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Abstract
We consider extensions of monadic second-order logic over
ω-words, which are obtained by adding one language that
is not ω-regular. We show that if the added language L has
a neutral letter, then the resulting logic is necessarily unde-
cidable. A corollary is that the ω-regular languages are the
only decidable Boolean-closed full trio over ω-words.

CCS Concepts: • Theory of computation → Logic and
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1 Introduction
A famous theorem of Büchi [12, Theorem 2] says that the
monadic second-order theory of (ω, <) is decidable. What
can be added to this logic while retaining decidability? This
question has seen a lot of interest, andwe begin by discussing
some of the existing results.

What predicates can be added? The first natural idea is
to add predicates beyond the order <, e.g. a unary predicate
for the primes, or a binary addition function. This idea was
pursued already by Robinson in [30], in what is possibly
the first published paper to mention mso on (ω, <). This is
before Büchi’s theorem about decidability of mso, and even
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before the decidability results about weak mso of Büchi [11,
Corollary 1], Elgot [15, Corollary 5.8] and Trakhtenbrot [35].
After describing mso, which he credits to Tarski’s lectures,
Robinson shows that adding the doubling function n 7→ 2n
to mso results in an undecidable logic [30, p.242]. Other ex-
amples of unary functions that lead to undecidability were
given by Elgot and Rabin [16, Section 1]. One of these ex-
amples is that mso becomes undecidable after adding any
function f such that f −1(n) is infinite for all n. This result
was strengthened by Siefkes [32, Theorem 5] who showed
that it is enough that f −1(n) is infinite for all n with certain
periodicity properties, and then by Thomas [33, Theorem 1]
who showed that it is enough for f −1(n) to be infinite for
infinitely many n. Another example of undecidability is mso
extended with any unary function f that is monotone and
satisfies f (n + 1) > f (n) + 1 for infinitely many n, see [33,
Theorem 2]. This line of research is summarised in [29] as
follows: “for most examples of natural functions or binary
relations it turned out that the corresponding monadic the-
ory is undecidable, usually shown via an interpretation of
first-order arithmetic”.

The undecidability issues mentioned above are avoided if
one considers unary first-order predicates. The first examples
of this kind were given by Elgot and Rabin, who showed that
mso remains decidable after adding unary predicates for the
factorials, or squares, or cubes, etc. see [16, Theorem 4]).
Following this result, a lot of attention has been devoted to
identifying the unary predicates that keep mso decidable.
An equivalent phrasing of this question is: which ω-words
have a decidable mso theory? An interesting example is the
Thue-Morse word; its mso theory is decidable, which follows
from [25, Theorem 3]. A general classification of ω-words
with a decidable mso theory was given by Semenov in [31,
p. 165], this line of research was continued in [13, 29]. It
is worth pointing out that the classification can be hard to
apply to some specific cases; an important one being the
case of prime numbers. It is unknown if mso extended with
a predicate for the prime numbers has a decidable theory; if
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this were the case then one could use the algorithm to decide
if there are infinitely many twin primes1.

It is worth pointing out that in all of the results discussed
above, it makes no difference whether one uses mso or weak
mso. The undecidability proofs for unary functions in [16,
32, 33] use only weak mso. For the results about unary pred-
icates, it makes no difference if mso or weak mso is used,
because for every ω-word, its mso theory is decidable if and
only if its weak mso theory is decidable, which follows from
McNaughton’s determinisation theorem [22, p. 524]2. In a
sense, one could say that the results discussed above are
really about extending weak mso. This will no longer be true
when adding quantifiers and languages.

