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Materials genes of heterogeneous 
catalysis from clean experiments 
and artificial intelligence
Lucas Foppa,*   Luca M. Ghiringhelli,   Frank Girgsdies, 
Maike Hashagen, Pierre Kube, Michael Hävecker, 
Spencer J. Carey, Andrey Tarasov, Peter Kraus, 
Frank Rosowski, Robert Schlögl, Annette Trunschke,    
and Matthias Scheffler

The performance in heterogeneous catalysis is an example of a complex materials 
function, governed by an intricate interplay of several processes (e.g., the different 
surface chemical reactions, and the dynamic restructuring of the catalyst material 
at reaction conditions). Modeling the full catalytic progression via first-principles 
statistical mechanics is impractical, if not impossible. Instead, we show here how 
a tailored artificial-intelligence approach can be applied, even to a small number 
of materials, to model catalysis and determine the key descriptive parameters 
(“materials genes”) reflecting the processes that trigger, facilitate, or hinder catalyst 
performance. We start from a consistent experimental set of “clean data,” containing 
nine vanadium-based oxidation catalysts. These materials were synthesized, fully 
characterized, and tested according to standardized protocols. By applying the 
symbolic-regression SISSO approach, we identify correlations between the few 
most relevant materials properties and their reactivity. This approach highlights the 
underlying physicochemical processes, and accelerates catalyst design.

Introduction
The identification of physicochemically 
meaningful, descriptive parameters that are 
correlated with catalyst performance is a key 
step for modeling and understanding hetero-
geneous catalysis and finding new and more 
efficient catalytically active materials. These 
parameters, which characterize the materials 
and the processes triggering, facilitating or 
hindering the reaction, might be called the 

materials genes of heterogeneous catalysis. 
These catalyst genes can be used to construct 
maps of catalysts (i.e., materials charts) that 
highlight the small interesting regions of the 
(huge) space of all possible materials, where 
the search for high-performance catalysts 
should be focused.1,2 However, finding such 
descriptive parameters is challenging because 
the outcomes of interest (e.g., product selec-
tivity) in reactions catalyzed by solids result 
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Artificial intelligence (AI) accepts that there are rela-

tionships or correlations that cannot be expressed 

in terms of a closed mathematical form or an 

easy-to-do numerical simulation. For the function 

of materials, for example, catalysis, AI may well 

capture the behavior better than the theory of the 

past. However, currently the flexibility of AI comes 

together with a lack of interpretability, and AI can 

only predict aspects that were included in the train-

ing. The approach proposed and demonstrated in this 

IMPACT article is interpretable. It combines detailed 

experimental data (called “clean data”) and symbolic 

regression for the identification of the key descrip-

tive parameters (called “materials genes”) that are 

correlated with the materials function. The approach 

demonstrated here for the catalytic oxidation of 

propane will accelerate the discovery of improved 

or novel materials while also enhancing physical 

understanding.
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from the concerted and intricate interplay of several processes. 
These are related to the material itself but also to the reaction 
conditions, for instance, the temperature and gas-phase in 
contact with the solid. Some of these processes are: multiple 
bond-breaking and -forming reactions occurring on the catalyst 
surface, the coverage of adsorbates on those surfaces, the cata-
lyst restructuring in the reaction environment, referred to as the 
catalyst dynamics,3 and the diffusion of reactants and products 
within the porous structure of the catalyst.3,4

One approach for describing heterogeneous catalysis is 
the theoretical, multi-scale modeling by first-principles simu-
lations.4–6 Nevertheless, the atomistic modeling of the full 
catalytic progression under realistic conditions is impracti-
cal because it requires computationally prohibitive methods 
for the accurate evaluation of large, interconnected networks 
of surface reactions7,8 and complex statistical-mechanical 
treatments of the catalyst dynamics.9 Additionally, mesoscale 
(e.g., adsorbate–adsorbate) and transport phenomena need to 
be taken into account as well. Finally, the coupling of all these 
phenomena, occurring at very different time and length scales 
is highly complex (see References 4, 5 and references therein). 
While experiments, for example spectroscopic studies under 
reaction conditions, can point to the specific processes govern-
ing the reactivity on the particular systems under investiga-
tion, it is not obvious how to derive general and quantitative 
relationships between materials physicochemical properties 
(and reaction conditions) and the catalyst performance that 
go beyond the classical Sabatier principle of optimal binding 
strength between reacting species and the catalyst.4,10,11

In this article, we demonstrate how a tailored artificial-
intelligence (AI) approach, even when applied to only a small 
number of materials and materials functions, but billions of 
quantitative materials features, can determine the key phys-
icochemical descriptive parameters characterizing the catalyst 
performance. This method is used to address the challenging 
propane selective oxidation reaction. We start from a consis- 
tent experimental set of “clean data” containing nine vana-
dium-based oxidation catalysts (Figure 1a). Here, the term 
“clean data” refers to the fact that these materials were care-
fully synthesized and tested in catalysis according to stand-
ardized protocols.12 Importantly, these nine catalysts were 
also characterized in detail, resulting in more than 40 meas-
ured properties per material. To this data set, we applied the 
compressed-sensing symbolic-regression sure-independence-
screening-and-sparsifying-operator (SISSO)13,14 approach 
(Figure 1b), as implemented in the SISSO++ code.15 We thus 
identified the few most relevant parameters that are correlated, 
in a possibly complicated way, with the selectivity toward 
acrylic acid and with catalyst activity.

