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Abstract: In this paper, a class of nonlinear driftless control-affine systems satisfying the
bracket generating condition is considered. A gradient-free optimization algorithm is developed
for the minimization of a cost function along the trajectories of the controlled system.
The algorithm comprises an approximation scheme with fast oscillating controls for the
nonholonomic dynamics and a model-free extremum seeking component with respect to the
output measurements. Exponential convergence of the trajectories to an arbitrary neighborhood
of the optimal point is established under suitable assumptions on time scale parameters of the
extended system. The proposed algorithm is tested numerically with the Brockett integrator for
different choices of generating functions.
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1. INTRODUCTION

Extremum seeking theory aims at designing universal con-
trol algorithms which steer the trajectories of dynamical
systems with uncertainties to the minimum (or maximum)
of a cost function whose analytical representation may be
partially or completely unknown. The first results in this
direction date back to the twenties of the last century,
while the first thorough analysis of the stability properties
of extremum seeking systems has been carried out only
in the early 2000s, cf. Krstić and Wang (2000). Since
then, many new extremum seeking algorithms and their
applications have been developed (see, e.g., Krstić and
Ariyur (2003); Tan et al. (2006); Nešić et al. (2010); Fu and

Özgüner (2011); Liu and Krstić (2012); Dürr et al. (2013b);
Haring et al. (2013); Guay and Dochain (2015); Benosman
(2016); Grushkovskaya and Ebenbauer (2016); Ebenbauer
et al. (2017); Poveda and Teel (2017); Scheinker and Krstić
(2017); Suttner and Dashkovskiy (2017); Grushkovskaya
et al. (2018); Guay and Atta (2018); Labar et al. (2019);
Mandić et al. (2019)). A special place in these extremum
seeking studies is given to nonlinear systems with dynamic
input-output maps of the form

ẋ = f(x, ξ), x ∈ Rn, ξ ∈ Rm, f : Rn × Rm → Rn,

y = h(x, ξ), y ∈ Rp, h : Rn × Rm → Rp.
(1)

The classical extremum seeking problem statement for sys-
tem (1) is to define the input ξ in such a way that the out-
put of system (1) is optimized in the sense of minimization
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(or maximization) of an output-dependent cost function
J : Rp → R. In this direction one can mention, e.g., the
papers by Krstić andWang (2000); Tan et al. (2006); Ghaf-
fari et al. (2012); Guay and Dochain (2015); Haring and
Johansen (2017); Dürr et al. (2017); Guay and Atta (2018).
Typically, extremum seeking approaches for (1) are based

on the construction of a dynamic extension ξ̇ = g
(
J(y), t

)
,

where g : R× [0,∞) → Rm is chosen to ensure the desired
vicinity of the trajectories of (1) to an optimal point.
The analysis of the resulting system relies on singular
perturbation theory and requires that system (1) admits
a steady-state x = �(ξ), which is asymptotically stable for
each fixed value of ξ. Furthermore, a crucial assumption in
such studies is the existence of certain Lyapunov function
for system (1). However, there are many important classes
of systems which do not admit a control Lyapunov function
with desired properties.
In this paper, we consider a class of nonholonomic sys-
tems governed by driftless control-affine systems, in which
the number of inputs can be significantly smaller than
the number of state variables. In general, the lineariza-
tion of these systems is not controllable. Moreover, as
it was proved in the famous work by Brockett (1983),
such nonholonomic systems cannot be stabilized by a
continuous feedback law. To stabilize such systems one
can use, e.g., discontinuous (e.g., Astolfi (1994); Clarke
et al. (1997)) or time-varying feedback laws (e.g., Zuyev
(2016); Grushkovskaya and Zuyev (2018)). Consequently,
the resulting closed-loop system becomes discontinuous or
non-autonomous and, in general, does not admit a regular
Lyapunov function of the form V (x).
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Mandić et al. (2019)). A special place in these extremum
seeking studies is given to nonlinear systems with dynamic
input-output maps of the form
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papers by Krstić andWang (2000); Tan et al. (2006); Ghaf-
fari et al. (2012); Guay and Dochain (2015); Haring and
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1. INTRODUCTION

Extremum seeking theory aims at designing universal con-
trol algorithms which steer the trajectories of dynamical
systems with uncertainties to the minimum (or maximum)
of a cost function whose analytical representation may be
partially or completely unknown. The first results in this
direction date back to the twenties of the last century,
while the first thorough analysis of the stability properties
of extremum seeking systems has been carried out only
in the early 2000s, cf. Krstić and Wang (2000). Since
then, many new extremum seeking algorithms and their
applications have been developed (see, e.g., Krstić and
Ariyur (2003); Tan et al. (2006); Nešić et al. (2010); Fu and

Özgüner (2011); Liu and Krstić (2012); Dürr et al. (2013b);
Haring et al. (2013); Guay and Dochain (2015); Benosman
(2016); Grushkovskaya and Ebenbauer (2016); Ebenbauer
et al. (2017); Poveda and Teel (2017); Scheinker and Krstić
(2017); Suttner and Dashkovskiy (2017); Grushkovskaya
et al. (2018); Guay and Atta (2018); Labar et al. (2019);
Mandić et al. (2019)). A special place in these extremum
seeking studies is given to nonlinear systems with dynamic
input-output maps of the form

ẋ = f(x, ξ), x ∈ Rn, ξ ∈ Rm, f : Rn × Rm → Rn,

y = h(x, ξ), y ∈ Rp, h : Rn × Rm → Rp.
(1)

