numerical integration. We use an estimative adapta-
tion of material photoionization based on the Keldysh
theory for atoms.19 For this aim, we consider a virtual
hydrogen-like atom with the energy of its ground state
equal to the material band gap, EΓ

g = 2.56 eV.12 The elec-
tron of the atom has mass m∗, which is taken to be the
same as in both the Keldysh theory for band gap solids
(Eqs. (7)-(9)) and the TDDFT simulations. This gives
formulas for the ionization probability of atoms analo-
gous to Ref. [19]. Note that the ionization rate (Eq.
(12)) is multiplied by the atomic density of the solid ρ
(silicon in our case) to express the rate in m−3s−1.

When solving Eq. (12), we calculated the integrals nu-
merically instead of using the saddle-point method. The
integrals have the following form

P =
ω

2π

∫ 2π/ω

0

dt F (t) eiη(t).

To calculate the integrals, a fine temporal grid tk = k×τ
(k = 0, ..., Nt; τ = 2π

Ntω
) was used. Within the time seg-

ments tk−1 < t < tk+1, the function F is approximated
by the polynomial

F (t) = Fk +
Fk+1 − Fk−1

2τ
(t− tk)+

+
Fk+1 − 2Fk + Fk−1

2τ2
(t− tk)

2

For η, the linear expansion is used, η = ηk + vk (t− tk)

with vk = ηk+1−ηk−1

2τ . Consequently, we have

P ' ω

2π

Nt−1∑
k=1

eiηk
∫ τ

−τ
dσeivkσ

[
Fk +

Fk+1 − Fk−1

2τ
σ+

+
Fk+1 − 2Fk + Fk−1

2τ2
σ2

]
.

Such calculations of integrals are time-efficient and suf-
ficiently precise, provided that the time step τ is much
smaller than the laser cycle.

III. THE TDDFT RESULTS FOR DIFFERENT
WAVELENGTHS; FITTING OF THE KG MODEL

According to our TDDFT simulations, the first princi-
ples approach yields photoionization rates, which are at
least an order of magnitude higher as compared to the
Keldysh theory for solids. This has systematically been
studied at different laser wavelengths, see Figs. 1–3. We
remind that, in our study, the fields induced by the move-
ment of charges in the time-propagation of KS orbitals
were disregarded (Eq. (1)). Under this assumption, the
laser pulse inside a bulk material is compressed with the
intensity multiplied by the material refractive index and
it should be the same both in TDDFT simulations and in
the Keldysh formulas. However, the TDDFT approach
includes several important factors, which are absent in
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the Keldysh theory and thus can be responsible for the
observed discrepancy.

One of the most important factors is the realistic
bandgap structure introduced in TDDFT, which is dy-
namically varying upon electron excitation into the con-
duction bands with corresponding distortion of inter-
atomic potential. As a result, the electron wave func-
tions are subjected to the action of the field of the laser
wave superimposed with the dynamic interatomic field.
One can anticipate that the local field acting on the
electronic component of the crystal is enhanced simi-
larly to predictions of Gaier et al.34 while not necessar-
ily in a fluctuation manner. Another factor, also con-
nected with the dynamic band structure, is the so-called
laser dressing of the electronic states or, by other words,
appearance of transient quasi-states usually referred as
the Wannier-Stark ladder.35 We can also mention the
Abraham-Minkowski problem36 connected with the mo-
mentum of photons inside material, which still calls for
investigations. Although this goes beyond the scope of
the present study, a particular attention on the role of
induced fields in the conservation of the momentum at
interfaces is envisioned.6

Figures 2(b) and 3(b) show that the KG model under-
estimates the results of the TDDFT simulations where
the band structure is more realistic and laser dressing
is naturally addressed. Interesting is to find a factor
ζ of "laser field amplification", E → ζE, at which the
KG model would fit the TDDFT results. We have per-
formed this procedure for different wavelengths and the
results are presented in Figs. 1(b), 2(c), and 3(c) re-
spectively for 3200, 1600, and 800 nm for both the KG
model and its tunneling limit. By choosing the ζ value,
it was surprisingly found that the accurate enough fits
were achieved at ζ =

√
n(λ) where n is the refractive

index at the corresponding wavelength λ. It is not clear
yet if it is a pure coincidence or it hides a physical cause.
The TDDFT simulations for other materials and their
comparison with the corresponding Keldysh solutions can
help to clarify this puzzling question that is now under
development. Also interesting is that for all studied wave-
lengths the atomic Keldysh theory applied for our virtual
atom agrees reasonably with the TDDFT simulation re-
sults at low intensities (in the multiphoton regime, see
Figs. 1–3).