Alkane selective oxidation
The selective oxidation reaction performed with mixed-metal-
oxide heterogeneous catalysts enables the transformation of 
abundant light-alkanes (e.g., ethane, propane and n-butane) 
into the valuable products olefins and oxygenates.16 How-
ever, the initial alkane might undergo multiple reactions on 
the surface of the catalyst in the presence of oxygen molecules 
(O2),7,17 leading not only to the desired molecules, but also to 
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Figure 1.   (a) Vanadium-based selective oxidation catalysts used in this work. (b) Schematic workflow of the proposed approach com-
bining clean experiments and artificial intelligence for the identification of “materials genes” of heterogeneous catalysis. Here, GHSV 
means “gas hourly space velocity,” and f(id) means “function of interpretable descriptors.” The “catalyst preparation” step consists in 
catalyst synthesis, calcining, pressing, and sieving.
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several byproducts, including CO2. The chemical equations 
describing the formation of propylene (C3H6, olefin), acrylic 
acid (C3H4O2, oxygenate), and CO2 (combustion or total-oxi-
dation product) in propane (C3) oxidation, for instance, are:

Here, the values in parenthesis are the standard reaction 
enthalpies.18 Selectively forming the desired products, and, in 
particular the oxygenate, is therefore a challenge. The “seven 
pillars” of oxidation catalysis indicate the several factors con-
tributing to reactivity in oxidation reactions: (1) lattice oxy-
gen, (2) metal–oxygen bond strength, (3) host structure, (4) 
redox properties, (5) multifunctionality of active sites, (6) site 
isolation, and (7) phase cooperation.19,20 In the case of vana-
dium-based oxide catalysts, selectivity has been also related 
to surface enrichment of one of the metal ions in the pres-
ence of reaction feed containing steam21–23 and the associated 
surface potential barrier,21,24,25 highlighting that the catalyst 
dynamics also plays a role. Due to the multiple requirements 
and the intricacy of the underlying processes, the theoreti-
cal description of selective oxidation and the search for new 
catalysts is extremely challenging. Alternative approaches for 
modeling and designing new catalysts are thus required. Here, 
we propose a combination of standardized experiments and AI 
to address this problem.

Experimental handbooks for the generation of “clean 
data”
The identification of reactivity descriptors by AI relies on the 
consistency of the input data. Therefore, we developed stan-
dardized protocols for catalyst synthesis, characterization and 
testing, described in experimental handbooks,12 which enable 
the generation of consistent and annotated data, according to 
the FAIR principles (Findable, Accessible, Interoperable, and 
Re-purposable/Re-usable).1 The establishment of minimum 
requirements for performing and reporting measured reactivity 
is a crucial aspect in heterogeneous catalysis research. Because 
kinetic effects play a dominant role in catalysis, the reactivity 
is not only sensitive to the catalyst synthesis procedure and to 
the resulting as-synthesized catalyst, but also to the conditions 
to which the material is exposed prior to and during the reac-
tion, for instance the temperature and the composition of the 
gas-phase (feed) in contact with the solid.2

In this work, we focus on nine common vanadium-based 
oxidation catalysts (Figure 1a). These materials were prepared, 
in a reproducible manner, in large batches (15–20 g) to guar-
antee that comprehensive catalyst characterization and testing 
is performed using samples from the same batch. The catalyst 

(1)
2C3H8(g) + O2(g) → 2C3H6(g) + 2H2O(l)

(

− 162 kJmol
−1

)

,

(2)
C3H8(g) + 2O2(g) → C3H4O2(l) + 2H2O(l)

(

− 852 kJmol
−1

)

,

(3)
C3H8(g) + 5 O2(g) → 3CO2(g) + 4H2O(l)

(

− 2220 kJmol
−1

)

.

preparation consists on the catalyst synthesis itself, plus cal-
cining, pressing, and sieving. The materials resulting from the 
catalyst preparation are called fresh catalysts. After catalyst 
preparation, all the catalysts were tested for the C3-oxidation 
reaction using a fixed-bed reactor (Figure 1b). The catalyst test 
starts with an activation procedure during which the synthe-
sized materials are exposed to the reaction feed and rather high 
temperature (e.g., 450°C) for 48 h. The activation condition is 
that the conversion of either propane or oxygen is 85%. The 
materials resulting from the activation procedure are called 
activated catalysts. The goal of the activation procedure is to 
obtain samples as similar as possible to the catalytically active 
materials formed during the induction period of the reaction. 
Indeed, some catalysts undergo structural modifications during 
the activation procedure. For this reason, their properties differ 
significantly between fresh and activated catalyst samples (see 
data set provided in Electronic Supporting Information, ESI).