What quantifiers can be added? Another line of re-
search concerns adding new quantifiers. If the added quanti-
fier has some implicit arithmetic, such as the Härtig quanti-
fier [18], which expresses the existence of two sets of equal
size with a given property, then mso immediately becomes
undecidable. This follows directly from Robinson’s result
about n 7→ 2n, and it is also discussed in more detail in [20,
Theorem 14]. However, there are quantifiers which describe
only topological or asymptotic behaviour, and for such quan-
tifiers proving undecidability can be much harder. One ex-
ample of an asymptotic quantifier is the bounding quantifier
from [5], which expresses the property “for each k ≥ 0, φ(X )

is true for some finite set X with |X | ≥ k” [5]. The resulting
logic, called mso+u, is undecidable [9, Theorem 1.1]. How-
ever, it is close to the decidability border; in particular weak
mso with the bounding quantifier is decidable [6, Theorems
3 and 5]; and the same is true for its variants and exten-
sions [10, Theorems 11 and 13]. Other extensions of mso
with asymptotic quantifiers were proposed by Michalewski,
Mio and Skrzypczak in [23, 24], including a quantifier re-
lated to Baire category and a quantifier related to probability.
The Baire quantifier does not add to the expressive power
of mso [24, Theorem 4.1]. On the other hand, the probabil-
ity quantifier leads to an undecidable logic [23, Theorem 1],
because it can express the undecidable problem of checking
if a probabilistic Büchi automaton accepts some word with
nonzero probability [3, Theorem 7.2]. The theme for quan-
tifiers seems to be that adding a well-behaved quantifier to
(non-weak) mso either does not change the expressive power,
or leads to an undecidable logic; but in the latter case the
undecidability proof can be hard.

1This theory is known to be decidable if one assumes Schinzel’s Hypothesis
– a conjecture from number theory which implies that there are infinitely
many twin primes [4, Theorem 4].
2The equivalence of mso and wmso need not hold after adding non-unary
predicates. For example, wmso with addition can only define languages in
the Borel hierarchy, while mso with addition can easily be shown to contain
the logic mso+u that will be discussed later in the paper, and mso+u can
define languages beyond the Borel hierarchy [19, Theorem 2.1].

What languages can be added? We now turn to the
final kind of feature that can be added to mso, namely lan-
guages. This is the main topic of this paper. A language
L ⊆ {a,b}ω over a binary alphabet can be viewed as a second-
order unary predicate L(X ), which inputs a set X ⊆ ω and
returns true if the language L contains the word where posi-
tions from X have label a and the remaining positions have
label b. This can be generalized to alphabets with k letters:
Then, the predicate inputs k sets and returns true if the k
sets form a partition of ω and L contains the word encoding
this partition. Let us write mso+L for the extension of mso
which has the predicate described above.

Another equivalent way of describing the logic mso+L
uses closure properties of languages. A folklore fact about
mso is that existential monadic quantification is the same
as taking the image of a language under a letter-to-letter
homomorphism, see [28, p. 2] or [34, Section 2.3]. It follows
that mso+L is exactly the smallest class of languages of ω-
words which contains L and all ω-regular languages, and
which is closed under (a) Boolean combinations; (b) images
of letter-to-letter homomorphisms; and (c) inverse images
of letter-to-letter homomorphisms. We will return to this
language theoretic approach in Section 2.

Example 1.1. Suppose that L ⊆ Σω is a singleton language,
i.e. it contains only one wordw . Then mso+L has the same
expressive power as mso extended with unary predicates

Pa = {n ∈ ω : the n-th letter ofw is a} for a ∈ Σ.
Therefore, in the case of singleton languages mso+L, corre-
sponds to the mso extensions with unary first-order predi-
cates that were studied in [13, 16, 29, 31, 33]. In particular,
there are known decidable examples.

Example 1.2. DefineU ⊆ {a,b}ω to be the ω-words where
blocks of a’s have unbounded size:

U
def
= {ak1bak2 · · · : lim supkn = ∞}.

In [8, Theorem 1.3] it is shown that adding the languageU to
mso gives exactly the logic mso+u. Hence it is unambiguous
to write mso+u, with both meanings (adding a quantifier or a
language) being equivalent. As mentioned before, this logic
is undecidable.

Example 1.3. Consider the ultimately periodic words, i.e.
P = {wvω : w,v ∈ {a,b}∗ and v is nonempty}.

It is not hard to see that mso+P can express the language U
from Example 1.2, and therefore this logic is undecidable [8,
Theorem 1.4]. In contrast, adding P to weak mso yields a
decidable logic [10, Theorem 13].

