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Status

Training a supervised machine-learning (ML) model that yields satisfactory predictions (i.e., maps

input  features  into  values  of  the  target  property,  with  errors  below  a  threshold  perceived  as

tolerable) on test data that are driven from the same distribution as the training data, is a task that is

nowadays almost routinely accomplished. However, the crucial interest is in that the trained model

can generalize, i.e., it can yield trustable predictions also for test data that are significantly different

from the training data. As human beings, i.e., users who are asked to judge and/or trust predictions

of a ML model, we need to understand what the model has learned. Such innate need is related to

the notion of interpretability of the ML model. The literature on interpretability is vast[1-7], but the

field is pre-paradigmatic, i.e., it has not reached a consensus on what are the fundamental questions

and  what  are  the  quantities  to  be  measured.  Two  somewhat  contrasting  aspects  are  typically

associated  to  interpretability[1-3]:  transparency of  the  model  and  its  (post  hoc)  explainability.

Transparency connects to scientific practice, where a phenomenon is felt  as understood when a

predictive  mathematical  law  is  formulated,

which is expected to work with no exception, at

least  in a well-defined  domain of  applicability.

Such law is expected to be  simple, so that our

brains  can  process  most  if  not  all  of  its

consequences.  Explainability refers  to  the

possibility  to  inspect  a  perceived  "black-box",

i.e., a model that is in general too complex to be

grasped  by  the  human mind,  but  that  can  be

investigated,  in  order  to  reveal,  for  instance,

which  part  of  the  input  mostly  affected  the

output.  Incidentally,  understanding  a  decision

made  by  a  human  refers  to  the  post  hoc

explainability  of  what  happens  in  our  brains,

whose detailed mechanics are beyond current

grasp, while we can provide reasons on how a

decision was reached, typically based on "similar

cases"[2]. Understanding interpretability and in

particular  devising  one or  a  set  of  consensual

metrics for  assessing  the  generalizability  and

trustability of ML model is one crucial next step,

or the field might face another “winter” due to a

consequent lack of trust in ML applicability.

Current and Future Challenges

The tools for addressing the interpretability of ML models vary with the complexity of the models[1-

6] (see Fig. 1). For simpler models, transparency is evaluated, i.e., the ability to read and inspect the

model.  Sparse models[8]  and  in  particular  symbolic  inference[9]  naturally  provide  transparent

models as they appear as equations (or inequalities) in terms of functions of input features, which

are selected out of a possibly large number of candidates. The interpretation is therefore provided

Summarized view of interpretability in machine

learning,  elucidating  what  determines  the

users'  need  for  interpretability  and  how  the

meaning of the word adapts to the complexity

of  the  learned  model.  Not  mentioned  in  the

text,  the  ethical/legal  aspects  are  felt

important  when  ML-based  decisions  impact

individuals or communities.
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by the identification of which input features govern the modeled phenomenon. Here, the notions of

simulatability and  decomposability have been introduced. These are the ability to follow step-by-

step how the ML model produces an output from the input and the ability to assign a meaning to

each  part  of  a  model  (e.g.,  the  sign  and magnitude  of  regression  coefficients),  respectively.  An

outstanding  challenge  is  to  define  a  rigorous  metric  of  transparency,  so  that  models  can  be

objectively compared, similarly and complementarily to the routinely performed, but insufficiently

informative, comparison in terms of predictive accuracy. 

For more complex model, where transparency is lost, a plethora of post hoc explanation tools have

been developed[4-7], which are commonly divided into  local (explanation on how a given single

output is obtained) or global (typically, visual analysis of how the dataset is represented internally by

the model). The focus is in general on a statistical analysis on how input features affect the results.

The challenge is here to properly account for the (typically nonlinear) relationship among the input

features.

It  is  highly  unsatisfactory  that  two  different  interpretability  concepts  exist  depending  on  the

complexity  of  the trained  model.  In  facts,  there  is  a  continuum of  complexity  between sparse,

symbolic  models  and complex  ones (e.g.,  deep neural  networks);  the challenge is  to seamlessly

adapt the complexity of the learned model, and the related interpretability tools, to the intrinsic

complexity of the underlying input-features ─ target-property relationship.

Finally, the importance of outliers, datapoints not conforming to the model being learned, needs to

be understood. In physical sciences, a wrongly predicted datapoint may be a signal that a different

mechanism from the so-far identified features─property relationship is at work.

Advances in Science and Technology to Meet Challenges

ML  is  urgently  requested  to  undergo  a  paradigm  change.  Together  with  prediction  accuracy,

strategies  for  assessing  the  correct  model  complexity  and  interpretability  metrics,  need  to  be

developed. If a simple, symbolic law is the underlying model, a correct ML strategy must be able to

recover such exact model. When a more complex, less transparent model is necessary, then the

interpretability metric needs to seamlessly adapt to the increased complexity.  It  should become

therefore common practice to compare models in terms not only of their predictive accuracy, but

also of their interpretability metric. When applied to the development of scientific (e.g., physical)

laws,  the  purpose  of  this  formidable  task  is  to  provide  reasons  to  accept  an  ML-learned

features─property relationship in terms of its consistency with the existing bulk of knowledge, so

that the ML model is not felt as a surrogate, until "something better" is found, but as a new scientific

law. 

In this  respect,  it  is  crucial  to be able to treat the nonconforming datapoints.  Most current ML

approaches are built to neglect such datapoints, a.k.a. outliers, while in physical sciences even one

single datapoint not complying with the general law is treated with uttermost care, as it could be the

harbinger  of  "new  physics".  It  is  therefore  desirable  that,  together  with  the  complexity-aware

strategy sketched above, a nonconforming-datapoints strategy is developed. For instance, one may

wish to detect different domains of applicability of more complex, general models, vs specialized but

simpler models. A useful analogy could be thinking at general relativity, which is more general and

more complex than classical gravitation. The latter is however very accurate in a well-specified and

understood domain of applicability. In turn, general relativity is expected to be a special, somewhat

simpler,  case  of  a  (yet  to  be  developed)  quantum-gravity  theory.  Similarly,  in  ML  the  level  of

complexity  of  the  learned  models  might  need  to  be  adapted  to  well-defined  domains  of

applicability[10], preferably defined by ML algorithms in a data-driven fashion.
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Concluding Remarks

In conclusion, ML might have reached its maturity in terms of predictive ability, on data that are

statistically  similar  to  the  training  data.  However,  it  is  still  in  its  infancy  when  it  comes  i)  to

generalizability to data significantly different from training data, ii) treatment of "outliers", i.e., data

data do not conform to te model being trained, iii) having a unified concept of interpretability that

seamlessly applies from the obvious transparency of sparse, symbolic models, to the explainability of

complex  deep  neural  networks,  and  iv)  adapting  the  trained  model  complexity  to  the  intrinsic

complexity of the underlying input feature─property relationship. Hopefully, framing the objective

in clear terms will stimulate a focused development of ML techniques, which could promote ML

tools to become valuable companions of a scientist, in order to foster future scientific discoveries.
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