IV. LASER DRESSING, EFFECT OF RABI
OSCILLATIONS AND THE ROLE OF BESSEL
FUNCTIONS IN STRONG FIELD EXCITATION

During laser action, response of a bandgap material to
irradiation can be described by shifting the energy lev-
els of the band structure as compared with the ground
state structure.37,38 This shift is known as laser dressing
and it originates from the coupling of laser light to the
electrons, which lasts the time of the laser illumination.
As a result of the light-induced periodic electron motion,

Figure 1. (a) Comparison of photoionization rates as a func-
tion of laser intensity inside silicon crystal obtained in the
TDDFT simulations, wTDDFT

PI , after the laser pulse termina-
tion (τp = 30 fs, λ = 3200 nm) with the analytical theories:
the KG ionization rate wKG

PI , the tunneling ionization rate,
wtunnel

PI , and the Keldysh photoionization rates for a virtual
atom (Eq. (12), see text) obtained using the saddle-point
method, wat-anal

PI , and with numerically calculated integrals,
wat-num

PI . (b) The same as in (a) but with fitting the KG and
tunneling rates to the TDDFT results using normalization of
the laser field in the KG formulas using the factor ζ =

√
n(λ)

(see text).

the dressed band structure does not represent anymore
purely electronic states. Instead, the dressed energy lev-
els are considered as quasi-particles named polaritons.
This vision is not new and it was already employed in
a number of formalisms, e.g., already in the Keldysh
theory,19 in atomic physics39 and in the non-equilibrium
solid state physics.40,41 Laser dressing may lead to ultra-
fast transient metallization,42,43 a phenomenon that has
enabled the development of novel applications in ultra-
fast optoelectronics.44

As stated in Ref. [42], a qualitative description of
the laser dressing effect is possible from the knowledge
of the electronic ground state. We underline that the
approach employed here is based on a simplified model
Hamiltonian. In particular, the importance of the term
scaling in A2 in the employed Hamiltonian, which is dis-
regarded in our approach, was investigated in a series of
recent publications.41,45 Also the dipolar matrix elements
should be affected by intense laser fields, a phenomenon
that is not described in the simplified method we have
employed to prepare Fig. 1 of the main manuscript,
which therefore should be considered as a contextual il-
lustration.

In Fig. 3(a,b) of the main manuscript, the minima of
the excitation rates wKGPI (~ω) provided by the KG theory
are outlined by grey lines. These reductions of wPI(~ω)
are pronounced in the Keldysh theory and are also vis-
ible in the TDDFT simulation results, though mildly.
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Figure 2. The data for 1600 nm wavelength. (a) Electron density in the conduction bands after laser pulse termination (τp =
30 fs). Lines fitting the computed σn values are indicated. (b) and (c) are the same as in Figs. 1(a) and 1(b) respectively for
another wavelength.

Figure 3. The same as in Fig. 2 for 800 nm wavelength.

In literature, the origin of such reductions of the ampli-
tude probability wPI(~ω) was attributed to the suppres-
sion of tunneling46–48 (equivalently, these are described in
the real-space as Wannier-Stark localization35,49,50). The
tunneling drop interpretation can be illustrated by an an-
alytical solution constructed from a simplified Hamilto-

nian model describing the effect of the laser field on the
conduction electronic subsystem.46–48 Using a rigid band
viewpoint, a series of the Bessel functions of n-th order
appear in the corresponding analytical solution as a mul-
tiplicative term for each replication order n.46–48 Since
the Bessel function is inside the sum of possible wave-
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functions, an eventual suppression of interband transi-
tions depends on the number of available electronic lev-
els.

In a two-band description as in the Keldysh theory,
suppression of the transition from one band to the other
may take place when the Rabi frequency is twice the laser
photon frequency46–48

Jn

(
2ΩRabi

ωlaser

)
= 0. (13)

However, when several electronic energy levels are avail-
able, a simultaneous suppression of all possible transi-
tions (a transition is denoted by its dipolar matrix el-
ement di→j) may not be feasible. Assuming that the
total transition probability can be reasonably described
by a series of Bessel functions in the physical reality, the
Le Bourget theorem51 suggests that only one transition
could be possibly disabled for a given set of laser param-
eters (electric field of the wave, wavelength). This math-
ematical argument provides a physical explanation for
rather smooth reduction of total transition probability
wPI observed in multiband description such as TDDFT
(Fig. 3(b)) while a two-band description such as the
Keldysh model reveals a clear suppression of transitions
at given resonant frequencies [Fig. 3(a)]. Then, since the
Rabi frequency is proportional to ΩRabi ∝ E · di,j (E is
the field amplitude), Eq. (13) can be rewritten as