The classical extremum seeking problem statement for sys-
tem (1) is to define the input ξ in such a way that the out-
put of system (1) is optimized in the sense of minimization
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(or maximization) of an output-dependent cost function
J : Rp → R. In this direction one can mention, e.g., the
papers by Krstić andWang (2000); Tan et al. (2006); Ghaf-
fari et al. (2012); Guay and Dochain (2015); Haring and
Johansen (2017); Dürr et al. (2017); Guay and Atta (2018).
Typically, extremum seeking approaches for (1) are based

on the construction of a dynamic extension ξ̇ = g
(
J(y), t

)
,

where g : R× [0,∞) → Rm is chosen to ensure the desired
vicinity of the trajectories of (1) to an optimal point.
The analysis of the resulting system relies on singular
perturbation theory and requires that system (1) admits
a steady-state x = �(ξ), which is asymptotically stable for
each fixed value of ξ. Furthermore, a crucial assumption in
such studies is the existence of certain Lyapunov function
for system (1). However, there are many important classes
of systems which do not admit a control Lyapunov function
with desired properties.
In this paper, we consider a class of nonholonomic sys-
tems governed by driftless control-affine systems, in which
the number of inputs can be significantly smaller than
the number of state variables. In general, the lineariza-
tion of these systems is not controllable. Moreover, as
it was proved in the famous work by Brockett (1983),
such nonholonomic systems cannot be stabilized by a
continuous feedback law. To stabilize such systems one
can use, e.g., discontinuous (e.g., Astolfi (1994); Clarke
et al. (1997)) or time-varying feedback laws (e.g., Zuyev
(2016); Grushkovskaya and Zuyev (2018)). Consequently,
the resulting closed-loop system becomes discontinuous or
non-autonomous and, in general, does not admit a regular
Lyapunov function of the form V (x).
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ẋ = f(x, ξ), x ∈ Rn, ξ ∈ Rm, f : Rn × Rm → Rn,

y = h(x, ξ), y ∈ Rp, h : Rn × Rm → Rp.
(1)

The classical extremum seeking problem statement for sys-
tem (1) is to define the input ξ in such a way that the out-
put of system (1) is optimized in the sense of minimization

� This work was supported in part by the German Research Foun-
dation (projects GR 5293/1-1 and ZU 359/2-1).

(or maximization) of an output-dependent cost function
J : Rp → R. In this direction one can mention, e.g., the
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Ariyur (2003); Tan et al. (2006); Nešić et al. (2010); Fu and
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(2017); Suttner and Dashkovskiy (2017); Grushkovskaya
et al. (2018); Guay and Atta (2018); Labar et al. (2019);
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1. INTRODUCTION

Extremum seeking theory aims at designing universal con-
trol algorithms which steer the trajectories of dynamical
systems with uncertainties to the minimum (or maximum)
of a cost function whose analytical representation may be
partially or completely unknown. The first results in this
direction date back to the twenties of the last century,
while the first thorough analysis of the stability properties
of extremum seeking systems has been carried out only
in the early 2000s, cf. Krstić and Wang (2000). Since
then, many new extremum seeking algorithms and their
applications have been developed (see, e.g., Krstić and
Ariyur (2003); Tan et al. (2006); Nešić et al. (2010); Fu and

Özgüner (2011); Liu and Krstić (2012); Dürr et al. (2013b);
Haring et al. (2013); Guay and Dochain (2015); Benosman
(2016); Grushkovskaya and Ebenbauer (2016); Ebenbauer
et al. (2017); Poveda and Teel (2017); Scheinker and Krstić
(2017); Suttner and Dashkovskiy (2017); Grushkovskaya
et al. (2018); Guay and Atta (2018); Labar et al. (2019);
Mandić et al. (2019)). A special place in these extremum
seeking studies is given to nonlinear systems with dynamic
input-output maps of the form

ẋ = f(x, ξ), x ∈ Rn, ξ ∈ Rm, f : Rn × Rm → Rn,

y = h(x, ξ), y ∈ Rp, h : Rn × Rm → Rp.
(1)

The classical extremum seeking problem statement for sys-
tem (1) is to define the input ξ in such a way that the out-
put of system (1) is optimized in the sense of minimization

� This work was supported in part by the German Research Foun-
dation (projects GR 5293/1-1 and ZU 359/2-1).

(or maximization) of an output-dependent cost function
J : Rp → R. In this direction one can mention, e.g., the
papers by Krstić andWang (2000); Tan et al. (2006); Ghaf-
fari et al. (2012); Guay and Dochain (2015); Haring and
Johansen (2017); Dürr et al. (2017); Guay and Atta (2018).
Typically, extremum seeking approaches for (1) are based

on the construction of a dynamic extension ξ̇ = g
(
J(y), t

)
,

where g : R× [0,∞) → Rm is chosen to ensure the desired
vicinity of the trajectories of (1) to an optimal point.
The analysis of the resulting system relies on singular
perturbation theory and requires that system (1) admits
a steady-state x = �(ξ), which is asymptotically stable for
each fixed value of ξ. Furthermore, a crucial assumption in
such studies is the existence of certain Lyapunov function
for system (1). However, there are many important classes
of systems which do not admit a control Lyapunov function
with desired properties.
In this paper, we consider a class of nonholonomic sys-
tems governed by driftless control-affine systems, in which
the number of inputs can be significantly smaller than
the number of state variables. In general, the lineariza-
tion of these systems is not controllable. Moreover, as
it was proved in the famous work by Brockett (1983),
such nonholonomic systems cannot be stabilized by a
continuous feedback law. To stabilize such systems one
can use, e.g., discontinuous (e.g., Astolfi (1994); Clarke
et al. (1997)) or time-varying feedback laws (e.g., Zuyev
(2016); Grushkovskaya and Zuyev (2018)). Consequently,
the resulting closed-loop system becomes discontinuous or
non-autonomous and, in general, does not admit a regular
Lyapunov function of the form V (x).
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where g : R× [0,∞) → Rm is chosen to ensure the desired
vicinity of the trajectories of (1) to an optimal point.
The analysis of the resulting system relies on singular
perturbation theory and requires that system (1) admits
a steady-state x = �(ξ), which is asymptotically stable for
each fixed value of ξ. Furthermore, a crucial assumption in
such studies is the existence of certain Lyapunov function
for system (1). However, there are many important classes
of systems which do not admit a control Lyapunov function
with desired properties.
In this paper, we consider a class of nonholonomic sys-
tems governed by driftless control-affine systems, in which
the number of inputs can be significantly smaller than
the number of state variables. In general, the lineariza-
tion of these systems is not controllable. Moreover, as
it was proved in the famous work by Brockett (1983),
such nonholonomic systems cannot be stabilized by a
continuous feedback law. To stabilize such systems one
can use, e.g., discontinuous (e.g., Astolfi (1994); Clarke
et al. (1997)) or time-varying feedback laws (e.g., Zuyev
(2016); Grushkovskaya and Zuyev (2018)). Consequently,
the resulting closed-loop system becomes discontinuous or
non-autonomous and, in general, does not admit a regular
Lyapunov function of the form V (x).