Following the activation step of the catalyst test, the 
temperature is brought to 225°C in lean air and gradually 
increased, in steps of 25°C, in the reaction feed up to 450°C, 
to enable the conversion of propane and oxygen. If the pro-
pane and/or the oxygen (molar) conversion exceeds 85%, the 
increase in temperature is stopped to prevent catalyst decom-
position. At each of the temperatures, the steady-state opera-
tion is reached and the reaction mixture at the reactor outlet 
is collected and analyzed, providing the measures of catalytic 
performance. Catalyst activity and selectivity are evaluated in 
terms of propane conversion ( Xpropane ) and product selectivity 
( Sproduct ), respectively. The propane conversion indicates the 
molar fraction of oxidized propane (i.e., propane converted 
to any of the possible products). The selectivity indicates the 
molar fraction of a specific product with respect to all products 
formed from propane. The gas hourly space velocity (GHSV), 
the ratio between the volumetric flow and the catalyst volume, 
is kept constant for all catalysts during the test (at 1000 h−1) 
to ensure a consistent comparison among materials. After the 
temperature variation, the GHSV and feed are varied and the 
spent catalyst is further analyzed. These steps beyond tempera-
ture variation are not discussed in this article. The raw data 
used here are provided as ESI and the detailed experimental 
procedure is explained in the handbook.12

The performance of the nine catalysts in C3-oxidation, 
in terms of propane conversion and acrylic acid selectivity 
(Figure 2), shows a wide range of behaviors across the nine 
selected vanadium-based catalysts. These catalysts have dif-
ferent activity, that is, they react with propane in different 
amounts, as indicated by the different propane conversions 
profiles (Figure 2a). MoVOx is much more active than the 
other catalysts and converts 58.8% of the initial propane at 
300°C. At higher temperatures, MoVTeNbOx, a-VPP, VPP 
and V2O5, achieve conversions higher than ca. 20%, with 
MoVTeNbOx being the most active catalyst among them. 
β-VOPO4, α-VWOPO4, α-VOPO4 and VWPOx achieve sig-
nificantly lower conversions (below ca. 10%), even at the 
highest applied temperature. These catalysts are therefore the 
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least active materials. Several products are formed from the 
initial propane on each catalyst, including the value-added 
acrylic acid and propylene, as well as the undesirable CO2. In 
our analysis, we focus on acrylic acid because the formation 
of this product involves a complex interplay of processes. The 
acrylic acid selectivity measured at each temperature of the 
catalyst test is shown in Figure 2b. Acrylic acid is a consecu-
tive product of the propane oxidation reaction. It is formed 
after propane transformation to propylene, but before the total 
oxidation product CO2 (see Equations 1–3). For this reason, 
its formation is only observed at intermediate propane-con-
version levels (Figure 2c). MoVTeNbOx is, by far, the most 
selective catalyst toward acrylic acid and achieves a maximum 
of 71.3% selectivity at 350°C at propane conversion of 26.1 
percent. MoVOx, VPP, and a-VPP reach significant, although 
lower, acrylic acid selectivities (7.2, 18.6, and 14.2%, respec-
tively). The maximum selectivity for MoVOx occurs at 225°C. 
For VPP and a-VPP the optimal temperatures with respect 
to selectivity are 400 and 350°C, respectively. This is in line 
with the fact that MoVOx is active at lower temperatures, 
while VPP and a-VPP require higher temperatures to convert 
propane (Figure 2a). Finally, V2O5 achieves a much lower 
acrylic acid selectivity of 2.3 percent. The catalysts β-VOPO4, 
α-VWOPO4, α-VOPO4, and VWPOx are unselective toward 
acrylic acid under the reaction conditions considered. The 
presence of such diverse scenarios in the data set is crucial for 
the success of the AI approach. The algorithm indeed needs 
to be informed about materials with different performance (in 
particular both desirable and undesirable types of behaviors) 
in order to identify the reactivity patterns we are searching for.

