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Sustained attention is the ability to continually concentrate on task-relevant information,
even in the presence of distraction. Understanding the neural mechanisms underlying
this ability is critical for comprehending attentional processes as well as neuropsychiatric
disorders characterized by attentional deficits, such as attention deficit hyperactivity
disorder (ADHD). In this study, we aimed to investigate how trait-like critical oscillations
during rest relate to the P300 evoked potential—a biomarker commonly used to
assess attentional deficits. We measured long−range temporal correlations (LRTC)
in resting-state EEG oscillations as index for criticality of the signal. In addition, the
attentional performance of the subjects was assessed as reaction time variability (RTV)
in a continuous performance task following an oddball paradigm. P300 amplitude
and latencies were obtained from EEG recordings during this task. We found that,
after controlling for individual variability in task performance, LRTC were positively
associated with P300 amplitudes but not latencies. In line with previous findings, good
performance in the sustained attention task was related to higher P300 amplitudes
and earlier peak latencies. Unexpectedly, we observed a positive relationship between
LRTC in ongoing oscillations during rest and RTV, indicating that greater criticality in
brain oscillations during rest relates to worse task performance. In summary, our results
show that resting-state neuronal activity, which operates near a critical state, relates to
the generation of higher P300 amplitudes. Brain dynamics close to criticality potentially
foster a computationally advantageous state which promotes the ability to generate
higher event-related potential (ERP) amplitudes.

Keywords: attention, detrended fluctuation analysis, P300, resting-state EEG, LRTC

HIGHLIGHTS

- Long−range temporal correlations (LRTC) of resting-state brain activity is related to the
amplitude of the P300 event-related potential (ERP).

- Behavioral task performance is negatively related to resting-state LRTC.
- Behavioral task performance is positively related to P300 ERP amplitudes and negatively to P300

ERP latencies.
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INTRODUCTION

Sustained attention is a cognitive ability with fundamental
importance for general cognitive functioning. It can be
described as the ability to allocate attentional resources to
focus on a task while preserving a constant performance level
(Lukov et al., 2015). Sustained attention hence enables us to
concentrate on task-relevant information, even in the presence
of distracting stimuli, and thus helps us efficiently carry out
tasks that take a long time to complete. Understanding the
mechanisms underlying this ability is critical for comprehending
neuropsychiatric disorders characterized by attentional deficits.
One eligible measure to estimate sustained attention abilities
is the intra-individual reaction time variability (RTV). As
opposed to mean reaction times, RTV captures fluctuations
in attention, as it reflects the fact that in some trials subjects
react very fast (when they attend), while in others the reaction
times are delayed, probably representing lapses in concentration
(Slocomb and Spencer, 2009; Vaurio et al., 2009). Importantly,
RTV has specifically been linked to impairments of attention
(Sonuga-Barke and Castellanos, 2007). As such, various studies
have shown that individuals with attention deficit hyperactivity
disorder (ADHD) display significantly larger RTV (Leth-
Steensen et al., 2000; Castellanos et al., 2005; Nigg et al., 2005;
Klein et al., 2006) emphasizing the reliably of this measure.

Neural Correlates of Sustained Attention
Long-range temporal correlations (LRTC) are an indicator
for temporal autocorrelations in the amplitude fluctuations
of ongoing neuronal oscillations and were suggested to
indicate when neuronal systems operate at a near-critical point
(Linkenkaer-Hansen et al., 2001; Nikulin and Brismar, 2004;
Palva et al., 2013; Meisel et al., 2017). Criticality in neuronal
systems can be defined as a state where the system is optimally
balanced between order and disorder. The stronger the LRTC
in activity fluctuations, the closer the neuronal system is to
the critical point (Poil et al., 2012). Brain dynamics near a
critical state were associated with optimal information processing
which, when disrupted, could lead to significant loss of function
(Linkenkaer-Hansen et al., 2005; Monto et al., 2007; Montez
et al., 2009; Nikulin et al., 2012). Interestingly, LRTC were
found to have a highly heritable component (Linkenkaer-Hansen
et al., 2007) and high test–retest reliability (Nikulin and Brismar,
2004), which makes them an eligible candidate for a marker of
inherent network characteristics. Research suggests that LRTC
play a vital role in higher-order brain functions, such as working
memory (Mahjoory et al., 2019) and attention (Irrmischer
et al., 2018). Notably, Palva et al. (2013) showed that higher
LRTC in resting-state brain activity are correlated to higher
LRTC in behavioral performance fluctuations in a perceptual
threshold task. Furthermore, Irrmischer et al. (2018) found
that high sensorimotor alpha LRTC during rest predict good
performance on a sustained visual attention task. Taken together,
these results indicate a crucial role of LRTC during rest in
attentional processes.