The goal of our paper is to construct extremum seeking
controls for a class of nonholonomic systems with time-
varying inputs adapted from Grushkovskaya and Zuyev
(2018). We propose a novel solution of the extremum
seeking problem for nonholonomic systems based on com-
bination of stabilizing strategies for nonholonomic systems
and gradient-free extremum seeking controllers. Although
the main idea of our control design approach is inspired
by singular perturbation techniques, we do not apply them
directly in the proof. Instead, we propose a novel approach
for dynamic stabilization of nonholonomic systems and
generalize the techniques introduced in Grushkovskaya
et al. (2018) to systems with multiple time scales.
The rest of this paper is organized as follows. In Section 2,
we introduce basic notations, formulate the problem state-
ment, and describe the main idea of our control design
approach. Section 3 provides the main results of the pa-
per, which are illustrated with an example in Section 4.
Section 5 contains concluding remarks. Some auxiliary
statements are given in Appendix A, and the proof of the
main result is contained in Appendix B.

2. PRELIMINARIES

2.1 Notations and Definitions : δij is the Kronecker delta;
dist(x, S) is the Euclidian distance between an x ∈ Rn and
an S ⊂ Rn; Bδ(x

∗) is a δ-neighborhood of an x∗ ∈ Rn;
∂M , M is the boundary and the closure of a set M ⊂ Rn,
respectively; M = M ∪ ∂M ; |S| is the cardinality of
a set S; K is the class of continuous strictly increasing
functions ϕ : R+ → R+ such that ϕ(0) = 0; [f, g](x)
is the Lie bracket of vector fields f, g : Rn → Rn at
a point x ∈ Rn, [f, g](x) = Lfg(x) − Lgf(x), where

Lgf(x) = lims→0
f(x+sg(x))−f(x)

s .

Similarly to Clarke et al. (1997); Zuyev (2016), we exploit
the sampling approach for the stabilization of nonholo-
nomic systems. Given an ε>0, we define the partition πε of
[0,+∞) into the intervals Ij=[tj , tj+1), tj=εj, j∈N∪{0}.
Definition 1. Assume given a feedback u = ϕ(x, ξ, t),
ϕ : D ×D × [0,+∞) → Rm, ε > 0, and x0, ξ0 ∈ D ⊆ Rn.
A πε-solution of the system

ẋ = f(x, u), ξ̇ = g(x, ξ, t), x, ξ ∈ D ⊆ Rn, u ∈ Rm, (2)

corresponding to (x0, ξ0, ϕ), is an absolutely continuous
function (x�(t), ξ�(t))� ∈ D×D, defined for t ∈ [0,+∞),
which satisfies the initial conditions x(0) = x0, ξ(0) = ξ0

and the differential equations

ẋ(t) = f
(
x(t), ϕ(x(tj), ξ(tj), t)

)
, t ∈ Ij = [tj , tj+1),

ξ̇(t) = g(x(t), ξ(t), t) for each j = 0, 1, 2, . . . .

The above definition will be applied for the stabilization of
nonholonomic systems using the approach of Zuyev (2016);
Grushkovskaya and Zuyev (2018). However, the extremum
seeking scheme proposed in this paper can also be used for
output stabilization of systems with well-defined classical
solutions.

2.2 Problem statement & Main idea. Consider a class of
nonholonomic systems governed by driftless control-affine
equations with single output:

ẋ =

m∑
i=1

uifi(x), y = J(x), (3)

where x=(x1, . . . , xn)
�∈D⊆Rn is the state, x(0)=x0∈D,

u = (u1, . . . , um)� ∈ Rm is the control, m < n, y ∈ R is
the output of the system, J : D → R is the cost function,
and the vector fields fi : D → Rn are linearly independent.
Let the following rank condition be satisfied in D:

span
{
fi(x), [fj1 , fj2 ](x) | i∈S1, (j1, j2)∈S2

}
=Rn, (4)

where S1 ⊆ {1, 2, ...,m} and S2 ⊆ {1, 2, ...,m}2 are some
sets of indices, |S1| + |S2| = n. We study the following
extremum seeking problem:

Problem 1. Let J ∈ C2(D;R) be a strongly convex func-
tion, and let x∗ ∈ D be such that J(x) > J(x∗) for all
x ∈ D \ {x∗}. The goal is to construct a control law u =
u(t, x, J(x)) such that the trajectories x(t) of system (3)
with the initial conditions from D tend asymptotically to
an arbitrary small neighborhood of x∗.

The main idea of the control algorithm proposed in this
paper can be described in two stages:
(1) Model-based stabilizing component. For each value
ξ ∈ D, we construct time-periodic fast oscillating control
laws with state-dependent coefficients to ensure that the
corresponding steady-state x = ξ of (3) is asymptotically
(and even exponentially) stable. Further we assume that
ξ(t) evolves according to certain differential equations,
so the result of Zuyev (2016); Grushkovskaya and Zuyev
(2018) cannot be directly applied for establishing stability
properties of the extended system (2). Note that, in
general, (3) does not admit a control Lyapunov function.
Instead, we will prove that with the proposed choice of
the control u the trajectory x(t) remains in a sufficiently
small neighborhood of ξ(t) for t∈[0,∞). These controls are
model-based, i.e. the dynamics (control vector fields) and
the coordinates of the system are assumed to be known,
but not the analytical expression of J and the optimal
point x∗. We will apply sampling controllers, that is the
solutions of (3) will be defined in the sense of Definition 1.
(2) Model-free extremum seeking component. To optimize
the state x = ξ with respect to minimizing the cost
function J(x) along the trajectories of (3), we construct

a dynamic extension ξ̇ = g(y, t), where g(y, t) is taken in
the form of fast oscillating time-periodic functions with
output-dependent coefficients from (Grushkovskaya et al.
(2018)). Thus, this part of the controller is model-free.

Remark 1. In Problem 1, we assume that the cost function J
depends only on the state variable x, but not on the control input u.
This assumption is not crucial and is made in order to simplify the
proof. Besides, if J depends only on u, the stability properties directly
follow from (Grushkovskaya et al. (2018)) and (Grushkovskaya and
Zuyev (2018)) with the same proof techniques.

