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Status 

In materials science and engineering, one is typically searching for materials that exhibit exceptional 

performance for a certain function, and the number of these materials is extremely small. Thus, 

statistically speaking, we are interested in the identification of “rare phenomena”, and the scientific 

discovery typically resembles the proverbial hunt for the needle in a haystack. Let us illustrate this 

with a “classical” example, i.e. searching for materials that are very robust, highly transparent, and at 

the same time have a high heat conductivity. In the immense space of structural and chemical 

materials, there is one strong high-performance candidate: carbon in the diamond structure. Hardly 

any other material comes close. And from a thermodynamic perspective, this material is not even 

stable but metastable. As we understand the mechanisms behind the mentioned properties, we trust 

the conclusion that diamond is the exceptional champion of the issued search.  But how can we 

reliably find materials that exhibit exceptional performance for functions in general, for example, for 

catalysis, photovoltaics, or batteries? All searches face the following situation1: 

• The number of possible materials is practically infinite. 

• The electronic and atomistic processes that rule a desired materials function are many, and their 

concerted action is typically highly complex and intricate, resulting an immense number of 

possibly relevant mechanisms. 

• The number of data that are “clean” (comprehensively characterized and high-quality) and 

relevant for the function of interest are typically very low. 

Under these daunting conditions we aim to identify the rules that govern the rare phenomena 

corresponding to particularly exceptional materials. Such rules describe regions in materials spaces 

that are relevant for the function of interest (see Fig. 1). In analogy to biology, the basic physico-

Figure 1.  By mapping materials (depicted as squares) into spaces defined by relevant “materials genes” we can identify 
regions where materials exhibit desired exceptional properties. Depending on the employed AI methods, such regions 
can be given by simple Boolean conditions (dashed line) or in terms of more complex analytic functions of the genes 
(solid line). Typically, the space of relevant genes will have a much higher dimensionality than two. 
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chemical parameters entering these rules may be called “materials genes”, as they are related to 

processes that trigger, actuate, or facilitate, or hinder the property of interest. In particular, we are 

interested in such regions that 1) contain exclusively or at least predominantly materials with desired 

properties and 2) are described in a way that allows us to efficiently sample from them new 

synthesizable materials. Publicly shared materials databases and AI methods have enabled 

encouraging progress1 towards this goal (see Fig. 2 as an example)2. However, critical challenges 

remain. 

 

Current and Future Challenges 

Most available data science and machine learning methods are fundamentally unsuited for the 

required identification of rare phenomena. Firstly, they typically aim to fit a global model to the 

available data by minimizing the “regularized” average error. This focus on average global 

performance not only puts importance on accurately modelling the hay instead of the needles. Even 

worse, regularization means to deliberately avoid modelling the extra-ordinary for the sake of 

avoiding overfitting. Secondly, as pointed out by Ghiringhelli et al.3, off-the-shelve methods cannot 

reliably identify meaningful and trustworthy rules that describe exceptional materials, because they 

implicitly or explicitly rely on descriptors (also called representations) of materials that are either too 

restrictive (because they are hand-picked) or too unrestrictive (e.g., in the case of deep learning) and 

thus model “non-physical” relations likely unrelated to the materials genes of relevance. 

Using symbolic regression and compressed sensing, the SISSO (sure independence screening and 

sparsifying operator) approach4 alleviates this problem by identifying descriptors consisting of 

typically only a few analytical functions of relevant materials genes. Based on its physical plausibility 

and robust empirical performance, we can say with some confidence that this approach successfully 

identifies rules satisfying our first criterion: the description of regions that predominantly contain 

desired materials. A remaining problem lies in the second requirement: our ability to efficiently sample 

interesting novel materials. Rejection sampling can be employed to generate candidates if the 

considered materials class is small, e.g., binary systems restricted to a few crystal structures. However, 

Figure 2.  Map of catalysts given by the SISSO model for the selectivity of propane conversion to acrylic acid. For details see Ref. 2. The 

desired high selectivity situation is colored dark blue. The materials used for deriving the descriptors are indicated by the black lines. The 

function d1
S

  is quite complex, identifying the macroscopy material, i.e. its basic properties (e.g. composition) as well as its porosity etc. 

VPPmodified is a suggested material that would result by changing some materials parameters of the VPP material. In general, however, the 

relationship “real materials” → d1
S is not invertible. 
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this does not scale to the vast design spaces relevant for general searches. The central challenge is 

that SISSO similar to other commonly used descriptors are not efficiently invertible. While 

representing materials through their genes enables us to discover reliable rules, many points in gene 

space do not correspond to real materials, and this complicates the direct generation of new 

candidates from a specific region.  

Advances in Science and Technology to Meet Challenges 

An important alternative approach to rule identification is subgroup discovery (SGD)5. Similar to SISSO, 

SGD also describes non-linear relations between materials genes and properties. However, in contrast 

to SISSO, the SGD rules are given as Boolean conjunctions of conditions on individual genes. This 

means that the described regions in gene space are simple axis-parallel (hyper-)rectangles, which 

makes it easier to generate novel materials from them: one simply has to satisfy the given conditions 

on each relevant gene independently. However, as above, many, probably most, combinations of the 

gene values may not correspond to real materials. 

Furthermore, currently available SGD methods are, unfortunately, not designed to describe rare 

phenomena. They are based on ideas from confirmatory statistics (significance testing) to derive final 

conclusive results from a given dataset. To assure results that are significant for the data at hand, they 

prioritize the detection of relatively frequent phenomena. Fortunately, in the context of materials 

science, this extremely conservative approach of one-shot correctness can be relaxed. Since we have 

computational methods that can obtain accurate new data with reasonable efficiency, we can aim for 

an approach where pattern discovery and first-principles methods work in unison to facilitate rapid 

scientific discovery. 

Borrowing ideas from Thompson sampling and Bayesian optimization6, such rule discovery methods 

should propose rules that are reasonable candidates to describe the rare material champions and then 

obtain new simulated data from the proposed regions to validate or falsify this proposal. By repeating 

this process, we iteratively arrive at new regions where desired materials are more and more likely to 

be found. Instead of one-shot correctness, this approach aims to identify the desired rare 

phenomenon as soon as possible in this iterative process by optimizing an exploration/exploitation 

trade-offa. 

This compelling vision provides a clear agenda of statistical and algorithmic problems to tackle: Firstly, 

we need a sound selection mechanism for hypotheses about rare phenomena that appropriately 

compromises between the value of a rule and the likelihood that it can be confirmed by future data. 

Secondly, we need efficient algorithms that find optimal regions based on this selection mechanism. 

 

Concluding Remarks 

In summary, publicly shared materials data and AI code, as provided by the NOMAD AI Toolkit7, as 

well as physically plausible representations based on materials genes (like the ones used in SISSO and 

SGD) have facilitated progress towards identifying rules that describe desired materials. So far, 

however, all approaches are lacking either the ability to consistently describe only promising materials 

or the ability to efficiently generate them – at least at the ultimately required scale. To advance 

further, challenging statistical and algorithmic problems have to be solved, but there are promising 

starting points: The combination of Bayesian approaches to multiple hypothesis testing8 as well as the 

versatile branch-and-bound approach9 to discrete optimization stands a good chance to enable the 

                                                
a Here, “exploration” refers to sampling from regions where one is still uncertain about materials performance, 
and “exploitation” refers to sampling from regions with relatively strong and certain materials performance. 
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envisioned methods. However, due to their reliance on adaptively generated new data, their 

development will require a concentrated interdisciplinary effort between materials and data science. 
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