Our goal in this paper is to classify the languages L such
that mso+L is undecidable. By the discussion in Example 1.1,
this project is at least as difficult as classifying the ω-words
with a decidablemso theory. However, in the spirit of “asymp-
totic” conditions, we restrict attention to languages which
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have a neutral letter, which means that there is a letter in
the alphabet, denoted by 1, such that

w11w21 · · · ∈ L ⇔ w1w2 · · · ∈ L

holds for every wordsw1,w2, . . . ∈ Σ∗ where infinitely many
wi are nonempty3. We now state our main theorem.

Theorem 1.4. If L ⊆ Σω has a neutral letter and is not defin-
able in mso, then mso+L is undecidable.

In the above theorem, by undecidable we mean that there
is no algorithm which decides the sentences of mso+L that
are true in (ω, <). Since mso can quantify over words, this
is the same as saying that satisfiability is undecidable for
mso+L for ω-words. Theorem 1.4 will be proven in Section 4.

Example 1.5. DefineU ′ ⊆ {a,b, 1}ω to be the words such
that eliminating all 1’s gives a word in the language U from
Example 1.2. We claim that the logic is obtained by extending
mso with (a) the bounding quantifier; or (b) the language
U ; or (c) the language U ′. The equality of (a) and (b) was
discussed in Example 1.2. The language U ′ can be defined
using the bounding quantifier, hence the inclusion (c) ⊆ (a).
The language U is the intersection of U ′ with language of
words that do not contain the letter 1, hence the inclusion
(b) ⊆ (c). The equality of these three logics is discussed in
more detail in [8].

The languageU will play an important role in the proof
of Theorem 1.4. We will show that if L is not definable in
mso and has a neutral letter, then U is definable in mso+L.
Undecidability will then follow by Theorems [9, Theorem
1.1] and [8, Theorem 1.3]. In this sense, U is the simplest
undecidable extension of mso.
The paper is structured as follows. In Section 2, we dis-

cuss a version of our main theorem for finite words, which
was proved by the fourth author, Kuske and Lohrey in [36].
Like [36], we prove our main theorem using syntactic con-
gruences, and therefore Section 3 is devoted to a discussion
of syntactic congruences for ω-languages. In Section 4, we
prove our main result, and in Section 5 we show that the
main theorem implies that the ω-regular languages are the
only Boolean-closed full trios that are decidable.

2 Finite words
In this section, we describe the starting point for our work,
which is a theorem by the fourth author, Kuske and Lohrey.
It says that the regular languages of finite words are the only
decidable Boolean-closed full trio. We will define full trios4

3In the definition of neutral letters, we require that the language is stable
under inserting or deleting infinitely many neutral letters. However, this
also implies that the language is stable under inserting or deleting finitely
many neutral letters.
4Full trios are sometimes called (rational) cones in formal languages litera-
ture, they are meant to be a formalisation of robust classes of languages.

in Theorem 2.1. Recall that a homomorphism is a function

h : Σ∗ → Γ∗ such that h(wv) = h(w)h(v).

Define the arithmetic hierarchy, see [36, Section 2], to be
the least class of languages of finite words that contains all
recursively enumerable languages, and which is closed under
complementation and homomorphic images.

Theorem 2.1. [36, Corollary 3.2] Let L be a class of lan-
guages of finite words which is a full trio, i.e. it is closed under:

1. images under homomorphisms; and
2. inverse images under homomorphisms; and
3. intersections with regular languages.

If L is additionally Boolean-closed (closed under union and
complementation) and it contains at least one non-regular
language, then it contains the arithmetic hierarchy.

In the above theorem, there is no assumption on neutral
letters. This is because condition 2 deprecates the assump-
tion, since a neutral letter can be added to any language by
taking the inverse image under the homomorphism which
eliminates the neutral letter. The closure properties used in
Theorem 1.4 are weaker, and hence the assumption on neu-
tral letters is needed. As a warm-up for the case of ω-words,
we give below a proof sketch for the above theorem.