Moreover, attentional processes have frequently been
linked to the event-related potential (ERP) P300 component

(Polich, 2007). This component reflects a positive peak inflection
in the brain potential at approximately 250–500 ms after a target
stimulus is presented (Polich, 2007). The P300 is traditionally
assessed using an “oddball paradigm,” in which subjects are
presented with a sequence of stimuli, which are occasionally
interrupted by a divergent target stimulus that the subject is
expected to detect (Polich and Kok, 1995). The amplitude of the
P300 is proportional to the level of attentional resources engaged
in processing a given stimulus, and has consistently been reported
to be decreased in disorders involving attentional impairments
(e.g., ADHD; Johnstone et al., 2013; Tye et al., 2014).

The literature hence suggests that sustained attention abilities
can be related to trait measures such as LRTC, as well as evoked
measures such as ERP’s. However, whether trait-like oscillatory
activity directly influences or even generates (attention-related)
P300 is still under debate (e.g., Klimesch et al., 2006, 2007;
Sauseng et al., 2007). In the present study, we therefore aim to
investigate this relationship. We expect to replicate the positive
relationship between P300 and sustained attention, in that higher
P300 amplitude, as well as earlier peak latencies, will be related to
better sustained attention performance. Furthermore, we predict
a positive correlation between resting LRTC and sustained
attention performance. Finally, we hypothesize that stronger
LRTC during rest will be related to higher P300 amplitude. To
test these hypotheses, we recorded 5 min eyes-closed resting-state
EEG to calculate LRTC in different frequency ranges, followed
by a continuous performance test (CPT, using the oddball
paradigm mentioned above) during which EEG was recorded to
extract P300 ERPs.

MATERIALS AND METHODS

Participants
The study included data from two participant cohorts. All
participants underwent the same task under the same conditions.
Dataset 1 consisted of data from 15 healthy participants. Dataset 2
consisted of data from 30 participants that were recruited through
the students’ dean’s office (center for students with learning
disabilities), or via flyers that were posted in Tel Aviv University,
calling for participants that experience attentional problems, to
ensure variation in RTV. The whole dataset hence consisted of
data from 45 participants. The original study design included a
mindfulness intervention, where participants were allocated into
intervention vs. waiting-list control groups. In the present work,
however, we used the pre-workshop data only. Exclusion criteria
were a history of stroke, brain injuries, or neurological problems.
All participants were debriefed about the experimental procedure
before the experiment, through signed informed consent forms.
All participants had a normal or corrected-to-normal vision.

Experimental Design
At first, 5 min eye-closed rest EEG was recorded. Then,
participants completed the CPT. Additional tests, not used in
the present study, were also conducted. Each measurement
session lasted approximately 2 h. Stimuli were generated on an
HP Compaq 8000 Elite computer running OpenSesame version
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2.9.2 and presented against a gray background on a Samsung
SyncMaster 2233RZ 120 Hz screen. The viewing distance to the
screen was 70 cm. Participants performed the tasks while seated
in a separate experiment room.