3. MAIN RESULTS

3.1 Control design. In this section, we formalize the
control algorithm announced in Subsection 2.2. Namely,
the overall system has the following form:

ẋ=

m∑
i=1

uifi(x), ui=ϕε
i (x, ξ, t), y=J(x), x(0)=x0, (5a)

ξ̇=g(y, t), g(y, t)=

2n∑
j=1

gj(y)v
µ
j (t)ej , ξ(0)=x0. (5b)

In (5a), the stabilizing component ui = ϕε
i (x, ξ, t) is
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ϕε
i (x, ξ, t)=

∑
i1∈S1

ai1 (x, ξ)δii1+

√
4π

ε

∑
(i1,i2)∈S2

√
κi1i2 |ai1i2 (x, ξ)|

×
(
δii1sign(ai1,i2 (x, ξ)) cos

2πκi1i2

ε
t+ δii2 sin

2πκi1i2

ε
t

)
. (6)

Here κi1i2 ∈ N, κi1i2 �= κi3i4 for all (i1, i2) �= (i3, i4), and

a(x, ξ) =
(
(ai1(x, ξ))i1∈S1

(ai1i2(x, ξ))(i1,i2)∈S2

)�
∈ Rn is

defined as
a(x, ξ) = −γ1F−1(x)(x− ξ) (7)

with F−1(x) being the n× n matrix inverse to

F(x) =
((

fj1(x)
)
j1∈S1

(
[fj1 , fj2 ](x)

)
(j1,j2)∈S2

)
,

and the control gain γ1>0 to be defined later in the proof
of the main result. Such a choice of ui is aimed to ensure
that the trajectories x(t) are close enough to ξ(t) for all
t ≥ 0 and all initial conditions x(0). Note that the rank
condition (4) implies nonsingularity of F(x) for any x ∈ D.
In (5b), g(y, t) is the extremum seeking component. Here
ej denotes the unit vector in Rn with non-zero j-th entry
if j ≤ n, and non-zero (j − n)-th entry if n+ 1 ≤ j ≤ 2n,
the functions gj , gj+n have to satisfy the relation

[gj(z), gj+n(z)] = −γ2, γ2 > 0, j = 1, n.

For example, the choice gj+n(z) = −γ2gj(z)
∫

dz
gj(z)2

was

proposed in (Grushkovskaya et al. (2018)). In this paper,
we propose to parameterize the functions gj , gj+n as

gj(z) = rj(z) sinφj(z), gj+n(z) = rj(z) cosφj(z),

with rj , φj such that r2j (z)φ
′
j(z) ≡ γ2.

(8)

The discrete-time version of the above parametrization has
also been used by Feiling et al. (2019).

Next, the inputs vµj (t) are given by

vµj (t) =




√
4πkj

µ
cos

2πkjt

µ
for j = 1, n,

√
4πkj−n

µ
sin

2πkj−nt

µ
for j = n+ 1, 2n,

where µ > 0, kj ∈ N, kj1 �= kj2 for all j1 �= j2.

Remark 2. Although the choice of gj , gj+n in (8) may look rather
artificial, there are many extremum seeking systems whose control
vector fields satisfy this relation. For example, the functions gj(z) =
z, gj+n(z) = 1 have been exploited by Dürr et al. (2013a); Dürr et al.
(2017); gj(z) = sin z, gj+n(z) = cos z by Scheinker and Krstić
(2017); gj(z) =

√
z sin(ln z), gj+n(z) =

√
z cos(ln z) by Suttner

and Dashkovskiy (2017); gj(z) =

√
1−e−z

1+ez
sin(ez + 2 ln(ez − 1)),

gj+n(z) =

√
1−e−z

1+ez
cos(ez + 2 ln(ez − 1)) by Grushkovskaya et al.

(2018). One more example will be given in Section 4.

3.2 Stability conditions. Assume that the cost function
J ∈ C2(D;R) satisfies the following properties in D:

σ11‖x− x∗‖2 ≤ J(x)− J∗ ≤ σ12‖x− x∗‖2, (9)

σ21(J(x)− J∗) ≤ ‖∇J(x)‖2 ≤ σ22(J(x)− J∗),

∥∥∥∂2J(x)

∂x2

∥∥∥ ≤ σ3,

with x∗ ∈ D and some positive constants σ11, σ12, σ21,
σ22, σ3. The main result of this paper is as follows.

Theorem 1. Given system (3) and a function J∈C2(D;R)
satisfying (9), assume that:
– the vector fields fi∈C2(D;Rn) in (3) satisfy (4) in D,
and there is an α>0 such that ‖F−1(x)‖≤α for all x∈D;

– gj(J(·)) ∈ C2(D\{x∗};R), Lgjgi(J(·)), LglLgjgi(J(·)) ∈
C(D;R) for all i, j, l = 1, 2n;
– for any compact D′ ⊆ D, there are Lg, L2g,M3g ≥ 0 s.t.

‖gi
(
J(x)

)
− gi

(
J(ξ)

)
‖ ≤ Lg‖x− ξ‖,

‖L(
gj2 (J(x))−gj2 (J(ξ))

)gj1
(
J(ξ)

)
‖ ≤ L2g‖x− ξ‖,

‖Lgj3 (J(x))Lgj2 (J(ξ))gj1
(
J(ξ)

)
‖ ≤ M3g , x, ξ ∈ D′, i, j, l = 1, 2n.

Then, for any δ∈
(
0,
√

σ11/σ12dist(x
∗, ∂D)

)
and any ρ>0,

there exist µ̄ > 0, γ̄1(µ) > 0, and ε̄(γ1, µ) > 0 such that, for
any µ ∈ (0, µ̄], γ1 ∈ [γ̄1(µ),∞), and any ε ∈ (0, ε̄(γ1, µ)],
each πε solution of (5) with ui = ϕε

i (x, ξ, t) defined by (6)

and the initial conditions from Bδ(x∗) satisfies

‖x(t)− x∗‖ ≤ β‖x0 − x∗‖e−λt + ρ for all t ∈ [0,∞), (10)

with some β, λ > 0.

The proof of this theorem is given in Appendix B.
Remark 3. The proof of Theorem 1 represents a constructive
procedure for choosing µ̄, γ̄1(µ), ε̄(γ1, µ), and clarifies the relation
between these parameters and the coefficients β and λ. We would
like to underline that the proposed bounds are quite conservative.
The crucial assumption is ε < µ, which means that subsystem (5a)
oscillates faster than subsystem (5b). To simplify the proof, we also
suppose that µ

ε
∈ N and x(0) = ξ(0), however the assertion of

Theorem 1 can also be obtained without these assumptions.