To gather information characterizing the catalysts and 
reflecting the potentially relevant processes governing selec-
tive oxidation within our AI approach, we measured a wide 
range of bulk and surface properties of both fresh and activated 
catalyst samples. We used the following common characteriza-
tion techniques: x-ray diffraction (XRD), N2 adsorption (ads.), 
x-ray fluorescence (XRF), laboratory x-ray photoelectron 
spectroscopy (lab-XPS), and temperature-programmed reduc-
tion/oxidation (TPRO). Additionally, we measured properties 
of the activated catalyst samples under the reaction conditions 
(temperature and gas-phase feed) by the advanced techniques 
near-ambient-pressure XPS (NAP-XPS) and microwave cavity 
perturbation technique (MCPT). These advanced techniques, 
referred to as in situ (as opposed to the ex situ common tech-
niques previously discussed), provide properties of the “work-
ing catalyst,” which therefore take into account the catalyst 
dynamics. In particular, NAP-XPS, which provides surface 
properties, was carried out in three different feeds: dry, wet, 
and C3-rich. These conditions are used to probe the influence 
of surface composition and its electronic properties, which 
depends on the feed due to catalyst dynamics, on reactivity. 
Regarding MCPT, it is a technique for contactless determina-
tion of the conductivity, free of electrode effects.26

Finally, we note that microscopic as well as mesoscopic 
properties of the catalysts are included in our analysis, which 
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Figure 2.   (a) Propane conversion ( Xpropane ) and (b) acrylic acid 
selectivity ( Sacrylic acid ) of the vanadium-based catalysts measured in 
the catalyst test, evidencing the diverse types of behavior in the data 
set. (c) Sacrylic acid  dependence on Xpropane , showing that acrylic 
acid, as a consecutive product, is only formed at intermediate conver-
sion levels. The MoVOx catalyst performance was not measured at 
temperatures above 300°C due to its limited thermal stability in the 
feed. Only the catalysts that produce acrylic acid are shown in (c).
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can be related to phenomena at different length (and time) 
scales. For instance, the surface atomic composition (from 
lab-XPS and NAP-XPS) might characterize a molecular-level 
process whereas the pore volume (from N2 ads.) may be asso-
ciated to the diffusion of reactants and products on the catalyst 
pores, a transport phenomenon occurring at a larger length 
scale. The characterization of these catalysts, also performed 
following standardized protocols (described in Reference 12) 
represents an unprecedented effort to acquire a consistent and 
detailed set of more than 40 catalyst bulk and surface prop-
erties. An overview of the measured properties is shown in 
Table I (the full data set is available in ESI).

AI approach
The identification of correlations between materials and pro-
cess properties on one side and the catalytic performance 
toward selective oxidation on the other was done by the SISSO 
approach.13,14 SISSO identifies descriptors in the form of typi-
cally complex, nonlinear analytical expressions depending 
on input parameters, called primary features. In the machine-
learning nomenclature, these descriptors are representations. 
Thus, SISSO is also an efficient “representation-learning” 

algorithm. The SISSO approach starts with the collection 
of the primary features. These include all possibly relevant 
physicochemical parameters that may relate to the processes 
governing the catalysis question of interest. Concerning these 
parameters, it is better to offer many possibilities, and it does 
not matter if some of these “primary features” are correlated 
with others. Our choice of primary features for this work is 
given in Table I. They correspond to the measured materials 
properties as well as reaction parameters such as the tempera-
ture. Altogether, these are 50. In the second step, we construct 
the descriptor candidates. For this, the primary features are 
systematically combined using mathematical operators such 
as addition, multiplication, difference, etc. (see details in ESI). 
Thus, we follow a symbolic regression approach.27–29 This 
step results in the generation of billions of descriptor candi-
dates. Each of them provides different numerical values for 
the different materials and/or processes. Thus, the big-data 
challenge is related to the intricacy of the underlying physics 
and chemistry. From the large number of candidate descrip-
tors, and using the provided values of the targets properties for 
the materials in the data set, SISSO selects very few, typically 
just D = 1, or 2, or 3 best descriptor candidates, whose linear 

Table I.   Catalyst properties and reaction parameters used as primary features for the SISSO analysis.

The subscripts on the atomic compositions ( x ) and oxidation states ( � ) indicate if the value concerns the bulk ( b ) or surface ( s ). The sub-
scripts fr and act indicate if the property concerns a fresh or activated sample, respectively. The subscript rxn, dry; rxn, wet; and rxn, C3 indi-
cate properties measured with in situ NAP-XPS under dry, wet or C3-rich gas-phase feeds, respectively.

Symbol Unit Description Technique

T °C Temperature (of reactivity measurement) –

Vcell
act

Å3 Normalized unit cell volume XRD (ex situ)

sfr , sact m2 g−1 Specific surface area N2 ads. (ex situ)

V
pore
fr  , Vpore

act
cm3 g−1 Pore volume

xVb,fr , x
V
b,act

% atom Bulk atomic content XRF (ex situ)

xVs,fr,x
V
s,act , x

O
s,fr,x

O
s,act , x

C
s,fr,x

C
s,act

% atom Surface atomic content lab-XPS (ex situ)

�V
s,fr,�

V
s,act

e Oxidation state

�
V,�O,�C nm Inelastic mean free path

aC−C
fr ,aC−O

fr ,aC=O
fr

aC−C
act ,aC−O

act ,aC=O
act

% area Relative amount of carbon 1 s components

u
O2
m,fr

µmol O2 g
−1 O2 uptake per mass TPRO (ex situ)

u
O2
s,fr

µmol O2 m
−2 O2 uptake per surface area

xVs,rxn,dry , x
O
s,rxn,dry x

V
s,rxn,wet,x

O
s,rxn,wet

xVs,rxn,C3,x
O
s,rxn,C3

% atom Surface composition NAP-XPS (in situ)

