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Abstract
Translocator Protein (18 kDa) (TSPO) is a mitochondrial transmembrane protein commonly used as a biomarker for neuro-
inflammation and is also a potential therapeutic target in neurodegenerative diseases. Despite intensive research efforts, the 
function of TSPO is still largely enigmatic. Deciphering TSPO structure in the native lipid environment is essential to gain 
insight into its cellular activities and to design improved diagnostic and therapeutic ligands. Here, we discuss the influence 
of lipid composition on the structure of mammalian TSPO embedded into lipid bilayers on the basis of solid-state NMR 
experiments. We further highlight that cholesterol can influence both the tertiary and quaternary TSPO structure and also 
influence TSPO localization in mitochondria-associated endoplasmic reticulum membranes.
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Abbreviations
NMR  Nuclear magnetic resonance
TSPO  Translocator protein—18 kDa
mTSPO  Mouse TSPO
CRAC   Cholesterol recognition amino acid consensus
DAA1106  N‐ (2,5‐Dimethoxybenzyl)‐N‐ (5‐fluoro‐2‐

phenoxyphenyl)acetamide
PET  Positron emission tomography
HAB  High-affinity binders
MAB  Heterozygous mixed-affinity binders
LAB  Low-affinity binders
DMPC  1,2-Dimyristoyl-sn-glycero-3-phosphocholine
TM  Transmembrane
PC  Phosphatidyl-choline

PE  Phosphatidyl-ethanolamine
PI  Phosphatidyl-inositol
PS  Phosphatidyl-serine
PIP2  Phosphatidylinositol 4,5-bisphosphate
SM  Sphingomyelin
VDAC  Voltage-dependent anion channel
MAM  Mitochondria-associated endoplasmic reticu-

lum membranes

Introduction

Translocator Protein (18 kDa) (TSPO), initially identified 
and named as a peripheral benzodiazepine receptor, is a 
transmembrane protein mainly located in the outer mito-
chondrial membrane (Anholt et al. 1986; McEnery et al. 
1992). The protein has been renamed as 18-kDa transloca-
tor protein (TSPO) to better reflect its cellular activities and 
tissue distribution (Papadopoulos 2006). TSPO is present in 
most peripheral organs (e.g., adrenal glands, lungs and heart) 
and is also expressed in microglial cells in the healthy brain, 
but is especially abundant in steroidogenic tissues (Banati 
2002). In several neurological diseases, TSPO is markedly 
upregulated in microglia and astrocytes (Gui et al. 2020; 
Martín 2010; Wilms 2003). As a result, TSPO became one 
of the most used biomarkers for imaging of neuroinflam-
mation using positron emission tomography (PET) (Wilms 
2003; Schain and Kreisl 2017).
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Over the years, a large number of TSPO PET radio-
ligands have been synthesized to improve our knowl-
edge regarding the role of neuroinflammation in central 
nervous system diseases and to assess the efficacy of 
novel anti-inflammatory therapeutic strategies. A com-
mon drawback of all TSPO radioligands is their sensi-
tivity to a single-nucleotide polymorphism (rs6971) that 
results in an amino-acid substitution on the target pro-
tein: A147T-TSPO (Guo 2013; Owen 2012; Kreisl 2013). 
This polymorphism generates three genotypes: homozy-
gous high-affinity binders (HABs), heterozygous mixed-
affinity binders (MABs), and homozygous low-affinity 
binders (LABs) (Owen 2010,2011). LABs are rare and 
make up 9% of Caucasians, 6% of African Americans and 
0.001% Han Chinese and  Japanese9. Excluding LABs is 
important in clinical studies because brain uptake of the 
radioligands is too low to be quantified. Recently, two 
third-generation TSPO radioligands:  [11C]-ER176 and 
 [18F]-GE180 showed improved detection of TSPO signals 
in LABs.  [11C]-ER176, a quinazoline analog of PK11195, 
was identified to bind TSPO across all rs6971 genotypes 
in membranes prepared from human brain tissue (Fujita 
2017; Ikawa 2017; Boutin 2015). This radioligand has an 
improved lipophilicity (LogD decreased from 3.97 to 3.55) 
and increased the accuracy of quantification (Fujita 2017). 
 [18F]-GE180, a tricyclic indole compound, has exhibited 
higher signal-to-noise ratios than  [11C]PK11195 in pre-
clinical models of stroke and Alzheimer’s diseases (Boutin 
2015; Chaney 2019; Sridharan 2017; Liu 2015; López-
Picón 2018). In healthy human controls,  [18F]GE-180 has 
low brain penetration (Sridharan 2019; Zanotti-Fregonara 
2018; Feeney 2016; Fan 2016); whereas, a markedly 
increased uptake of  [18F]GE-180 was observed in lesions 
of patients, which have HAB, MAB and LAB genotype, 
with multiple sclerosis (Unterrainer 2018a; Vomacka 
2017) or glioma (Albert 2017; Unterrainer 2018b, 2019). 
The validity of  [18F]GE-180 for TSPO imaging is debated, 
as the origin of this increased signal is uncertain (Albert 
2019; Zanotti-Fregonara 2019).