Jn

(
2E · di,j
~ω2

)
= 0 (14)

where Jn (x) denotes the Bessel function of n-th order.
The dipolar transition matrix elements di,j = 〈ψi|r̂|ψj〉
were obtained from the DFT computation. Figure 4 de-
picts the value of the dipolar matrix elements for Si in
atomic units. The elements indexed from 0 to 3 corre-
spond to the valence band states, the rest correspond
to the conduction states. Since the description of the
Hamiltonian is hermitian, the matrix elements are sym-
metric above and below the matrix diagonal, evidencing
the equivalent transition probabilities for excitation and
recombination in the linear regime. Knowing the nodes
of the Bessel functions of n-th order, an illustrative map-
ping of the transition to be selectively disabled can be
provided (Fig. 5).

V. SIMPLIFIED MODEL OF LASER ENERGY
ABSORPTION

Energy absorbed by electrons. The energy ξTDDFT
el (t)

absorbed by the electrons is calculated as the differ-
ence between time-dependent electron energy eTDDFT

el (t)
and the ground state energy ξTDDFT

el (t) = eTDDFT
el (t) −

eTDDFT
el (t = 0). To calculate the total energy of electrons
eTDDFT
el (t), the formula given in the Appendix H of Ref.
[52] was used (it is also given in Chapter 5 of Ref. [4]).

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0

1

2

3

4

Figure 4. The values of the dipolar matrix elements log10 di,j
obtained from the ground state of Si crystal (space group 227)
via calculations using the LDA functional.

Figure 5. Selective transition removal as a function of the
laser parameters (E, ~ω) [E: field amplitude, ~ω is the photon
energy] for the transitions of zero-th order (n = 0).

Electron excess energy. The energy density de (r, t)
introduced into the sample by the laser at each time in-
terval dt can be expressed using the total current density
j (r, t) and the laser electric field E (r, t) as

de (r, t)

dt
= j (r, t) ·E (r, t)︸ ︷︷ ︸

total absorption (inter+intra)

. (15)

Usually the total current is separated to contributions
from the polarization (originating from interband tran-
sitions) and the free carrier current jfree (t) related to
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intraband processes. The dynamics of the absorbed en-
ergy density e (r, t) can be described as

de (r, t)

dt
' n~ω × wPI (r, t)︸ ︷︷ ︸

interband absorption

+ (16)

+ jfree (r, t) ·E (r, t)︸ ︷︷ ︸
intraband absorption

,

where wPI (r, t) is the instantaneous photoionization rate
and n =

⌈
Egap
~ω

⌉
is the number of photons that are re-

quired to overcome the bare band gap energy Egap using
the electric field of the laser wave at frequency ω. In order
to compare with the total energy, calculated by solving
the KS equation (Eq. 1), we integrate Eq. (16) over time
in a volume V as

ξel (t) =

∫
V

d3r e (r, t) '
∫
V

d3r n~ω × nexc (r, t) +

(17)

+

∫
V

d3r

∫ t

0

dt′ jfree (r, t′) ·E (r, t′) .

The density nexc is calculated by Eq. (2). Using the
dipolar approximation for the external field, we obtain
the energy ξel received by electrons from the laser field,
which is defined as

ξel (t) =

∫
V

d3r n~ω × nexc (r, t) + (18)

+

∫ t

0

dt′ J free (t′) ·E (t′) .

Time-dependent description of the free-carrier absorp-
tion The energy transferred from the laser light to the
electrons via intraband absorption can be computed from
the excited electron density nexc (t) and the conduction
band electron current J free (t) by using of the generalized
Ohm law, expressed by

J free (t) =

∫
dt′σfree (t, t′)E (t′) .

The contribution of the free electron currents can be de-
scribed using a time-dependent conductivity σfree (ω; t) =
−iωε0 [εDrude (ω; t)− 1], where the dielectric permittivity
εDrude (t, ω) is given by the Drude model for solids53

εDrude [nexc (t)] (ω) = 1− e2

memeffε0ω2
× nexc (t)

1 + i νω
. (19)

The electron collision (or damping) time τD = ν−1 is usu-
ally considered to be from one to several femtoseconds.
In this work, the effective electron mass is taken as given
by the DFT,32 meff = 0.2226. The collision time τD =
6 fs was adjusted to obtain the best fit to the TDDFT
simulation results (see Fig. 4 of the main manuscript).

Modeling the excess energy. Finally, with the above
assumptions, we derive from Eq. (18) the balance equa-
tion for the excess electron energy ξDrude based on the
Drude model, which reads as

∂ξDrude

∂t
= V

[
n~ωwPI (t) + 2πε0

∫
dω ωIm [ε (ω)]E (ω)

2

]
.