Proof sketch. The proof uses rational relations [14, p.236].
Recall that a rational relation is a binary relation on words
that is recognised by a nondeterministic automaton where
each transition is labelled by a pair (input word, output word),
with both words being possibly empty. By Nivat’s theorem
(Propositions 1 and 2 in [26]), if a language class L is a full
trio, then it is closed under images under rational relations,
which can be visualised as the following reasoning rule:

K ⊆ Σ∗ is in L R ⊆ Σ∗ × Γ∗ is a rational relation
{v ∈ Γ∗ : ∃w ∈ L with (w,v) ∈ R} is in L

Because L is closed under complementation, we can also
use a variant of the above rule where ∀ is used instead of ∃
in the conclusion of the rule (i.e. below the line).

The key idea is to use the closure properties to formalise
the syntactic right congruence of the language. Let L ⊆ Σ∗

be some non-regular language in L, which exists by assump-
tion, and let ∼ be its syntactic right congruence, i.e. the
equivalence relation defined by

u ∼ u ′ def
= ∀v ∈ Σ∗ uv ∈ L ⇔ u ′v ∈ L.

By the Myhill-Nerode theorem, ∼ has infinite index, i.e. infin-
itely many equivalence classes. Using the reasoning rule with
rational relations, one shows that L contains the language

L1 = {u#u ′ : u ∼ u ′},
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where # is a fresh separator symbol. Consider now two sepa-
rator symbols # and #. Define L2 to be the language

{w1# · · · #wn#v1# · · · #vm# :



w1 ∼ v1

wn ∼ vm

wi ≁ w j for i , j

vi ≁ vj for i , j

wi ∼ vj ⇒ wi+1 ∼ vj+1

}.

Using the closure properties, one shows L2 ∈ L. A short
analysis of the conditions defining L2 reveals that every
word in L2 satisfies

m = n and w1 ∼ v1,w2 ∼ v2, . . . ,wn ∼ vn .

Furthermore, since∼ has infinitely many equivalence classes,
it follows that n =m can be arbitrarily large. By projecting
away the words wi ,vi using a homomorphisms, it follows
that L contains the language

L3 = {#n#n : n ∈ {1, 2, . . .}}.

A string encoding of runs of two-counter machines, see [17,
Theorem 2], can be used to show that L contains every
recursively enumerable language. The arithmetic hierarchy
follows, by closure of L under homomorphic images and
complementation. □

3 Congruences for ω-words
Like in Theorem 2.1, the proof of Theorem 1.4 also uses
congruences. However, there are several issues with con-
gruences for ω-words, which mean that some new ideas are
needed. The main problem is that there is no good notion of
syntactic congruence for languages of ω-words.
We begin by discussing several existing approaches to

congruences forω-words, see also [21]. In all cases, we begin
with a language L ⊆ Σω , and use it to define an equiva-
lence relation on finite words. The first candidate is the right
congruence, which identifies two finite words u,u ′ ∈ Σ∗ if

∀v ∈ Σω uv ∈ L ⇔ u ′v ∈ L.

This right congruence does not characterise the ω-regular
languages, although it does have some use, for example in
automata learning [1]. There could be finitely many equiv-
alence classes despite a language not being ω-regular. For
example, every prefix independent language will have one
equivalence class of right congruence, but there are prefix
independent languages which are not ω-regular, such as

{w(anb)ω : w ∈ {a,b}∗ and n is prime}.

By induction on formula size one can show that if L has a
right congruence of finite index, then the same is true for
every language definable in mso+L; which shows that right
congruences will not be useful for our main result. Similar
problems arise for the two-sided version of right congruence.

A more useful congruence for ω-words uses two-sided
environments and ω-iteration; this leads to the Arnold con-
gruence [2, Section 2], which identifies u,u ′ if

∧

{
∀w ∈ Σ∗ ∀v ∈ Σω wuv ∈ L ⇔ wu ′v ∈ L

∀w,v ∈ Σ∗ w(uv)ω ∈ L ⇔ w(u ′v)ω ∈ L.

The Arnold congruence still does not characterise the ω-
regular languages. For example, the language U is not ω-
regular, but it has two equivalence classes under Arnold
congruence: words which contain b, and words which do
not contain b.
Fortunately, there is a successful characterisation of ω-

regular languages via congruences. This characterisation is
stated below, and it corresponds to ω-semigroups.