Attention Assessment
In order to assess sustained attention, we used a CPT, which is
a computer-based test. Participants were presented with a 12-
min-long sequence of repetitive stimuli that had several different
forms (square, star, triangle, and circle) and colors (red, blue,
green, and yellow). They were instructed to respond to a single
re-occurring pre-specified target (red square) by pressing the
spacebar. The target stimulus occurred in 30% of the trials. The
inter-trial interval was variable with an average of 2 s. Responses
to all other non-target stimuli had to be inhibited. Accuracy
and RTV were calculated from the collected data. Accuracy was
defined as the proportion of correct trials. Prior to calculating
RTV metrics, error trials, defined as very fast or slow (≥3 SDs
below or above the individual mean RT) reaction times were
removed. RTV was then calculated as the SD of correct target RT
(see also: Saville et al., 2015).

EEG Recordings
EEG data were recorded using a BioSemi Active Two system with
64 Ag/AgCl electrodes. The electrodes were arranged on a nylon
cap according to the international standard 10-20 system for
electrode placement. Eye movements were monitored using three
additional electrooculography (EOG) electrodes, with bipolar
horizontal electrodes placed at the outer canthi of each eye, and
one EOG electrode placed below the right eye. Two reference
electrodes were placed on the mastoids. Data were collected at
a sampling rate of 1024 Hz.

EEG Data Processing
EEG data were processed using Matlab R2015b software in
conjunction with the EEGLAB toolbox (Delorme and Makeig,
2004). EEG data were downsampled to 256 Hz and filtered
using a Hamming windowed sinc finite impulse response filter
with a high-pass frequency of 1 Hz. Line noise at 50 Hz was
reduced using the cleanline EEGLAB plugin (Mullen, 2012)
and subsequently low-pass filtered at 42 Hz to omit frequencies
contaminated with residual line-noise artifacts. The ongoing EEG
signal was visually inspected and on average 9.1% of the resting-
state data were removed due to transient artifacts. Noisy channels
were removed from the data [average channels removed: 1.7
(SD = 1.6) for resting-state and 1.2 (SD = 2.1) for CPT-task data].

The data were re-referenced to the common average and
independent component analysis (ICA) was performed using
the extended Infomax algorithm (Delorme et al., 2007). The
resulting components were visually inspected, and artifactual
components related to eye movements, heartbeat, or muscle were
removed from the data [average components removed: 6 (SD = 3)
for resting-state, and 9 (SD = 6) for CPT-task data]. Removed
channels were interpolated using spherical interpolation after the
ICA component rejection.

Long-range temporal correlations were calculated using
detrended fluctuation analysis (DFA). First, EEG signals were

filtered into the classical frequency bands (delta 1–4 Hz, theta
4–8 Hz, alpha 8–13 Hz, beta 13–30 Hz, and gamma 30–
45 Hz). The amplitude envelope was extracted for each frequency
band using the Hilbert transform. Then, the cumulative sum
of the signal was calculated and subsequently integrated and
linearly detrended. Finally, the root-mean-square fluctuation
was calculated as a function of window size and plotted on
double logarithmic axes. The following time window ranges
were used for the different frequency bands: 5–30 s for delta
and theta, 2–30 s for alpha, and 1–30 s for beta and gamma.
Different lengths of the shortest windows were used to avoid
autocorrelations introduced by filtering the data. Fitting a least-
squares line eventually gives the DFA exponent, as reflected
by the slope of the line (see Hardstone et al., 2012 for
further details).

The P300 ERP was calculated using event-related data
from the CPT recordings. First, the data were segmented into
epochs, starting 200 ms before the stimulus presentation and
ending 800 ms after it. The epochs were visually inspected,
and noisy epochs were rejected. Subsequently, the data were
sorted into bins corresponding to target and non-target
stimuli. On average, 54 (SD = 17) epochs corresponding to
the target stimulus and 122 (SD = 43) epochs for non-
target stimuli were retained for each subject. The epochs
were baseline corrected using 100 ms pre-stimulus data.
ERPs for each subject were then computed by averaging
the trials in the target and non-target bin. ERP latencies
were computed as the duration from stimulus onset to
the peak amplitude in the window of 250–600 ms after
stimulus onset. ERP amplitudes were calculated as the mean
amplitude in this window.