�V
s,rxn,dry,�

V
s,rxn,wet,�

V
s,rxn,C3

e Oxidation state

�
V
rxn , �

O
rxn

nm Inelastic mean free path

VBrxn,dry , VBrxn,wet,VBrxn,C3 eV Valence band onset

Wrxn,dry , Wrxn,wet,Wrxn,C3 eV Work function

σ ref
act

S m−1 Reference conductivity MCPT (in situ)

�σ ν

act S m−1 Conductivity stoichiometry-dependence

�σT
act

S ms−1 Conductivity retention-time-dependence

∼

�σ
ν

act

% �σν
act normalized by σ ref

act

∼

�σ
T

act

% s−1
�σT

act normalized by σ ref
act

Eσ

A,act kJ  mol−1 Activation energy of conductivity
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combination, with weighting coefficients, provides the best fit 
to the target property. D is referred to as the descriptor dimen-
sion. The final selected descriptor is thus the vector containing 
the selected candidate descriptors as individual components. 
The selection of descriptors and the identification of the coef-
ficients is done by compressed sensing.30–32 The resulting 
models for the target property P have the form

where di are the descriptor components selected from the many 
billions of candidates, and ci are the fitting coefficients. Impor-
tantly, only few primary features, out of the 50 offered ones, 
appear in the finally selected descriptor. The SISSO-derived 
descriptors are interpretable in the sense that one can identify 
the key primary features by simply inspecting the output expres-
sions. These primary features are the relevant “catalyst genes.”

Because the functional forms of the immensity of descrip-
tor candidates offered to the SISSO analysis are very flexible, 
it is important to avoid overfitting (i.e., to avoid models that 
fit the provided data but are not generalizable). Two param-
eters control the model complexity: D (see Equation 4) and 
the number of times the mathematical operators are iteratively 
applied to the features (depth of symbolic-regression tree) in 
order to generate the descriptor candidates, called hereafter 
rung, and denoted by q . The model complexity is assessed 
using leave-one-material-out cross-validation (CV). This CV 
procedure consists of training models with a data set in which 
one of the catalysts is removed, and then using the so-obtained 
ensemble of best models to predict the property of the left-out 
material. This procedure is iterated until all the catalysts are 
left-out once. The root mean squared errors (RMSEs) aver-
aged over all CV iterations (averaged CV-RMSEs) are used as 
our performance metric. The optimal complexity is considered 
the one with the lowest CV-RMSE. Further details on the CV 
procedure are provided in ESI.

In this work, we use the multi-task version of SISSO (MT-
SISSO).14 In the context of SISSO, multi-task refers to a transfer-
learning approach for the identification of a single multi-dimen-
sional descriptor for a target property across different material 
classes or external conditions, each of them corresponding to 
different fitting coefficients ( ci in Equation 4). MT-SISSO thus 
provides a single descriptor for the property and different models 
for each class of materials or external condition. In the case of 
this work, such different external conditions correspond to the 
different reaction temperatures applied in the catalyst test. Pre-
dicting the target property at each of the measured temperatures 
is therefore a different task. We stress that, in addition to allowing 
for the simultaneous modeling of the catalytic performance at 
different temperatures, MT-SISSO also enables us to efficiently 
exploit the experimental data available, increasing the effective 
number of data points. This is because every material is meas-
ured in a large range of temperatures, providing multiple data 

(4)P
(SISSO)

= c0 +

D
∑

i=1

cidi,

points per material. The multi-task approach thus improves the 
reliability of the identified descriptors.

In spite of the application of MT-SISSO, the number of 
data points in our experimental data set is very small and 
by no means comparable to the amount of data needed for 
widely used machine-learning approaches such as kernel ridge 
regression or artificial neural networks. The latter typically 
requires > 103 data points. However, we stress that for the 
SISSO approach a large amount of physicochemical infor-
mation about the considered materials is provided by the 
immense number of descriptor candidates considered, with 
their quantitative values. The AI strategy of SISSO enables the 
identification of descriptors that capture the intricate underly-
ing processes without the need for a large amount of experi-
mentally characterized materials. The big-data aspect is thus 
in the intricacy of the materials functions as the signal to be 
reconstructed (using the language of compressed sensing). It 
does not focus on the number of materials (or observations). 
We nevertheless point out that the more experimental data are 
available, the more generalizable the SISSO-derived models 
will be. Obviously, SISSO can only capture processes that are 
governing the target properties in the employed experimental 
data.