In order to have γ1 independent on µ, one may introduce
an additional parameter η which will ensure a “slow”
dynamics of (5b) (similarly to, e.g., Dürr et al. (2017)).
This, however, will result in a slower convergence rate of
the overall system to the optimal point. Namely, by taking

ṽµj (t) := 1
η v

µ
j

(
t
η

)
in (5b) and keeping the conditions of

Theorem 1, one can prove the following statement:

For any δ ∈
(
0,
√

σ11
σ12

dist(x∗, ∂D)

)
and any ρ > 0, there exist

µ̄ > 0, ε̄(µ) > 0, and η̄(ε, µ) > 0 such that, for any µ ∈ (0, µ̄],

ε ∈ (0, ε̄(µ)] and η ∈ [η̄(ε, µ),∞), each πε-solution of (5) with

ui = ϕε
i (x, ξ, t) defined by (6) and the initial conditions from Bδ(x∗)

satisfies ‖x(t)−x∗‖≤β‖x0−x∗‖e−
λt
η +ρ for all t ∈ [0,∞), β, λ > 0.

Similarly to Grushkovskaya et al. (2018), the behavior of
the solutions of (3) can be improved by generating gj
vanishing at x∗. We will illustrate this feature with an
example in the next section.

4. EXAMPLE

As an example, consider the well-known Brockett integra-
tor (Brockett (1983)):

ẋ1 = u1, ẋ2 = u2, ẋ3 = u1x2 − u2x1. (11)

It is easy to see that, for all x ∈ R3, the vector fields
f1 = (1, 0, x2)

� and f2 = (0, 1,−x1)
� of system (11) sat-

isfy the rank condition (4) with S1 = {1, 2}, S2 = {(1, 2)}:
span

{
f1(x), f2(x), [f1, f2](x)

}
=R3 for all x ∈ R3; thus,

we may apply the control algorithm proposed in Sec-
tion 3.1. Namely, we take

u1=a1(x, ξ) +

√
4πκ12

∣∣a12(x)
∣∣/ε sign

(
a12(x, ξ)

)
cos(2πκ12t/ε),

u2=a2(x, ξ) +

√
4πκ12

∣∣a12(x)
∣∣/ε sin(2πκ12t/ε), (12)

a(x, ξ)=
(
a1(x, ξ), a2(x, ξ), a12(x, ξ)

)�
=−γ1F−1(x)(x−ξ)

= −γ1

(
x1−ξ1, x2−ξ2,

1
2

(
−x2ξ1+x1ξ2−x3+ξ3

)�)
,
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ai1 (x, ξ)δii1+

√
4π

ε
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√
κi1i2 |ai1i2 (x, ξ)|

×
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δii1sign(ai1,i2 (x, ξ)) cos

2πκi1i2

ε
t+ δii2 sin

2πκi1i2

ε
t

)
. (6)
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also been used by Feiling et al. (2019).

Next, the inputs vµj (t) are given by

vµj (t) =




√
4πkj

µ
cos

2πkjt

µ
for j = 1, n,

√
4πkj−n

µ
sin

2πkj−nt

µ
for j = n+ 1, 2n,

where µ > 0, kj ∈ N, kj1 �= kj2 for all j1 �= j2.

Remark 2. Although the choice of gj , gj+n in (8) may look rather
artificial, there are many extremum seeking systems whose control
vector fields satisfy this relation. For example, the functions gj(z) =
z, gj+n(z) = 1 have been exploited by Dürr et al. (2013a); Dürr et al.
(2017); gj(z) = sin z, gj+n(z) = cos z by Scheinker and Krstić
(2017); gj(z) =

√
z sin(ln z), gj+n(z) =

√
z cos(ln z) by Suttner

and Dashkovskiy (2017); gj(z) =

√
1−e−z

1+ez
sin(ez + 2 ln(ez − 1)),

gj+n(z) =

√
1−e−z

1+ez
cos(ez + 2 ln(ez − 1)) by Grushkovskaya et al.

(2018). One more example will be given in Section 4.

3.2 Stability conditions. Assume that the cost function
J ∈ C2(D;R) satisfies the following properties in D:

σ11‖x− x∗‖2 ≤ J(x)− J∗ ≤ σ12‖x− x∗‖2, (9)

σ21(J(x)− J∗) ≤ ‖∇J(x)‖2 ≤ σ22(J(x)− J∗),

∥∥∥∂2J(x)

∂x2

∥∥∥ ≤ σ3,

with x∗ ∈ D and some positive constants σ11, σ12, σ21,
σ22, σ3. The main result of this paper is as follows.

Theorem 1. Given system (3) and a function J∈C2(D;R)
satisfying (9), assume that:
– the vector fields fi∈C2(D;Rn) in (3) satisfy (4) in D,
and there is an α>0 such that ‖F−1(x)‖≤α for all x∈D;

– gj(J(·)) ∈ C2(D\{x∗};R), Lgjgi(J(·)), LglLgjgi(J(·)) ∈
C(D;R) for all i, j, l = 1, 2n;
– for any compact D′ ⊆ D, there are Lg, L2g,M3g ≥ 0 s.t.

‖gi
(
J(x)

)
− gi

(
J(ξ)

)
‖ ≤ Lg‖x− ξ‖,

‖L(
gj2 (J(x))−gj2 (J(ξ))

)gj1
(
J(ξ)

)
‖ ≤ L2g‖x− ξ‖,

‖Lgj3 (J(x))Lgj2 (J(ξ))gj1
(
J(ξ)

)
‖ ≤ M3g , x, ξ ∈ D′, i, j, l = 1, 2n.

Then, for any δ∈
(
0,
√
σ11/σ12dist(x

∗, ∂D)
)
and any ρ>0,

there exist µ̄ > 0, γ̄1(µ) > 0, and ε̄(γ1, µ) > 0 such that, for
any µ ∈ (0, µ̄], γ1 ∈ [γ̄1(µ),∞), and any ε ∈ (0, ε̄(γ1, µ)],
each πε solution of (5) with ui = ϕε

i (x, ξ, t) defined by (6)

and the initial conditions from Bδ(x∗) satisfies

‖x(t)− x∗‖ ≤ β‖x0 − x∗‖e−λt + ρ for all t ∈ [0,∞), (10)

with some β, λ > 0.