Since P300 activity—especially in the context of target
detection—is expected to be mainly elicited in parietal electrodes
(Polich, 1986), we chose a parietal cluster including Pz and
its adjacent electrodes CPz, P1, P2, and POz for our analyses
(Figure 1A). Target ERPs in these electrodes were averaged,
producing a parietal average ERP. All further analyses were based
on this parietal average target ERP. For control analyses, we
also calculated non-target P300 ERPs, which were calculated
as described above, except that the data were segmented into
bins corresponding to onsets of non-target stimuli. Target and
non-target ERP waves are depicted in Figure 1B.

RESULTS

The CPT average accuracy was 97.1% (SD = 0.057, min = 69.79,
max = 100), while all subjects performed above chance
(>50% of possible hits). The mean reaction time was 445 ms
(SD = 0.094 ms, min = 335 ms, max = 855 ms) and the average
RTV was 0.088 s (SD = 0.062 s, min = 0.035 s, max = 0.378 s). The
P300 ERP group average amplitude was 3.191 µV (SD = 1.753,
min = 0.215, max = 8.639) and group average peak latency
was 411.689 ms (SD = 70.175, min = 251.302, max = 601.562).
Overall, grand average DFA (average across all participants
and all electrodes) was in accordance with previously reported
values (Table 1).
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FIGURE 1 | Parietal target P300 amplitude predicts reaction time variability (RTV). (A) Group average scalp topography of event-related potentials (ERPs) in
response to target stimuli; white circles indicate parietal electrodes (Pz, CPz, POz, P1, and P2) used for average ERP calculation. (B) Group-level average ERPs
related to target (red) and non-target (blue) stimuli with standard error of the mean as shaded area. Gray area indicates the time window (250–600 ms) used for
mean P300 amplitude and peak latency calculation. (C) Lower target P300 amplitudes are associated with higher RTV. (D) A trend toward significant association
between target P300 latencies and RTV was observed. Each dot in (C,D) represents each participant’s average.

ERP Predicts RTV
To investigate whether the P300 amplitude predicts RTV, we
built a linear regression model using the lm() function in R
Studio (Version 1.2.5042), with average parietal P300 amplitude
as the predictor. Assessment of regression assumptions revealed
an influential case with a Cooks distance greater than 3,
which was also defined as an outlier in the Q–Q plots, that
led to non-linearity of the standardized residuals. After the
removal of this case, assumptions for regression were met. RTV
showed a significant negative association with P300 amplitude
(β = −0.451 µV/RTV, SE = 0.003, p = 0.002, adjusted R2 = 0.18),

TABLE 1 | Group average DFA exponents.

Frequency Mean (SD) Min Max

Delta 0.597 (0.027) 0.543 0.673

Theta 0.665 (0.094) 0.527 0.877

Alpha 0.750 (0.079) 0.629 0.948

Beta 0.725 (0.074) 0.614 0.939

Gamma 0.677 (0.067) 0.565 0.839

indicating that higher parietal P300 amplitude was related to
lower RTV (Figure 1C). To test whether P300 latency predicts
RTV, we built a second linear model, this time with RTV as the
outcome and average parietal P300 latencies as the predictor.
Inspection of Q–Q plots and standardized residuals for each
model indicated that the assumptions for regression were met.
RTV showed only trend-significant association with P300 latency
(β = 277, SE = 149.14, p = 0.068, adjusted R2 = 0.05) (Figure 1D).

DFA Predicts RTV
To test the relationship between DFA and RTV, we performed
separate regression analyses for each channel. Statistical
significance of the results was assessed using a cluster-based
permutation approach controlling for multiple comparisons
(Maris and Oostenveld, 2007). Clusters were defined as two
or more neighboring electrodes which showed a significant
(p < 0.05) association between DFA and RTV. We generated
a permutation distribution by randomly shuffling the RTV
data across subjects and repeating the regression analysis 1000
times. For each permutation, new significant clusters were
identified and the summed t-value of all electrodes included
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in these clusters was saved. Results were considered significant
when the summed t-value of real clusters was greater than 95%
of the summed t-values of randomly formed clusters based on
the permuted data.