Theorem 3.1. [27, Theorem 7.5] A language L ⊆ Σω is ω-
regular if and only if there is an equivalence relation ∼ which
has finite index and satisfies the following conditions for all
sequences of finite words ui :( ∧

i ∈{1,2}
ui ∼ u ′

i

)
⇒ u1u2 ∼ u ′

1u
′
2 (1)(∧

i ∈N

ui ∼ u ′
i

)
⇒

(
u1u2 · · · ∈ L ⇔ u ′

1u
′
2 · · · ∈ L

)
(2)

We use the nameω-congruence for an equivalence relation
that satisfies conditions (1) and (2) in the above theorem.
We use the above theorem in our main result. Although
promising, the characterisation in terms of ω-congruences
has one important drawback, namely non-uniqueness. For
the right congruence, the defining property

∀v ∈ Σω uv ∈ L ⇔ u ′v ∈ L.

gives a unique equivalence relation, and hence it makes sense
to speak of the right congruence. A similar property holds
for the Arnold congruence. The uniqueness of the definition
of right congruence, and the fact that its definition can be
formalised using rational relations, is what drives the proof
of Theorem 2.1.
In contrast, there is no uniqueness in Theorem 3.1, and

there cannot be. A languagemight not have a unique coarsest
ω-congruence (such an equivalence relation is called the
syntacticω-congruence). An example is the languageU , see [7,
Running Example 2]. For ω-regular languages, the syntactic
ω-congruence exists and coincides with Arnold congruence,
see [27, Proposition 8.8], but this is not very helpful in our
setting, since we want to study congruences for languages
that are not ω-regular. These are issues that we will need to
overcome in the proof of our main result.
We finish this section with a simple observation, which

says that condition (1) in Theorem 3.1 is superfluous. This
observation will be useful later on, since condition (2) will
be easier to formalise.
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Lemma 3.2. If there is an equivalence relation of finite index
which satisfies (2), then there is an equivalence relation of finite
index which satisfies both (1) and (2).

Proof. Induction on the number of equivalence classes in
the equivalence relation, call it ∼. In the base case, when
∼ has one equivalence class, condition (1) holds vacuously.
Consider the induction step. For this proof, it is easier to
work with the following equivalent form of (1):

u ∼ u ′ ⇒ (uw ∼ u ′w) ∧ (wu ∼ wu ′).

If ∼ satisfies the above implication, then we are already done.
Otherwise, choose a violation of the implication, i.e. words
u ∼ u ′ which do not satisfy the conclusion of the implica-
tion. Assume uw ≁ u ′w (the case wu ≁ wu ′ is analogous).
Define ≈ to be the equivalence relation obtained from ∼ by
merging the equivalence classes of uw and u ′w . We claim
that ≈ still satisfies condition (2), and therefore the induction
assumption can be applied. We visualize (2) as follows:

u0 u1 u2 · · · ∈ L

u ′
0 u ′

1 u ′
2 · · · ∈ L

≈ ≈ ≈ ≈ ⇔

By definition of ≈ and assumption (2) for ∼, we can replace
every un in the equivalence class of uw by uw and every
un in the equivalence class of u ′w by u ′w , without affecting
membership in L. Therefore we can assume without loss of
generality that every un is either uw , or u ′w , or a word that
is ∼-equivalent to neither of these. The same can be done for
u ′
n . By definition of ≈, ifun = uw thenu ′

n has to be one ofuw
oru ′w . We can now split eachun = uw into two wordsu and
w , likewise for un = u ′w , and then use again the assumption
that ∼ satisfies (2) to finish the proof. □

4 Proof of the main theorem
In this section we prove Theorem 1.4. We will prove that for
a language L that has a neutral letter, and is not definable in
mso, mso+L contains the languageU , and therefore undecid-
ability follows thanks to the results about the logic mso+u.
To explain howU can be defined, we use a game called the
congruence game. This game is played by two players called
Spoiler and Duplicator, and it is parameterised by anω-word
u ∈ {a,b}ω . The congruence game is designed so that player
Duplicator wins if and only if u ∈ U , which means that u
has a-labelled intervals of unbounded size. This is achieved
as follows. Roughly speaking, the goal of player Duplicator
is to show that from the perspective of the language L, each
finite wordw ∈ Σ∗ is equivalent to some word v ∈ Σ∗ which
can fit infinitely often into a-labelled intervals in the word
u. Since the language L is not ω-regular, Duplicator needs
intervals of unbounded size to win.
Define an interval to be a finite connected subset of ω,

i.e. it contains all positions between its first and last position.
IfW ,V are intervals, then wewriteW < V if the last position
ofW is strictly before the first position of V .