Despite its extensive use as a target in imaging studies, 
TSPO function is not well understood. TSPO was long 
considered to play an important role in the translocation 
of cholesterol through the mitochondrial membrane and 
thus execute a critical step in steroidogenesis (Costa et al. 
2018; Fan et al. 2015). However, the direct role of TSPO in 
neurosteroidogenesis has been challenged by the develop-
ment of TSPO knockout mouse models (Costa et al. 2018; 
Papadopoulos et al. 2018; Banati 2014). At the same time, 
TSPO genetic deletion and PET imaging studies in various 
disease models highlighted that TSPO is involved in cellu-
lar bioenergetics, associated mitochondrial functions such 
as redox homeostasis and apoptosis, and also plays a role 

in innate immune processes of microglia (Repalli 2015; 
Mukhin et al. 1989; Betlazar et al. 2020; Gut et al. 2015).

TSPO ligands have also been shown to have neuropro-
tective properties in various animal models of neurodegen-
eration (Jung 2020; Arbo et al. 2015). Ro5-4864 was found 
to attenuate the accumulation of amyloid-beta plaques and 
decrease microglial activation in a mouse model for Alzhei-
mer’s disease. This was accompanied by improved behavior 
and cognition (Barron 2013). Administration of Emapunil 
(XBD173), on the other hand, ameliorated microgliosis and 
neuroinflammation in the MPTP mouse model for Parkin-
son’s disease, and protected against neuronal loss in the sub-
stantia nigra, dopamine depletion, and motor deficits (Gong 
2019). Treatment with XBD173 (or Etifoxine) also improved 
clinical and neuropathological features in rodent models 
of multiple sclerosis through inhibition of inflammation, 
elevation of neurosteroids and prevention of demyelination 
(Bader 2019; Daugherty 2013; Leva 2017), and prevented 
microglial reactivity after injury in a mouse model of retinal 
degeneration (Scholz 2015; Akhtar-Schäfer et al. 2018). The 
preclinical studies indicate that TSPO is a potential target to 
delay neurodegenerative disease by the regulation of neuro-
inflammation, apoptosis, and steroidogenesis (Repalli 2015; 
Arbo et al. 2015; Bader 2019).

Decrypting the structure of TSPO in lipid bilayers is 
essential to understand its biological role and to design 
ligands for diagnostic and therapeutic applications. So far, 
the structure of TSPO from mouse (mTSPO) and from bac-
terial homologues—all solubilized in detergent—has been 
resolved by NMR spectroscopy and X-Ray crystallography 
(Jaremko et al. 2014,2015a,b; Guo 2015; Li et al. 2015; Xia 
2019). Here, we describe solid-state NMR studies of mTSPO 
embedded into lipid bilayers, to gain insights into the lipid- 
and ligand-dependent structure of mammalian TSPO in a 
near-native environment.

Materials and methods

NMR sample preparation

Expression and purification of 13C/15N-labeled mTSPO 
were performed as described previously (Jaremko et al. 
2014; Lacapère 2001). To obtain liposomes with homoge-
neous lipid composition and distribution, we dissolved the 
lipids in a glass vial in chloroform/methanol = 1/1 (v/v). 
The organic solvent was removed by a constant nitrogen 
stream followed by lyophilization. The resulting lipid film 
was dissolved in TSPO buffer by repeated sonication in a 
water bath. The resulting liposomes (prepared with either 
1,2-dinervonoyl-sn-glycero-3-phosphocholine; 24:1 (cis) 
PC 850,399 Avanti) or sarcolemma lipid mix (34.7% 18:1 
PC, 16.6% 18:1 PE, 2.3% 18:0 PI, 2.3% 18:1 PS, 1% 18:1 
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PIP2, 9.1% 18:0 SM, 31.9% Chol), percentage in molar 
ratio) were incubated with the foscholine-12-solubilized 
protein at a protein/lipid molar ratio of 1:20 for two hours 
at room temperature. After removal of the detergent with 
biobeads (BioRad), liposomes were pelleted by centrifuga-
tion at 125.000×g. The liposome pellet was washed with 
10 mM sodium phosphate pH 6.0, pelleted and transferred 
into an NMR rotor.