Results showed positive relationships between RTV and DFA
in alpha, beta, and gamma frequency range, thus indicating that
higher scaling exponents during rest were related to higher RTV.
Scalp topographies of the regression coefficients are depicted on
the left panel of Figure 2. The right panel of Figure 2 shows
scatterplots for RTV against the cluster wise average scaling
exponent across all participants.

In the delta frequency, 10 electrodes showed a significant
association with RTV. Due to spatial adjacency, two clusters were
built from eight out of these electrodes. These clusters did not
reach significance after permutation testing (p > 0.05, data not
shown). As for LRTC in the theta frequency band, we found three
electrodes that significantly predicted RTV, two of which were
included in the to be tested cluster. This cluster, however, did

not reach significance after permutation testing (p > 0.05, data
not shown). LRTC in the alpha frequency resulted in one cluster
of 34 channels distributed above right fronto-temporal and left
parieto-occipital areas (Figure 2, left), which was significant after
permutation testing (p < 0.01). In the beta frequency range, the
spatial distribution of the significant regression coefficients was
rather broad, resulting in one cluster including 44 electrodes.
This cluster was significant at p < 0.01. As for LRTC in the
gamma frequency range, we found one cluster of 28 electrodes
that significantly predicted RTV. This cluster was mainly above
the central line and parietal cortex and remained significant at
p < 0.001 after permutation testing.

DFA Correlates Positively With ERP
Amplitude
To test the relationship between LRTC and the P300 potential,
we build hypothesis-driven clusters of electrodes to reduce

FIGURE 2 | DFA predicts RTV. Left panel shows topographies of significant clusters in the alpha, beta, and gamma frequency range. Right panel shows the
respective scatterplots, illustrating the relationship between RTV and the average DFA across electrodes in the cluster.
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multiple testing. Because the P300 potential is thought to have its
generators in inferior parietal, temporal, and prefrontal regions
(Polich, 2007), DFA clusters were built according to electrodes
that most likely capture activity in these regions using findings
by Koessler et al. (2009) as a reference. Clusters were as follows:
inferior parietal cluster—channels CP1-5 and CPz; temporal
left—channels TP7, T7, FT7; temporal right—channels TP8, T8,
FT8; and frontal cluster—channels Fp1, Fpz, Fp2, AFz, AF3,
AF7, AF4, AF8, Fz, F1-8, FCz, FC1-6 (see Figure 3). We then
calculated separate linear regression models, including average
parietal P300 as the outcome and average DFA of each cluster as
the predictor. We corrected for multiple comparisons using the
binomial multiple-comparison method (Montez et al., 2009; Poil
et al., 2011; Irrmischer et al., 2018). This method tests whether
a significant number of clusters reach the significance level of
p < 0.05. According to the binomial distribution, the likelihood
of having five out of 20 significant results (see below) by chance
is <5% (Montez et al., 2009; Nikulin et al., 2012; Schiavone
et al., 2014). Analysis of standardized residuals was carried out
for each model to identify outliers. None of the cases had an
undue influence [all cases showed a Cook’s distance (CD) < 1].
Inspection of Q–Q plots and standardized residuals for each
model indicated that the assumptions for regression were met.

None of the clusters showed a significant association with
P300 amplitude (Supplementary Table S1).

Because LRTC, as well as P300, are both linked to RTV (as
shown above), we suspected that individual sustained attention
abilities may mask a potential relationship between P300 and
LRTC. We therefore repeated the analysis, this time including
RTV as a covariate. Inspection of CD indicated that one of the
cases had a high influence (CD > 3 in all 20 models). This case
was also an outlier in the Q–Q plots and led to non-linearity
of the standardized residuals. After the removal of that case,
regression assumptions regarding linearity and homoscedasticity
were met for all the models. Next, because we previously
observed a relationship between DFA and RTV, we tested whether
the predictors RTV and cluster DFA violated the assumption
of multicolinearity, using the variance inflation factor (VIF;
Akinwande et al., 2015). VIF was around 1 for all of the models,
indicating low correlations among predictors. The final results
showed that five out of the 20 DFA clusters significantly predicted
average parietal ERP P300 amplitude (binom. p = 0.002). Among
these were the DFA in the theta band in frontal and inferior
parietal clusters (Figures 4A,B and Supplementary Table S2),
as well as in the alpha band in inferior parietal and temporal
right clusters (Figures 4C,D and Supplementary Table S2), and
the gamma band in a temporal right cluster (Figure 4E and
Supplementary Table S2).