The proof of this theorem is given in Appendix B.
Remark 3. The proof of Theorem 1 represents a constructive
procedure for choosing µ̄, γ̄1(µ), ε̄(γ1, µ), and clarifies the relation
between these parameters and the coefficients β and λ. We would
like to underline that the proposed bounds are quite conservative.
The crucial assumption is ε < µ, which means that subsystem (5a)
oscillates faster than subsystem (5b). To simplify the proof, we also
suppose that µ

ε
∈ N and x(0) = ξ(0), however the assertion of

Theorem 1 can also be obtained without these assumptions.

In order to have γ1 independent on µ, one may introduce
an additional parameter η which will ensure a “slow”
dynamics of (5b) (similarly to, e.g., Dürr et al. (2017)).
This, however, will result in a slower convergence rate of
the overall system to the optimal point. Namely, by taking

ṽµj (t) := 1
η v

µ
j

(
t
η

)
in (5b) and keeping the conditions of

Theorem 1, one can prove the following statement:

For any δ ∈
(
0,
√

σ11
σ12

dist(x∗, ∂D)

)
and any ρ > 0, there exist

µ̄ > 0, ε̄(µ) > 0, and η̄(ε, µ) > 0 such that, for any µ ∈ (0, µ̄],

ε ∈ (0, ε̄(µ)] and η ∈ [η̄(ε, µ),∞), each πε-solution of (5) with

ui = ϕε
i (x, ξ, t) defined by (6) and the initial conditions from Bδ(x∗)

satisfies ‖x(t)−x∗‖≤β‖x0−x∗‖e−
λt
η +ρ for all t ∈ [0,∞), β, λ > 0.

Similarly to Grushkovskaya et al. (2018), the behavior of
the solutions of (3) can be improved by generating gj
vanishing at x∗. We will illustrate this feature with an
example in the next section.

4. EXAMPLE

As an example, consider the well-known Brockett integra-
tor (Brockett (1983)):

ẋ1 = u1, ẋ2 = u2, ẋ3 = u1x2 − u2x1. (11)

It is easy to see that, for all x ∈ R3, the vector fields
f1 = (1, 0, x2)

� and f2 = (0, 1,−x1)
� of system (11) sat-

isfy the rank condition (4) with S1 = {1, 2}, S2 = {(1, 2)}:
span

{
f1(x), f2(x), [f1, f2](x)

}
=R3 for all x ∈ R3; thus,

we may apply the control algorithm proposed in Sec-
tion 3.1. Namely, we take

u1=a1(x, ξ) +

√
4πκ12

∣∣a12(x)
∣∣/ε sign

(
a12(x, ξ)

)
cos(2πκ12t/ε),

u2=a2(x, ξ) +

√
4πκ12

∣∣a12(x)
∣∣/ε sin(2πκ12t/ε), (12)

a(x, ξ)=
(
a1(x, ξ), a2(x, ξ), a12(x, ξ)

)�
=−γ1F−1(x)(x−ξ)

= −γ1

(
x1−ξ1, x2−ξ2,

1
2

(
−x2ξ1+x1ξ2−x3+ξ3

)�)
,

Fig. 1. Time-plots of the trajectories of system (11)–(13) with the generating functions (14) (left) and (15) (right).

ξ̇j =
√

4πkj/µ

(
g1(y) cos(2πkjt/µ) + g2(y) sin(2πkjt/µ)

)
ej , (13)

j = 1, 2, 3. In this example, we take y=J(x)=‖x‖2, γ1=20,
γ2=1, κ12=4, k1=1, k2=2, k3=3, and consider two types of
functions g1, g2. The results of numerical simulations with
the functions from Dürr et al. (2017),

g1(z) = z, g2(z) = 1, (14)

are depicted on Fig. 1 (left). Here ε = 0.1 and µ = 0.5.

To improve the qualitative behavior of (11)–(13), we can
apply another pair of the generating functions satisfy-
ing (8), which vanish when J takes its minimal value, e.g.,

g1(z)=
√

tanh z/2 sin
(
2 ln(ez−1)−z

)
, (15)

g2(z)=
√

tanh z/2 cos
(
2 ln(ez−1)−z

)
if z > 0, g1(0)=g2(0)=0.

In this case, we took ε=0.25, µ=1. Note that, unlike
the results of Grushkovskaya et al. (2018), the trajecto-
ries of (11)–(13) exhibit non-vanishing oscillations in a
neighborhood of the extremum point (which are, however,
considerably smaller than with the functions (14)) (see
Fig. 1, right). Thus, an interesting question is whether it
is possible to achieve asymptotic stability in the sense of
Lyapunov with the proposed control algorithm.

In both case, we take the initial conditions x(0) =
(1,−1, 1)�, ξ(0) = (−1, 1, 1)� to illustrate that the pro-
posed approach can be applied also for x0 �= ξ0.

5. CONCLUSIONS & FUTURE WORK

To simplify the presentation, we consider only the class
of nonholonomic systems (3) satisfying one-step bracket
generating condition in this paper, i.e. we assume that
the vector fields together with their Lie brackets span the
whole n-dimensional space at each state x ∈ D ⊆ Rn.
Another hypothesis is put in (9), so that the cost J pos-
sesses properties of a quadratic function. This hypothesis
is introduced in order not to overcomplicate the proof of
the main results. It should be emphasized that information
about the analytical expression of J and its minimizer x∗

is not required for the control design. Furthermore, all the
constants in (9) may also be unknown. In future work,
we expect to address broader classes of cost functions
possessing polynomial convergence properties, similarly
to the results of Grushkovskaya et al. (2018). We also
plan to extend the proposed control design approach to
nonholonomic systems under higher order controllability
conditions with iterated Lie brackets.
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Appendix A. AUXILIARY RESULTS

This section contains several technical results which be
used for the proof of Theorem 1.

Lemma 1. Let D⊆Rn, ξ(t)∈D, t ∈ [0, τ ], be a solution of

the system ξ̇ =
∑l

i=1 hi(ξ)wi(t), and let the vector fields hi

be Lipschitz continuous in D with the Lipschitz constant L.
Then ‖ξ(t)− ξ(0)‖ ≤ tνmax1≤i≤l ‖hi(ξ(0))‖eνLt, t∈[0, τ ],
with ν = max

t∈[0,τ ]

∑l
i=1 |wi(t)|.

Lemma 1 follows from the Grönwall—Bellman inequality.