Solid‑state NMR spectroscopy

NMR samples contained ~ 12–15 mg of protein packed in a 
3.2 mm rotor with DSS for temperature calibration. Solid-
state NMR experiments were recorded either on a 850 MHz 
wide-bore spectrometer equipped with 3.2 mm triple-res-
onance probe (Bruker Biospin) or on a 950 MHz Bruker 
Avance III HD standard-bore spectrometer equipped with a 
3.2 mm (1H, 13C, 15 N)  Efree triple-resonance probe (Bruker 
Biospin). The (2D) 13C–1H dipolar-assisted rotational 
resonance experiments (Takegoshi et al. 2001,2003) were 
recorded at 5 °C and 35 °C with a mixing time of 20 ms. 
The following 90° pulse widths were used: 2.5 μs for 1H, and 
4.5 μs for 13C. 1H decoupling strengths were 80–100 kHz. 

Spectra were processed in Topspin (Bruker) and analyzed 
with CcpNmr-Analysis (Stevens 2011).

Results and discussion

Interaction of cholesterol with mTSPO

The structure, dynamics and function of membrane proteins 
are influenced by their lipid environment (Palsdottir and 
Hunte 2004). Hence, to gain insight into the activity of TSPO 
and its interaction with ligands it is crucial to study its con-
formation in the near-native environment of lipid bilayers. 
Solid-state NMR in combination with computational analy-
sis suggested that mouse TSPO (mTSPO) reconstituted into 
liposomes and in dodecyl-phosphocholine detergent micelles 
fold into a bundle of five transmembrane helices (Jaremko 
et al. 2015a) (Fig. 1a). In these NMR studies, mTSPO is 
structurally stabilized through binding of high-affinity radio-
ligands: PK11195 (Jaremko et al. 2015a,2016; Murail, et al. 
1778) or DA1106 (Jaipuria 2017). While mTSPO is mono-
meric in detergent systems (Jaremko et al. 2015a,2016), a 
fraction of mTSPO associates into oligomeric species in 
lipids (Jaipuria 2017; Teboul 2012). High-resolution solid-
state NMR further revealed that mTSPO bound to DA1106 

Fig. 1  The structure of membrane-embedded TSPO. mTSPO amino 
acid sequence highlighting the location of its five transmembrane hel-
ices (a). Structural model of the mTSPO monomer–dimer equilibrium 

in DMPC bilayer membrane (b). DMPC lipids represented in stick, 
PK11195 in red spheres and mTSPO displayed in black cartoon rep-
resentation
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exists in a dynamic monomer/dimer equilibrium in DMPC 
liposomes (Fig. 1b). The monomer/dimer equilibrium is con-
centration dependent, is mediated by the 83GxxxG87 motif in 
the transmembrane helix TM-III, and inhibited in the G87V 
mutant of mTSPO (Jaipuria 2017). Cholesterol, known to 
bind mammalian TSPO with nanomolar affinity (Lacapère 
2001), influences mTSPO oligomerization by shifting the 
equilibrium towards the monomeric form (Jaipuria 2017). 
In addition, binding of cholesterol to the CRAC (cholesterol 
recognition amino acid consensus) motif of mTSPO (Jamin 
2005) induces distal structural changes on helix TM-III, that 
might be a consequence of the transition from the dimeric to 
the monomeric form (Jaipuria 2017; Jaipuria et al. 2018a). 
Although details of these structural changes are unknown, 
they might involve changes in TM helix orientation, espe-
cially helices TM-II and TM-V (Jaipuria 2017). Interest-
ingly, cholesterol binding is not restricted to the CRAC 
motif, as demonstrated using paramagnetic cholesterol 
analogs (Jaipuria et al. 2018a): paramagnetic broadening in 
the spectra of wild type and G87V-mTSPO suggested that 
cholesterol binds to an additional site in monomeric mTSPO 
(Jaipuria et al. 2018a). This site is located on helix TM-III 
and, thus, not available in dimeric mTSPO, where TM-III 
is buried in the dimer interface. Thereby, depending on the 
local protein and cholesterol concentration, the GxxxG motif 
of mammalian TSPO will be available to interact with cho-
lesterol or other outer mitochondrial membrane proteins and, 
thus, can influence TSPO activity.