Identifying catalyst genes of the selective C3‑oxidation
To identify descriptors indicating the catalyst performance in 
C3-oxidation, we use the acrylic acid selectivity ( Sacrylic acid ) 
as target property. With the exception of MoVOx, which was 
only measured at four temperatures (vide supra), nine differ-
ent temperatures in the range 225–425°C are considered per 
catalyst. Altogether, 76 data points are used. Even though the 
temperature is offered as a primary feature in our analysis and 
it can therefore be used to construct the descriptor expression, 
by using MT-SISSO we are also able to capture the effect of 
temperature via the coefficients used to fit the models ( ci in 
Equation 4). This is because such coefficients are functions of 
the task, in this case the different temperatures. Indeed, SISSO 
captures the temperature effect only by the fitted coefficients. 
The best descriptor expressions identified do not contain the 
temperature as a parameter (vide infra).

The errors obtained when Sacrylic acid is estimated using 
the MT-SISSO model trained on the whole data set (i.e., the 
training errors), decrease as the rung q and the dimension D 
increase (dashed lines in Figure 3). The training RMSEs are 
practically zero at D = 3 for the three considered q . This evi-
dences the flexibility of expressions selected by SISSO to fit 
the input data. The average CV-RMSEs (solid lines in Fig-
ure 3), however, do not decrease monotonically with rung and 
dimension. Instead, the average CV-RMSEs achieve a mini-
mum value of 6.76% at q = 3 , D = 2 with respect to an opti-
mal predictability. This is therefore the identified appropriate 
complexity. The training error for such model is 1.46 percent.  
We note that a large fraction of the CV-RMSE is associated 
to the CV iteration in which the MoVTeNbOx catalyst is left 
out. Since this catalyst achieves a much higher Sacrylic acid 
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compared to the remaining ones in the data set (Figure 2b–c), 
it is probably dominated by a different process and therefore 
it is hard to correctly predict its performance based only on 
the remaining materials.

The best descriptor identified by MT-SISSO (i.e., the 
descriptor identified using the whole data set at the optimal 
complexity) provided the following model:

where the coefficients cS
1
(T ) and cS

2
(T ) depend on the meas-

ured temperature. In this expression, V pore

fr
 and V pore

act
 are the 

pore volumes of the fresh and activated catalysts, respectively, 
E
σ
A,act

 is the activation energy of conductivity of the activated 
catalysts, Wrxn,wet is the work function of the catalysts under 
reaction in wet feed, xV

s,act
, x

V

s,rxn,dry
 , xV

s,rxn,wet
 , and xV

s,rxn,C3
 are 

the vanadium surface content of the activated catalysts and 
of the materials under reaction in dry, wet, and C3-rich feeds, 
respectively, xC

s,fr
 is the carbon surface content of the fresh 

catalysts, and aC−O

act
 is the fraction of surface carbon assigned 

to C–O in the activated catalysts. Figure 4a shows the model 
derived by MT-SISSO for Sacrylic acid (Equation 5) evaluated 
for the materials and temperatures measured in the catalyst test 
(crosses). The agreement indicates the good quality of the fit.
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The SISSO-identified primary features are thus V pore

fr
 , V pore

act
 , 

E
σ

A,act
 , Wrxn,wet,xVs,act, xVs,rxn,dry , x

V

s,rxn,wet
 , xV

s,rxn,C3
 , xC

s,fr
 and aC−O

act
 . 

V
pore

fr
 and V pore

act
 are associated to the porous structure of the 

catalyst and reflect processes related to the catalyst pores, 
for instance diffusion of reactants and/or products. Eσ

A,act
 and 

Wrxn,wet correspond to the activation energy of charge carrier 
transport and to the electronic surface potential at reaction con-
ditions, respectively. These primary features characterize elec-
tronic properties of the working catalysts, which can be related 
to the charge transfer from the catalyst to adsorbed reaction 
intermediates. xV

s,act
, x

V

s,rxn,dry
 , xV

s,rxn,wet
 , and xV

s,rxn,C3
 indicate 

the relevance of the concentration of the redox-active element, 
vanadium, at the surface of the catalysts. Finally, xC

s,fr
 and aC−O

act
 

are associated to the amount and specific types of surface car-
bon identified by XPS. They reflect the strength of adsorption 
on specific catalyst surface sites and are thus related to surface 
site-specific processes. Altogether, the identified catalyst genes 
reflect a concerted and intricate interplay of catalyst bulk and 
surface processes that governs the selectivity toward acrylic 
acid. These include the catalyst dynamics, described by prop-
erties measured in situ, as well as transport phenomena at a 
higher length scale, encoded by the catalyst pore volume.

The key primary features (genes) identified in the SISSO 
analysis are consistent with previous investigations of selective 
oxidation catalysis in vanadium-based materials. In particular, 
in both descriptor components the difference ( xV

s,rxn,C3
− x

V

s,act
) 

appears, which could be linked to the observed vanadium sur-
face enrichment occurring at reaction conditions in selective 
oxidation catalysts.21–23 We note that the precise mathematical 

expression and the primary features individually contain less 
physical meaning than their collective interplay, since descrip-
tors obtained with different mathematical operators or different 
primary features—for instance, correlated with those shown 
in Equation 5—can capture the same underlying processes.