Lemma 2. (Zuyev and Grushkovskaya (2017)). Let vector
fields hi be Lipschitz continuous in a domain D⊆Rn,
and hi∈C2(D\Ξ;R), where Ξ={ξ∈D:hi(ξ)=0 for 1≤i≤l},
and Lhj

hi, Lhl
Lhj

hi∈C(D;Rn) for all i, j, l = 1, l. If

ξ(t)∈D, t∈[0, τ ], is a solution of ξ̇=
∑l

i=1 hi(ξ)wi(t) with
u∈C([0, τ ];Rm) and x(0) = x0 ∈ D, then ξ(t) can be
represented by the Chen–Fliess series:

ξ(t)=ξ0+

l∑
i1=1

hi1 (ξ
0)

t∫

0

wi1 (v)dv+

l∑
i1,i2=1

Lhi2
hi1 (ξ

0)

×

t∫

0

v∫

0

wi1 (v)wi2 (s)dsdv +R(t), t ∈ [0, τ ],

(A.1)

R(t)=
l∑

i1,i2,i3=1

t∫
0

v∫
0

s∫
0

Lhi3
Lhi2

hi1 (ξ(p))wi1 (v)wi2 (s)wi3 (p)dpdsdv

is the remainder of the Chen–Fliess series expansion.

Lemma 3. (follows from Grushkovskaya et al. (2018)).
Let the conditions of Lemma 1 be satisfied and let ξ∗∈D.
Assume that there exist M1,M3≥0, m≥1, 
∈{0} ∪ [1,∞)
such that

max
1≤i1≤l

‖hi1 (ξ(0))‖ ≤ M1‖ξ(0)− ξ∗‖m,

max
1≤i1,i2,i3≤l

‖Lhi3
Lhi2

hi1 (ξ)‖ ≤ M3‖ξ − ξ∗‖� for all ξ ∈ D.

Then, for all t ∈ [0, τ ], the remainder R(t) of the Chen–
Fliess expansion (A.1) of x(t) satisfies the estimate

‖R(t)‖ ≤ 2�−2

3
(tν)3‖ξ(0)− ξ∗‖�M3

×
(
1 +M1(τν)

�eνL�τ‖ξ(0)− ξ∗‖�(m−1)
)
.

Lemma 4. (Grushkovskaya et al. (2018)). Let D ⊆ Rn

be a bounded convex domain, W ∈ C2(D;R), x∗ ∈ D, and
let the following inequalities hold:

σ11‖x− x∗‖2m ≤ W (x) ≤ γ12‖x− x∗‖2m,

σ21W (x)2−
1
m ≤ ‖∇W (x)‖2 ≤ σ22W (x)2−

1
m ,∥∥∥ ∂2W (x)

∂x2

∥∥∥ ≤ σ3W (x)1−
1
m ,

where m ≥ 1 and σ11, σ12, σ21, σ22, σ3 are positive con-
stants. Then, for any x0 = x(0) ∈ D \ {x∗} and any
function x : [0, ε] → D satisfying the conditions

x(0) = x0, x(ε) = x0 − γε∇W (x0) + rε, γ > 0, rε ∈ Rn,

the function W satisfies the estimate:

W (x(ε))≤W (x0)

(
1−

εκ1

m
W 1− 1

m (x0)+
ε2κ2

2m2
W 2− 2

m (x0)

)m

,

where κ1 = γσ21 −√
σ22‖rε‖W

1
2m

−1(x0)/ε, κ2 = ((m− 1)σ22 +

mσ12)

(
γ
√
σ22 + ‖rε‖W

1
2m

−1(x0)/ε

)2

.

Appendix B. PROOF OF THEOREM 1

For the sake of clarity, we divide the proof into several
steps resulting in intermediate statements.
Step 0. Notations and preliminary constructions. To prac-
tically stabilize system (5) at (0, x∗), we will focus on three
parameters: γ1, ε, and µ, assuming that ε < µ. In the
proof, we will determine big enough γ1 = γ1(µ), small
enough ε = ε(γ1, µ), and small enough µ. It can be seen
from the proof that such a choice is always possible. We
use the following notations in the proof: for any τ∈[0, ε],
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Appendix A. AUXILIARY RESULTS

This section contains several technical results which be
used for the proof of Theorem 1.

Lemma 1. Let D⊆Rn, ξ(t)∈D, t ∈ [0, τ ], be a solution of

the system ξ̇ =
∑l

i=1 hi(ξ)wi(t), and let the vector fields hi

be Lipschitz continuous in D with the Lipschitz constant L.
Then ‖ξ(t)− ξ(0)‖ ≤ tνmax1≤i≤l ‖hi(ξ(0))‖eνLt, t∈[0, τ ],
with ν = max

t∈[0,τ ]

∑l
i=1 |wi(t)|.

Lemma 1 follows from the Grönwall—Bellman inequality.

Lemma 2. (Zuyev and Grushkovskaya (2017)). Let vector
fields hi be Lipschitz continuous in a domain D⊆Rn,
and hi∈C2(D\Ξ;R), where Ξ={ξ∈D:hi(ξ)=0 for 1≤i≤l},
and Lhj

hi, Lhl
Lhj

hi∈C(D;Rn) for all i, j, l = 1, l. If

ξ(t)∈D, t∈[0, τ ], is a solution of ξ̇=
∑l

i=1 hi(ξ)wi(t) with
u∈C([0, τ ];Rm) and x(0) = x0 ∈ D, then ξ(t) can be
represented by the Chen–Fliess series:

ξ(t)=ξ0+

l∑
i1=1

hi1 (ξ
0)

t∫

0

wi1 (v)dv+

l∑
i1,i2=1

Lhi2
hi1 (ξ

0)

×

t∫

0

v∫

0

wi1 (v)wi2 (s)dsdv +R(t), t ∈ [0, τ ],

(A.1)

R(t)=
l∑

i1,i2,i3=1

t∫
0

v∫
0

s∫
0

Lhi3
Lhi2

hi1 (ξ(p))wi1 (v)wi2 (s)wi3 (p)dpdsdv

is the remainder of the Chen–Fliess series expansion.