(20)
In the case of a quasi-continuous wave of frequency cen-
tered at ω0, one has E (ω)→ δ (ω ± ω0)E (ω) that yields

∂ξDrude

∂t
= V

[
n~ωwPI (t) + ε0ω0Im [ε (ω0)]E (ω0)

2
]
.

To calculate the absorbed electron energy at a time mo-
ment t in a volume V , we integrate the above expression
over time from t = 0 to t that gives

ξDrude (t) =

V

∫ t

0

dt′
[
n~ωwPI (t′) + ε0ω0Im {ε [nexc (t′)] (ω0)}E (ω0)

2
]

= V n~ωnexc (t) + (21)

+V

∫ t

0

dt′ε0ω0Im {ε [nexc (t′)] (ω0)}E (ω0)
2
.

The later expression depends on the excited electron den-
sity nexc (t) and on three free parameters, namely the
electron collision frequency ν, the electron effective mass
meff, and the band gap energy Egap. We used Eq. (21)
to compare it with the electron excess energy ξTDDFT

el
obtained in our TDDFT simulations.

VI. EXCITATION PROBABILITIES AS A
FUNCTION OF LASER PARAMETERS

From the calculated dependences nTDDFT
exc (Ipeak), the

effective multiphoton rates σn associated with n−photon
transitions can be extrapolated using the multiphoton
approximation expressed by

∂nTDDFT
exc

∂t
= σn

In

n~ω
. (22)

We remind that the LDA functional can underestimate
the bandgap energy of crystals, which is usually smaller
as compared to more sophisticated modeling approaches
for band structure calculations.12 Therefore, we have to
note that here the effective multiphoton excitation rates
σn for silicon were calculated for the direct bandgap en-
ergy, which is somewhat smaller than the experimentally
measured value. Using Eq. (22), one can fit the TDDFT
results from Figs. 1(a), 2(b), and 3(b), thus deriving the
σn values. The data are summarised in Table I for the
intensities below the saturation regimes. Where possible,
we provide comparison of our data with the multiphoton
excitation rates available in the literature. As one can
see, a reasonable agreement is achieved although in ex-
perimental studies pure multiphoton excitation can be
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Method Wavelength τp Band gap Intensity range (W/cm2) Eff. transition probability Ref.