The model identified by MT-SISSO (Equation 5) is based 
on a two-dimensional (2D) descriptor with components dS

1
 

and dS
2
 . These are different constant values for each material, 

and they are weighted by temperature-dependent coefficients. 
The descriptor components (Figure 4b) assume non-negligi-
ble values for the catalysts that produce acrylic acid: MoVOx, 
MoVTeNbOx, V2O5, VPP, and a-VPP. Furthermore, their val-
ues are much higher for MoVTeNbOx compared to the other 
materials, in line with its much higher selectivity (Figure 2b). 
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For the catalysts β-VOPO4, α-VWOPO4, α-VOPO4, and 
VWPOx, both dS

1
 and dS

2
 are practically zero.

The coefficients cS
1
(T ) and cS

2
(T ) (in black and green, 

respectively, in Figure 4c) of the acrylic acid selectiv-
ity take up positive and negative values depending on 
the temperature range. cS

1
(T ) and cS

2
(T ) are positive for 

high and low temperatures, respectively. The signs of 
the coefficients change at ca. 350°C. Therefore, the 
selectivity is described by the model of Equation 5 as a 
sum of a positive and a negative term. This hints at dif-
ferent processes that facilitate and hinder the selectivity 
in a concerted and temperature-dependent manner. By 
fitting smooth functions to the coefficients, models for 
estimating acrylic acid selectivity across temperatures, 
including those not measured experimentally, can be 
obtained. Such models are useful for optimizing pro-
cess conditions.

In addition to the selectivity, we also identified 
descriptors for the efficiency of propane oxidation, indi-
cated by the propane conversion ( Xpropane ). The SISSO-
identified model, which corresponds to the optimal pre-
dictability of q = 1 , D = 2 is

In this expression, uO2

m,fr
 is the reversible oxygen 

uptake of the fresh catalysts per mass, and xO
s,rxn,C3

 is 
the O surface content under reaction in C3-rich feed. uO2

s,fr
 

indicates the materials’ ability to reversibly incorporate 
oxygen on its bulk structure and is related, for instance, 
to the role of lattice oxygen. Wrxn,wet and xO

s,rxn,C3
 , in 

turn, are related to surface processes. While the cX
1
(T ) 

in the model of Equation 6 is positive for all consid-
ered temperatures, cX

2
(T ) is always negative (see Figure 

S3C). This indicates that the processes captured by the 
first term in Equation 6 facilitate propane conversion 
whereas those associated to the second term hinder it.

Even though the 2D descriptor in Equation 6 does 
reflect an interplay of processes governing activity, the 
descriptor complexity ( q = 1 ) is lower compared to 
the case of acrylic acid selectivity (Equation 5, q = 3 ). 
Indeed, it is expected that the selectivity toward the 
oxygenate depends on a more intricate interplay of pro-
cesses compared to the propane conversion to any prod-
uct (i.e., including CO2). We note that Wrxn,wet is identi-
fied as a key parameter for both properties, consistent 
with the fact that the acrylic acid selectivity and the 
propane conversion are related (Figure 2c) and might 
display some common governing process—and thus 
common materials genes.
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By inspecting SISSO models predicting Sacrylic acid and 
Xpropane , we observe that the descriptor components d1 and d2 
have large mutual linear correlation for the materials in the 
training data set. This can be formalized by noticing that a 
linear model d2 = αd

1
+ β yields a good approximation of d2 

when d1 is known. In other words, all the so far known mate-
rials lie close to a straight line in the ( d1, d2 ) space. Since 
d1 and d2 depend on primary features that are measured in 
experiments for actual materials, it is unclear if materials that 
would land away from the d2 = αd

1
+ β line actually exist. 

However, both models are expected to become less reliable 
the further a new tested material lands from the d2 = αd

1
+ β 

line. Should this happen for a new tested material, the model 
would need retraining as a more complex model is likely 
needed. This can also be realized when noticing that the 
linear models Xpropane, Sacrylic acid = c1d1 + c2d2 can predict 
values of Xpropane and Sacrylic acid outside the physically mean-
ingful interval 0–100%, for arbitrary values of d1 and d2 , 
which are different from the ( d1, d2 ) values that represent 
the materials in the data set. We also notice that for Xpropane , 
the model is particularly sensitive when d2 departs from 
the dX

2
= α

X
d
X

1
+ β

X   line, which limits its applicability. A 
deeper analysis of this model will be published elsewhere.

Maps of catalysts for guiding the design of new 
materials
We used the relationship dS

2
= α

S
d
S

1
+ β

S to obtain a “map of 
catalysts” (Figure 5) showing S(SISSO)

acrylic acid
(T ) as a function of 

two variables, the materials descriptor dS
1
 and the temperature. 