Solid‑state NMR spectroscopy of mTSPO in different 
lipid environments

mTSPO reconstituted in either detergent or 1,2-dimyristoyl-
sn-glycero-3-phosphocholine (DMPC) liposomes displays 
broad NMR lines when no high-affinity ligand is bound 
(Xia 2019; Murail et al. 1778; Jaipuria 2017; Jaremko et al. 
2015c). The broad NMR lines suggest the presence of inter-
nal dynamics and/or exchange between multiple conforma-
tions that is intermediate on the NMR time scale. The struc-
tural flexibility might arise from a hydrophobic mismatch 
between mTSPO and the DMPC lipid bilayer. To minimize 
hydrophobic mismatch, adaptations in the membrane protein 
can occur including tilting of TM helices or/and rotation of 
side chains at the ends of TM helices (Lee 2003).

To increase the membrane thickness and, thus, potentially 
stabilize TSPO’s TM helices, we reconstituted mTSPO into 
1,2-dinervonoyl-sn-glycero-3-phosphocholine (24:1 PC). 
With a chain length of 24 carbons, 24:1 PC achieves a 
hydrocarbon region thickness of 37.5 ± 1 Å and a molecular 
surface area of 67.7 ± 1.9 Å2 (Lewis and Engelman 1983). 
We also reconstituted mTSPO in a sarcolemma lipid mix-
ture (34.7% 18:1 PC, 16.6% 18:1 PE, 2.3% 18:0 PI, 2.3% 
18:1 PS, 1% 18:1 PIP2, 9.1% 18:0 SM, 31.9% Chol), to 

investigate the influence of anionic lipids on the mTSPO 
structure. 13C–13C correlation spectra of mTSPO were 
recorded at 35 °C and 5 °C and compared to previous results 
(Jaipuria 2017), in which mTSPO had been reconstituted 
into DMPC:cholesterol (20:10 molar ratio).

13C–13C correlation spectra recorded at 5 °C for mTSPO 
bound to DA1106 displayed a large number of defined NMR 
signals (Fig. 2a). In contrast, the same spectra recorded for 
mTSPO reconstituted into 24:1 PC (Fig. 2c), or sarcolemma 
lipid mixture (Fig. 2d), displayed mostly unresolved cross 
peaks, suggesting the presence of multiple mTSPO confor-
mations. Further comparison with the spectra of mTSPO in 
DMPC:cholesterol (Fig. 2b), showed that the use of 24:1 
PC (Fig. 2c) slightly narrowed the NMR lines, pointing to 
a partial stabilization of the mTSPO structure in 24:1 PC.

Next, we recorded the 13C–13C correlation spectra at 
35 °C (Fig. 3), i.e., above the phase transition of 24:1 PC, 
which occurs at ~ 24 °C (Lewis and Engelman 1983). While 
the NMR cross peaks are still broad when compared to those 
of mTSPO in complex with DAA1106 (Fig. 2a), the reso-
lution slightly improved when compared to the spectra at 
5 °C (Fig. 3a when compared to Fig. 2c). Similar to the 
spectra recorded at 5 °C, the 13C–13C correlation spectrum 
of mTSPO in the sarcolemma lipid mixture (Fig. 3b) was 
of lower quality when compared to mTSPO in 24:1: PC 
(Fig. 3a). One possible reason for the lower spectral quality 
in the sarcolemma lipid mixture is that the anionic lipids 
modulate the conformational exchange in mTSPO.

Taken together, the analysis reinforces our previous 
observations that mTSPO in complex with a high affinity 
ligand is most suitable for high-resolution NMR studies. In 
addition, the variation in the quality of the NMR spectra 
of mTSPO in different lipid bilayers stresses the potential 
influence of the lipid environment on the structure and, thus, 
activity of mammalian TSPO.