All associations were positive, indicating that higher LRTC
are related to higher P300 amplitudes. The DFA from all
other clusters and frequency bands did not show significant
associations with P300 amplitude (Supplementary Table S2).
In terms of P300 latency, our results showed that none of the
clusters significantly predicted the P300 peak latency (p > 0.05
for all electrodes). When controlling for RTV, two clusters in
the alpha range (frontal and temporal right) were significant.
However, this significance does not survive multiple comparison

FIGURE 3 | Topoplot of DFA clusters used to predict P300. Frontal cluster
included the channels Fp1, Fpz, Fp2, AFz, AF3, AF7, AF4, AF8, Fz, F1-8,
FCz, and FC1-6 (light blue). Temporal right cluster included channels TP8, T8,
and FT8 (light red). Temporal left cluster included channels TP7, T7, and FT7
(dark red), and the inferior parietal cluster included channel CP1-5 and CPz
(dark blue).

correction (binom. p = 0.189; Supplementary Table S3). To
investigate whether this effect is specific, we also tested whether
non-target standard stimuli P300 could likewise be predicted by
DFA. Results show that none of the DFA clusters was significantly
associated with non-target ERP (Supplementary Table S4).

DISCUSSION

In this study, we aimed to establish how trait-like critical
oscillations during rest can predict the attention-related P300
evoked potential. We found that, after controlling for individual
sustained attention abilities, LRTC were positively associated
with P300 amplitudes but not latencies. This effect was specific
to target P300. Furthermore, in line with previous findings, we
found that good performance in a sustained attention task was
related to higher P300. Unexpectedly, we did not observe a
negative, but a positive relationship between RTV and LRTC in
ongoing oscillations during rest.

P300 Predicts RTV
The P300 amplitude is believed to reflect the amount of
attentional capacity, while the P300 latency seems to index
the speed of attentional processing (Polich and Criado, 2006).
Our results hence suggest that the more attentional capacity is
allocated to a stimulus (indicated by greater P300 amplitude) the
better the sustained attention (as shown by lower RTV). Our
results replicate previous findings indicating the validity of our
measures. However, while peak latency is the most widely used
measure for ERP component latency, it is also easily influenced
by noise which is superimposed on the ERP (Kiesel et al., 2008;
Liesefeld, 2018). Our results regarding the latency should hence
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FIGURE 4 | Cluster DFA predict P300 amplitude. Associations between P300 mean amplitude and residualized DFA in the (A) theta frequency in frontal, (B) theta
frequency in inferior parietal, (C) alpha frequency in temporal right, (D) alpha frequency in interior parietal, and (E) gamma frequency in temporal right cluster. P300
amplitudes are plotted against the residualized DFA values, controlling for the covariation with reaction time variability.

be interpreted with caution and need to be replicated with more
robust latency estimation approaches.

LRTC During Rest Predict RTV
Our results furthermore demonstrate that resting-state LRTC
in the alpha, beta, and gamma frequency range were positively
associated with sustained attention indexed as RTV. It has
previously been suggested that a reduction in DFA exponents
indicates reduced autocorrelation within the signal and therefore,
less influence of preceding neuronal events on neuronal
activation (Gilden, 2001; Irrmischer et al., 2018). In line with
this, Irrmischer et al. (2018), for example, argue that lower
LRTC may hence be associated with fewer distractions from the
focused task. In our data, strong LRTC may reflect more influence
on future dynamics of the signal and therefore more potential
for the processing of task-irrelevant distracting information,
resulting in higher RTV.