Theory (TD-LDA) 3200 nm 30 fs 2.56 eV (d) (2.1− 9.9)× 1010 σ5

(
m7W−4

)
= 4.84× 10−56 This work

(1.0− 2.6)× 1011 σ4

(
m5W−3

)
= 3.05× 10−41 This work

(2.6− 5.3)× 1011 σ3

(
m3W−2

)
= 5.25× 10−26 This work

(0.53− 3.4)× 1012 σ2

(
mW−1

)
= 2× 10−10 This work

(0.34− 1.0)× 1013 σ1

(
m−1

)
= 2.93× 106 This work

20 fs 2.56 eV (d) (0.2− 1.0)× 1011 σ5

(
m7W−4

)
= 5.38× 10−56 This work

(1.0− 2.6)× 1011 σ4

(
m5W−3

)
= 3.42× 10−41 This work

(0.26− 0.64)× 1012 σ3

(
m3W−2

)
= 6.12× 10−26 This work

(0.6− 3.4)× 1012 σ2

(
mW−1

)
= 2.52× 10−10 This work

(0.34− 1)× 1013 σ1

(
m−1

)
= 3.94× 106 This work

10 fs 2.56 eV (d) (0.21− 1.07)× 1011 σ5

(
m7W−4

)
= 6.52× 10−56 This work

(1.07− 2.9)× 1011 σ4

(
m5W−3

)
= 4.37× 10−41 This work

(0.29− 0.82)× 1012 σ3

(
m3W−2

)
= 7.27× 10−26 This work

(0.82− 3.4)× 1012 σ2

(
mW−1

)
= 3.92× 10−10 This work

(0.34− 1)× 1013 σ1

(
m−1

)
= 6.38× 106 This work

Exp. 200 fs σ3

(
m3W−2

)
= 0.5× 10−26 Pearl et al.54

Theory (TD-LDA) 1600 nm 30 fs 2.56 eV (d) (0.11− 1.6)× 1011 σ4

(
m5W−3

)
= 4.41× 10−40 This work

(0.14− 3.2)× 1012 σ2

(
mW−1

)
= 3.39× 10−10 This work

(0.32− 1.6)× 1013 σ1

(
m−1

)
= 4.14× 106 This work

20 fs 2.56 eV (d) (0.11− 1.6)× 1011 σ4

(
m5W−3

)
= 4.62× 10−40 This work

(0.16− 3.2)× 1012 σ2

(
mW−1

)
= 4.43× 10−10 This work

(0.32− 1.3)× 1013 σ1

(
m−1

)
= 5.48× 106 This work

Exp. 200 fs 1.12 eV (i) σ2

(
mW−1

)
= 1.9×10−11 Bristow et al.55

Theory (TD-LDA) 800 nm 30 fs 2.56 eV (d) (0.12− 14)× 1010 σ2

(
mW−1

)
= 8.05× 10−9 This work

(0.01− 1.4)× 1013 σ1

(
m−1

)
= 5.72× 106 This work

20 fs 2.56 eV (d) (0.12− 14)× 1010 σ2

(
mW−1

)
= 8.99× 10−9 This work

(0.14− 14)× 1012 σ1

(
m−1

)
= 8.02× 106 This work

10 fs 2.56 eV (d) (0.12− 14)× 1010 σ2

(
mW−1

)
= 1.07× 10−8 This work

(0.14− 14)× 1012 σ1

(
m−1

)
= 1.45× 107 This work

Exp. 550 nm to 620 nm 90 fs 1.12 eV (i) 9× 10−11 < σ2

(
mW−1

)
< 36× 10−11 Reitze et al.56

Exp. 800 nm 200 fs 1.12 eV (i) σ2

(
mW−1

)
= 1.9× 10−11 Bristow et al.55

Exp. 800 nm - 1.12 eV (i) σ2

(
mW−1

)
= 6.8× 10−11 Sjodin et al.57

Exp. 1060 nm 1.12 eV (i) σ2

(
mW−1

)
= 1.5× 10−11 T.F. Boggess58

Theory (TD-LDA) 483 nm 20 fs 2.56 eV (d) (0.01− 100)× 1011 σ1

(
m−1

)
= 1.09× 107 This work

Theory (TD-TB09) 407.58 nm 20 fs 3.04 eV (d) (0.01− 140)× 1011 σ1

(
m−1

)
= 1.074× 107 This work

Exp. 483 nm - 1.12 eV (i) σ1

(
m−1

)
= 2.16× 106 E. D. Palik59

Exp. 407.58 nm - 1.12 eV (i) σ1

(
m−1

)
= 0.964× 107 E. D. Palik59

Table I. Multiphoton excitation rates (σ1, ..., σ5) derived from the results of the first-principles simulations for the corre-
sponding intensity ranges. The results obtained with LDA and TB09 functionals are reported. Note that the adjustments of
effective multiphoton coefficients were performed in regimes where tunneling and saturation effects may play a role. Available
experimental data are also reported.

masked by other processes involved at longer pulse du-
rations such as collisional ionization and phonon-assisted
indirect transitions.

We notice that for 800 nm wavelength, the value of
σ2 obtained using first-principle simulations somewhat
decreases when increasing the laser pulse duration and
the same is observed for other wavelengths and other σn.

This may originate from the dynamic behavior of the
excitation. Once states at the bottom of the conduction
bands are populated, the excitation probability decreases
rapidly, an effect known as the Burstein-Moss effect.60
Although the multiphoton ionization rates σ2 obtained
in the first-principles calculations show a dependence on
pulse duration τp, the σn values mostly remain within
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the same order of magnitude. Also we have calculated
the single- and two-photon absorption rates σ1 and σ2

using the LDA and TB09 functionals at wavelengths of
484 nm and 407.58 nm respectively, the latter in order to
adjust the laser wavelength for the resonant excitation of
single-photon transition, see Table I.

In the tunneling regime where the photoionization rate
obtained in the TDDFT simulations scales linearly with
the peak intensity, an effective tunneling ionization rate
σ1 (using Eq. (22), n = 1) can be estimated as a function
of pulse duration. For λ = 800 nm, σ1 = 1.447 × 106

m−1 at τp = 10 fs; σ1 = 7.985 × 106 m−1 at τp = 20 fs;
σ1 = 5.754× 106 m−1 at τp = 30 fs (not reported in the
Table).

Note that the direct comparison of the TDDFT pho-
toionization rates with the experimental values is not
straightforward since the most experimental measure-
ments involve also indirect transitions (Γ → L). There-
fore, the comparison with experimental measurements
is only qualitative here. Note also that indirect band
gap transition rates can be computed using TDDFT by
employing a localized electric field, as was very recently
shown by Noda et al.61

The full database of pulse-averaged photoion-
ization rates obtained by our TDDFT simula-
tions is available at http://www.quantumlap.eu/
photo-ionization-database/.
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