In the expression dS
2
= α

S
d
S

1
+ β

S  ,  αS and βS are fitted param-
eters, with values 2.948 × 10–3 eV−1 and − 9.246 × 10–4 g2 mol 
cm−6 kJ−1, respectively. The resulting map shows the selectiv-
ity, as a color scale from 0 to 100%, for the temperature range 
used in the experiment. Every material is represented, in this 
plot, by a horizontal line and the black lines indicate the mate-
rials in the experimental data set that produce acrylic acid and 
were used for training the model.

The map of Figure 5 highlights the different types of behav-
ior present in the data set used for the derivation of the descrip-
tor. In particular, it shows that the temperature of maximum 
acrylic acid selectivity decreases as one moves from low to 
high dS

1
 values. The map also evidences the unique and higher 

performance of MoVTeNbOx compared to the other materi-
als. Additionally, this materials chart can accelerate the design 
of new catalysts, since it indicates the regions of the mate-
rials space where high-performance materials are found. In 
particular, catalysts with high dS

1
 values (regions shown in 

blue in Figure 5) are associated to high selectivity toward the 
formation of acrylic acid. From Equation 5, the pore volumes 
and the activation energies of conductivity are key properties 
that impact the value of dS

1
 . By increasing pore volume and 

decreasing activation energy of conductivity, for instance, dS
1
 

is increased. To illustrate how materials with “better” param-
eters will exhibit a better selectivity, we imagine a hypothetical 
catalyst, which would be obtained from VPP, increasing its 
pore volume by 50% (in both fresh and activated materials) 
and decreasing its activation energy of conductivity by 50 
percent. The VPPmodified material, shown as the green dashed 
line in Figure 5, would provide an acrylic acid selectivity ca. 
three times higher than that for VPP. For this gedankenexperi-
ment, we assume that all other primary features of the catalyst 
remain unchanged.

Finally, we note that the models derived by MT-SISSO are 
expected to hold for catalysts obtained as modification of the 
vanadium-based catalysts as well for other (new) materials 
as long as the reactivity is governed by the same processes 
governing the catalytic performance in the nine materials of 
our data set. However, for regions of the materials space con-
taining catalysts different from those in the data set, the MT-
SISSO model might need to be retrained with more data. This 
calls for a systematic experimental exploration of the materials 
space, i.e., systematically adding information at d1 , d2 regions 
where experimental data are missing at present.

In this work, the primary features to model the measured 
catalytic performance via AI were entirely derived from 
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experiment. As previously discussed, the explicit first-prin-
ciples modeling of the full catalytic progression in complex 
reactions such as propane oxidation is unfeasible. However, in 
addition to the experimental inputs, primary features derived 
from theory could be included in the AI description of the 
measured reactivity. This will help to identify and understand 
the microscopic processes that govern catalysis. Such study 
will be addressed in a follow-up work.

Conclusions
Our study shows how consistent data in heterogeneous-
catalysis research, generated according to standardized pro-
tocols for performing and annotating experiments,12 enable 
the identification of the key descriptive parameters related to 
catalyst performance, the “materials genes of catalysis,” by 
AI. Nine vanadium-based alkane oxidation catalysts present-
ing diverse reactivity toward C3-oxidation were synthesized, 
characterized, and tested according to such procedures. In 
particular, their detailed characterization resulted in more 
than 40 measured properties per material. To such data set, 
presenting a small number of materials, but a large amount 
of information for each catalyst, provided in terms of input 
features, we applied the compressed-sensing symbolic-
regression SISSO approach. Out of billions of descriptor 
candidates, we found nontrivial interpretable expressions 
reflecting the concerted interplay of processes that govern 
catalysis, including the crucial catalyst dynamics. The AI-
identified descriptors enable us to generate maps of catalysts 
for guiding the search of novel materials and rationalizing 
the reactivity trends. In particular, the key catalysts prop-
erties related to acrylic acid selectivity include the pore 
volume, the activation energy of conductivity, the work 
function, the fraction of surface carbon species assigned to 
carbon–oxygen as well as the vanadium and carbon surface 
contents. These properties, measured by N2 adsorption, in 
situ MCPT and XPS (including in situ NAP-XPS), are thus 
the key ones to be measured and used for the design of 
selective materials.

The combination of systematic experiments and AI pro-
posed here is suitable for improved materials discovery and 
the modeling of complex materials properties and functions 
whose underlying governing processes are intricate and hard 
to model explicitly by atomistic simulations.

Supplementary material
SISSO and CV details as well as additional results for the 
descriptor X (SISSO)

propane (T ) are available in ESI. The data generated 
and analyzed during this study are included as supplementary 
information files.

The SISSO analysis described in this publica-
tion can be found in a Jupyter notebook at the NOMAD 

Artificial-Intelligence Toolkit (https://​nomad-​lab.​eu/​AItut​ori-
als/​Propa​neOxi​dation), where it can be repeated and modified 
directly in a web browser.
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