Nevertheless, our results seem to be in contrast with
previously published results. As such, Irrmischer et al. (2018)

and Mahjoory et al. (2019) found higher LRTC during rest to
be associated with better sustained and phasic attention abilities,
respectively. One possible reason for this contradiction could
be that, in both studies, data were collected from a healthy
sample, while in our study the sample contained participants
with self-reported attention problems. It could be that, in
healthy subjects, high resting-state LRTC are advantageous for
task performances, while this relationship changes in subjects
with attentional problems, where too high LRTC can foster
impairments. Indeed, high LRTC, especially in the beta band,
have been shown to be associated with pathologies such as
epilepsy (Monto et al., 2007). Furthermore, while a DFA of
approximately 1 is thought to relate to an optimal ratio of
inhibitory and excitatory connections, the exact ratio at this
point is not clear (Poil et al., 2012). This could implicate, that
in certain cases, a high exponent may reflect a disadvantageous
configuration of the network. If we consider criticality in
neural systems as a measure for the efficacy of cortical signal
propagation (see section “Introduction”), this may not be
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restricted to the efficacy of task-relevant signal transmission.
It could indeed be that the brain of subjects with attentional
deficits operates near criticality, but that the information that
is processed optimally is task-irrelevant. In line with this,
Wilting and Priesemann (2019) argued that criticality may
also foster disadvantages and maximize properties that can
be adversarial to cortical function. Unfortunately, our data do
not allow to test whether our suggested relationship is true.
Future studies may account for this question by ensuring a
wide range of RTV, possibly via the inclusion of, for example,
patients diagnosed with attention disorders (extreme bad end of
sustained attention) to trained meditators (extreme good end of
sustained attention).

Another explanation might be deduced from studies which
indicate that sustained attention performance correlates with
the participants’ ability to suppress LRTC from rest to task
(Irrmischer et al., 2018). Consequently, in our sample, due to
overly high resting LRTC, the observed attentional impairments
might be a consequence of the inability to suppress LRTC when
changing the demands from rest to task.

Notably, we also observed a positive relationship between beta
and gamma resting-state LRTC and RTV. Both frequencies are
implicated in attentional processes and interact in complex ways
(e.g., Bauer and Pllana, 2014; Richter et al., 2017). As such, a study
by Bastos et al. (2018) showed that beta oscillations originating
in deep cortical layers modulate gamma activity in superficial
layers. This would also be in line with the topographies observed
in our data, where beta had a wide-spread distribution, while
gamma effects were specifically restricted to midline electrodes.
However, adequate source-modeling would be necessary to
validate this assumption.

LRTC During Rest Predict P300
Amplitude
Lastly, we observed a positive association between target P300
amplitude and theta LRTC in frontal and parietal, alpha LRTC in
parietal and temporal right areas, and gamma LRTC in temporal
right areas. These effects are specific to the P300 potential
elicited upon target stimulus presentation as no such associations
were observed for non-target stimuli. These findings add to
previous research as they show that not only spatially distributed
resting-state networks exert an influence on P300 amplitudes (Li
et al., 2015, 2020), but also that the temporal structure of the
oscillations is important.

Frontal theta, as well as parietal alpha power, has frequently
been associated with cognitive control processes (van Driel et al.,
2012; Popov et al., 2018) and with the fronto-parietal attention
network (Ptak, 2012). Moreover, these areas have previously been
associated with P300 amplitude in the processes of attention
allocation (Daffner et al., 2003; Li et al., 2015). Our data
demonstrate that the brain areas involved not only need to work
together and in synchrony (Zhang et al., 2014), but also close to
a critical state, in order to modulate the generation of the P300
ERP in a beneficial way. It could be that these critical dynamics
foster a computationally advantageous state, which promotes the
ability to generate higher ERP amplitudes. LRTC are usually

found to be reduced in clinical samples [e.g., in depression
(Linkenkaer-Hansen et al., 2005) or schizophrenia (Nikulin et al.,
2012)]. These observed attenuations of LRTC are assumed to
be due to increased variability in neuronal activity, indicating
less efficient information processing. This could explain why the
amplitudes of the P300 are lower with lower LRTC: The network
does not process information efficiently enough, thus leading to
less additive and/or phase-resetting effects that are necessary to
generate P300 amplitudes.