Lipid composition influences mTSPO structure 
and dynamics

The current results together with previous data show that 
the lipid composition influences the structure and dynam-
ics of membrane-embedded mTSPO. mTSPO reconstituted 
into DMPC liposomes exchanges between a monomeric 
and dimeric structure. This equilibrium depends on both 
the protein and cholesterol concentration (Jaipuria 2017). 
Cholesterol binds to mTSPO, promotes dissociation of the 
mTSPO dimer and causes structural changes (Jaipuria et al. 
2018a). Notably, cholesterol regulates the formation of 
mitochondria-associated endoplasmic reticulum membranes 
(MAMs), which are sites of close proximity between the 
endoplasmic reticulum and mitochondria (Fujimoto et al. 
2012; Aufschnaiter 2017; Area-Gomez and Schon 2016). 
Bilayers deficient in these raft-like microdomains are linked 
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Fig. 2  13C–13C correlation spectra of membrane-embedded mTSPO 
at 5  °C. a, b 13C–13C PDSD spectrum of mTSPO reconstituted into 
DMPC-cholesterol liposomes in the presence (a) or absence (b) of 
N‐ (2,5‐dimethoxybenzyl)‐N‐ (5‐fluoro‐2‐phenoxyphenyl)acetamide 
(DAA1106); protein:DMPC:cholesterol molar ratios of 1:20:10. 

Spectra were recorded with a spinning speed of 11  kHz (Jaipuria 
2017). c, d 13C–13C DARR spectra of mTSPO reconstituted into 24:1 
PC (c), and into a sarcolemma lipid mixture (d). To visualize the 
NMR linewidth, peaks framed in blue were enlarged and a 1D hori-
zontal projection of these is displayed

Fig. 3  13C–13C DARR correlation spectra of mTSPO reconstituted into 24:1 PC (a), and into a sarcolemma lipid mixture (b), at 35 °C. To visu-
alize the NMR linewidth, peaks framed in blue were enlarged and a 1D horizontal projection of these is displayed
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to neurodegenerative diseases by contributing to mitochon-
drial dysfunction and subsequent neuronal decay (Auf-
schnaiter 2017; Area-Gomez and Schon 2016; Szymański 
2017). MAMs incorporate a distinct set of proteins including 
among others VDAC, inositol 1,4,5-trisphosphate receptor, 
grp75, Mfn2 (Aufschnaiter 2017; Stoica 2014) and TSPO 
(D’Eletto 2018). VDAC and TSPO have been shown to 
interact directly with each other to regulate both mitochon-
drial structure and function (Gatliff 2015; Shoshan-Barmatz 
et al. 2019).

The conformational heterogeneity of mTSPO is also pre-
sent when the protein is reconstituted—in the absence of 
a high-affinity ligand—into 24:1 PC or into a sarcolemma 
lipid mixture (Figs. 2, 3). Increasing the membrane thickness 
using 24:1 PC lipids slightly decreased the conformational 
heterogeneity when compared to DMPC or the sarcolemma 
lipid mixture (Fig. 3). The lipid composition of sarcolemma 
shows features in common with MAMs, such as high con-
tent in PC, cholesterol and sphingolipid. Nevertheless, the 
lower quality of the spectra of mTSPO in the sarcolemma 
lipid mixture when compared to mTSPO reconstituted into 
DMPC/cholesterol liposomes suggests that the mTSPO 
structure is less stable in the sarcolemma lipid mixture. 
This surprising result might be explained by the presence 
of anionic lipids such as PE, PI, PS, PIP2. Further studies 
of mTSPO embedded into MAM lipids will be needed to 
understand both direct and indirect (e.g., changes in mem-
brane fluidity and thickness) effects of lipids on the structure 
and dynamics of mammalian TSPO.

Conclusions

Cholesterol is an important regulator of TSPO structure 
as well as the TSPO and VDAC co-localization in mito-
chondria-associated membranes. Solid-state NMR provided 
unique insights into the tertiary and quaternary structure of 
membrane-embedded mTSPO and its interaction with cho-
lesterol (Jaipuria 2017; Jaipuria et al. 2018a,b). Future stud-
ies are required in order to fully characterize the interaction 
of cholesterol with mammalian TSPO and its impact on the 
orientation and dynamics of TSPO’s transmembrane heli-
ces. In addition, atomic-scale insight into the VDAC/TSPO 
complex embedded into MAM lipids is urgently required. 
We believe that solid-state NMR will play a critical role in 
these studies, because of its unique ability to investigate pro-
tein structures in native-like membranes and to probe both 
rigid and flexible protein structures. Moreover, the recent 
advancements in solid-state NMR instrumentation and radi-
ofrequency pulse sequences have significantly enhanced the 
sensitivity and resolution of solid-state NMR experiments 
(Mandala et al. 2018), empowering the study of large mem-
brane-embedded protein complexes.
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