Definition 4.1 (Congruence Game). The congruence game
for u ∈ {a,b}ω is the following game played by two players,
called Spoiler and Duplicator.

1. Spoiler chooses an infinite family W of pairwise dis-
joint intervals.

2. Duplicator chooses intervals

W1 < V1 <W2 < V2 < · · ·

such thatW1,W2, . . . are from W and V1,V2, . . . con-
tain only positions with label a in the word u.

3. Spoiler chooses words

w1,w2, . . . ∈ Σ∗

such that |wi | < |Wi | for every i ∈ {1, 2, . . .}.
4. Duplicator chooses words

v1,v2, . . . ∈ Σ∗

such that |vi | < |Vi | for every i ∈ {1, 2, . . .}.
5. Spoiler chooses a sequence of natural numbers

i1 < i2 < · · · .

6. Duplicator wins the game if and only if:

wi1wi2wi3 · · · ∈ L ⇔ vi1vi2vi3 · · · ∈ L.

The key result about the congruence game is the following
lemma. The lemma does not use the assumption that L has
a neutral letter; this assumption will be used later when
formalising the congruence game in mso+L.

Lemma 4.2. Assume that L ⊆ Σω is not ω-regular. Then

Duplicator wins the congruence game for u ⇔ u ∈ U .

Proof.
(⇐) Assume u ∈ U . We will show a winning strategy for

player Duplicator. Suppose that player Spoiler has chosen
a family W in round 1. Since u ∈ U , intervals with only
a-labelled positions have unbounded size, and therefore in
round 2, player Duplicator can choose the intervals so that
|Vi | ≥ |Wi | for all i . For every choice of words wi made by
player Spoiler in round 3, Duplicator’s response in round
4 is to choose the words vi so that vi = wi for all i . This
guarantees victory for Duplicator, regardless of Spoiler’s
move in round 5.
(⇒) Assume u < U . We will show a winning strategy

for player Spoiler. In round 1, Spoiler picks W so that the
lengths of the intervals tend to infinity, i.e. no size appears
infinitely often. LetWi andVi be the intervals that are chosen
in round 2 by player Duplicator. By choice ofW, the lengths
of the intervalsWi tend to infinity, while by assumption that
u < U , the lengths of the intervals Vi are bounded. In round
3, Spoiler chooses the wordswi so that every word from Σ∗

appears infinitely often. This can be done because the lengths
of the intervalsWi tend to infinity. Suppose that Duplicator
chooses some words vi in round 4. Since the intervals Vi
have bounded size, the words vi chosen by Duplicator come
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from a finite set F ⊆ Σ∗. This means that for everyw ∈ Σ∗,
there is some v ∈ Σ∗ such that infinitely often wi = w and
vi = v . Choose some function

f : Σ∗ → F

which realises the dependencyw 7→ v , i.e. for everyw ∈ Σ∗,

w = wi and f (w) = vi for infinitely many i . (3)

Apply Lemma 3.2 with∼ being the kernel of f , i.e. the equiva-
lence relation that identifies two words if they have the same
image under f . Since L is not ω-regular, then by Lemma 3.2
there must be a violation of (2), i.e. there must be words
u1,u2, . . . such that

u1u2 · · · ∈ L ⇍⇒ f (u1)f (u2) · · · ∈ L. (4)

By (3), in Round 5, Spoiler can choose the indices i1 < i2 <
· · · so that

un = win f (un) = f (vin ) for all n ∈ {1, 2, . . .}

and therefore win thanks to (4). □

The following corollary, and undecidability of the logic
mso+u, complete the proof of Theorem 1.4.

Corollary 4.3. If L ⊆ Σω is not ω-regular and has a neutral
letter, then mso+u ⊆ mso+L.