Against our expectations, however, this proposed mechanism
does not seem to relate directly to sustained attention, as the
relationship between resting LRTC and ERP only holds when
controlling for sustained attention abilities. One explanation
could be that lower frequency oscillations, such as theta,
rather prepare neural systems for the processing of information
(Klimesch et al., 2007; Jensen et al., 2010; Mathewson et al., 2011;
Spitzer and Haegens, 2017), while other down-stream processes
affect the final behavioral output (Womelsdorf et al., 2010;
Cavanagh and Frank, 2014). In line with this, specifically frontal
theta was shown to be associated with the initial organization
of relevant information rather than direct behavioral output
(Womelsdorf et al., 2010; Cavanagh and Frank, 2014).

The fact that we did not observe an association between LRTC
and P300 latency is in line with a study reporting connectivity
between frontal and parietal areas to be predictive for ERP
amplitude but not latency (Li et al., 2015). Since the P300 peak
latency is prone to be influenced by noise (Li et al., 2015), our
estimations should therefore be interpreted with caution.

Overall, our findings support the notion that trait-like critical
resting-state dynamics foster the generation of event-related
P300 amplitudes.

Limitations and Drawbacks
One limitation of the current study is the mixed nature
of our sample containing subjects with various degrees of
self-reported attentional problems as well as healthy subjects.
However, our results indicate that it is valuable to further
investigate the relationship of resting-state LRTC, P300, and RTV
in a better classified sample, for example, including subjects
diagnosed with ADHD.

Furthermore, while LRTC in the alpha and beta frequency
range are generally a stable measure as indicated by high test–
retest reliabilities across recording sessions (Nikulin and Brismar,
2004), the correlations with the gamma frequency DFA should be
treated with caution, since the stability in this frequency range
has not been established yet.

Lastly, we would like to note that one should be cautious
to make strong inferences regarding the relationship we
observe between LRTC and RTV. Although we present possible
explanations for the observed effects, our findings are in contrast
to previous studies (Simola et al., 2017; Irrmischer et al., 2018;
Mahjoory et al., 2019) and seem suspicious in the context of
the other results we observe. We found that higher LRTC
predicted higher P300 amplitudes, and higher P300 amplitudes
predicted better sustained attention. Consequently, one would
expect to find that higher LRTC would likewise predict better
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sustained attention abilities, thus closing the loop. This is not the
case in our data.

Overall Conclusion
Our results indicate that network dynamics operating close to
critical state foster the generation of task-relevant activity as is
reflected in the generation of larger task evoked P300 amplitudes.
However, in our sample, this relationship can only be observed
for “normalized” networks, where the inter-individual variability
related to differences in attentional abilities is accounted for. It
is hence conceivable that by adding RTV as a covariate to the
model, we account for variance that explains attention ability in
the P300 that is unrelated to LRTC. This would also be in line
with studies showing that LRTC in response time fluctuations
do not relate to RTV, but to commission errors only (Simola
et al., 2017). Variations in sustained attention abilities may thus
mask the relationship between LRTC and the P300 amplitude,
implicating that LRTC rather modulate other factors related
to P300 generation, such as response selection or executive
processes. Our data, unfortunately, do not allow to test this
hypotheses, and future studies may account for this.

Importance of Results
P300 is a widely used biomarker for evaluating potential cognitive
impairments and has substantial application in clinical diagnosis
(Polich, 2007; Howe et al., 2014; Cecchi et al., 2015; Turetsky
et al., 2015) and cognitive neuroscience (Sellers and Donchin,
2006; Nijboer et al., 2008). However, there is a large variability
in P300 across and within subjects, emphasizing the importance
to identify the underlying neural mechanisms that foster this
variation. The data of the present study contribute to the existing
literature by showing that the complex network interactions from
which P300 emerges, require to operate near a critical state in
order to generate higher P300 amplitudes.
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