Proof. By [8, Theorem 1.3], it is enough to show that the lan-
guageU is definable in mso+L. By Lemma 4.2, it is enough to
show that mso+L can express that Duplicator has a winning
strategy in the congruence game.
A family of disjoint intervals is represented by two sets

of positions: the set X of leftmost positions in the intervals,
and the set Y of rightmost positions in the intervals. The
condition that all intervals are disjoint means that

∀x1, x2 ∈ X x1 < x2 ⇒ ∃y ∈ Y x1 ≤ y < x2.

Using this representation, the choices of intervals in rounds
1 and 2 can be represented by set quantification, with choices
of player Duplicator using existential quantifiers and choices
of player Spoiler using universal quantifiers. The wordswi
chosen in round 3 are represented by colouring the intervals
Wi with letters from Σ; and using the neutral letter for po-
sitions not in the intervalsWi . The same goes for round 4.
The subsequence in round 5 is represented by a subset of
leftmost positions in the intervalsWi . The winning condi-
tion in round 6 is checked by using the predicate for L, and
using the neutral letter for positions not belonging to the
subsequence of round 5. □

5 Boolean closed full trios
We finish with a corollary of our main theorem, which is an
analog of Theorem 2.1 for infinite words: if a Boolean-closed
full trio of languages of infinite words contains at least one
non-regular language, then it includes the entire arithmetic
hierarchy, subject to a certain representation.

As mentioned in the introduction, a language of ω-words
is definable in mso+L if and only if it belongs to the smallest
class of languages that contains L, contains all ω-regular
languages, is closed under Boolean combinations, as well
as images and inverse images under letter-to-letter homo-
morphisms. If we lift the restriction on homomorphisms
being letter-to-letter, then we get a Boolean-closed full trio,
as discussed below.
When applying a homomorphism that may erase some

letters, anω-word can be mapped to a finite word. Therefore,
in the presence of such homomorphisms, it makes sense to
consider languages of words of length ≤ ω, i.e. words which
are either finite or ω-words. For such words, define a regular
language to be a union of two languages: a regular language
of finite words, plus a regular language of ω-words. Define a
homomorphism for words of length ≤ ω to be a function

h : Σ≤ω → Γ≤ω

which is obtained by applying to each letter a function of
type Σ → Γ∗.

Theorem5.1. LetL be a class of languages of words of length
at most ≤ ω which is closed under:

1. images under homomorphisms; and
2. inverse images under homomorphisms; and
3. intersections with regular languages.

If L is additionally Boolean-closed (closed under union and
complementation) and it contains at least one non-regular
language, then for every L ⊆ Σ∗ in the arithmetic hierarchy,

{wvω : w ∈ Σ∗,v ∈ L}︸                       ︷︷                       ︸
loop representation of L

∈ L.

Proof. By closure under inverse images of homomorphisms
and under intersection with Σ∗ and Σω for any Σ, if L con-
tains some non-regular language, then it contains some non-
regular ω-language with a neutral letter. By Corollary 4.3, L
contains all languages definable inmso+u. By [9, Lemma 3.2],
for every recursively enumerable language L ⊆ Σ∗, the logic
mso+u defines some ω-language K , over an alphabet ex-
tended with a neutral letter, such that

loop representation of L = h(K),

where h is the homomorphism that eliminates the neutral let-
ter. Since L is closed under homomorphic images, it follows
that L contains the loop representations of all recursive enu-
merable languages. For the arithmetic hierarchy, it is enough
to observe that the class

{L ⊆ Σ∗ : L contains the loop representation of L}

is closed under Boolean combinations and homomorphic
images. □

In contrast to the finite word setting, we cannot conclude
that L contains L itself: Standard arguments show that if a
language K ⊆ Σ≤ω has a finite-index right congruence, then
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every language obtained fromK using Boolean combinations
and full trio operations also has a finite-index right congru-
ence. Thus, for example, if we start with U , all obtainable
languages over finite words are regular.
One could also consider Boolean closed full trios of ω-

languages. Then, homomorphisms would be defined by func-
tions of type Σ → Γ∗ and the (inverse) image of a homomor-
phism on a subset of Σω would contain only those resulting
words that are infinite. For this notion of (inverse) image,
Theorem 5.1 follows with essentially the same proof.
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