Lemma 3. (follows from Grushkovskaya et al. (2018)).
Let the conditions of Lemma 1 be satisfied and let ξ∗∈D.
Assume that there exist M1,M3≥0, m≥1, 
∈{0} ∪ [1,∞)
such that

max
1≤i1≤l

‖hi1 (ξ(0))‖ ≤ M1‖ξ(0)− ξ∗‖m,

max
1≤i1,i2,i3≤l

‖Lhi3
Lhi2

hi1 (ξ)‖ ≤ M3‖ξ − ξ∗‖� for all ξ ∈ D.

Then, for all t ∈ [0, τ ], the remainder R(t) of the Chen–
Fliess expansion (A.1) of x(t) satisfies the estimate

‖R(t)‖ ≤ 2�−2

3
(tν)3‖ξ(0)− ξ∗‖�M3

×
(
1 +M1(τν)

�eνL�τ‖ξ(0)− ξ∗‖�(m−1)
)
.

Lemma 4. (Grushkovskaya et al. (2018)). Let D ⊆ Rn

be a bounded convex domain, W ∈ C2(D;R), x∗ ∈ D, and
let the following inequalities hold:

σ11‖x− x∗‖2m ≤ W (x) ≤ γ12‖x− x∗‖2m,

σ21W (x)2−
1
m ≤ ‖∇W (x)‖2 ≤ σ22W (x)2−

1
m ,∥∥∥ ∂2W (x)

∂x2

∥∥∥ ≤ σ3W (x)1−
1
m ,

where m ≥ 1 and σ11, σ12, σ21, σ22, σ3 are positive con-
stants. Then, for any x0 = x(0) ∈ D \ {x∗} and any
function x : [0, ε] → D satisfying the conditions

x(0) = x0, x(ε) = x0 − γε∇W (x0) + rε, γ > 0, rε ∈ Rn,

the function W satisfies the estimate:

W (x(ε))≤W (x0)

(
1−

εκ1

m
W 1− 1

m (x0)+
ε2κ2

2m2
W 2− 2

m (x0)

)m

,

where κ1 = γσ21 −√
σ22‖rε‖W

1
2m

−1(x0)/ε, κ2 = ((m− 1)σ22 +

mσ12)

(
γ
√
σ22 + ‖rε‖W

1
2m

−1(x0)/ε

)2

.

Appendix B. PROOF OF THEOREM 1

For the sake of clarity, we divide the proof into several
steps resulting in intermediate statements.
Step 0. Notations and preliminary constructions. To prac-
tically stabilize system (5) at (0, x∗), we will focus on three
parameters: γ1, ε, and µ, assuming that ε < µ. In the
proof, we will determine big enough γ1 = γ1(µ), small
enough ε = ε(γ1, µ), and small enough µ. It can be seen
from the proof that such a choice is always possible. We
use the following notations in the proof: for any τ∈[0, ε],

U(x(ε), ξ(ε), τ) = max
ε≤t≤ε+τ

m∑
i=1

|ϕε
i (x(ε), ξ(ε), t)|,

W (τ) = max
0≤t≤τ

2n∑
j=1

|vτj (t)| ≤
cw√
µ
, cw = 2

n∑
j=1

√
2πkj .

Recall that the state-dependent control coefficients are
defined by (7), which implies that, for any x(0) = x0 ∈ D,
ξ(0) = ξ0 ∈ D, ‖a(x0, ξ0)‖ ≤ γ1α‖x0 − ξ0‖. The Hölder
inequality implies that, for any ε > 0 and all τ ∈ [0, ε],

U(x0, ξ0, τ)ε ≤ ε
∑
i∈S1

|ai(x0, ξ0)|+ 2
√
2πε

×
∑

(i1,i2)∈S2

√
κi1i2 |ai1i2 (x0, ξ0)| ≤ cu

√
γ1ε‖x0 − ξ0‖,

(B.1)

cu =
√
α(
√

γ1αε‖x0 − ξ0‖|S1| + 2
√
2π)

(∑
(j1,j2)∈S2

κ
2/3
j1j2

)3/4

is strictly monotonically increasing w.r.t. ε. For any

δ∈
(
0,
√

σ11
σ12

dist(x∗, ∂D)

)
, let δx∈

(√
σ12
σ11

δ, dist(x∗, ∂D)

)
, and

let D′ be compact, Dx=Bδx(x
∗)⊂D′⊆D. If D is compact,

then we takeD′=D. By the conditions of Theorem 1, there
exist Mf ,Mg,M3g > 0 such that, for all x, ξ ∈ Dx,

‖fi(x)‖ ≤ Mf , ‖gj(J(x))‖ ≤ Mg , i = 1,m, j = 1, 2n (B.2)

‖Lfj1
fj2 (x)‖ ≤ M2f ,

∥∥Lfj3
Lfj2

fj1 (x)
∥∥ ≤ 6M3f , j1, j2, j3 = 1,m.

If (B.2) and inequalities from the fourth condition of
Theorem 1 hold globally in D, then we take D′ = D.
Step 1. At this step we construct some a priori estimates
which will be exploited further in the proof.
It is easy to see that the πε-solutions of system (5) satisfy

‖x(t)− x(0)‖ ≤ Mf cu
√

γ1ε‖x(0)− ξ(0)‖ for all t ∈ [0, ε]. (B.3)

Let ρ1>0 be given, ν=cwMg, ς>0, ρ0=ρ1µ
ς√µ/3,

δξ=δx+ν
√
µ, Dξ = Bδξ(x

∗), d = dist(x∗, ∂D′) − δx > 0,
and let µ0 be the smallest positive root of the equation

√
µ

(
2ρ1µ

ς/3 + ν

)
= d. (B.4)

Obviously, for any µ ∈ (0, µ0], ν
√
µ < d, so that δξ < δx+d

and Dξ ⊆ D′. We will also assume that

γ1 > γ̄1(µ) =
3ν

ρ1µς+1 . (B.5)

Such a choice of γ1 will be motivated in Step 2.
Next, we take

ε0(γ1, µ) =
1
γ1

min

{
1,

ρ1µ
ς√µ

3M2
f
c2u

}
, (B.6)

and observe that ε0(γ1, µ)≤ρ1µ
ς+1

3ν because of (B.5).
From (B.3) and (B.6) we obtain that, for each µ∈(0, µ0],
γ1∈(γ̄1,∞), ε∈(0, ε0(γ1, µ)], and for any x(0)∈Dx,

ξ(0)∈Bρ0
(x(0)), if ‖ξ(t)− ξ(0)‖ ≤ νε√

µ with t ∈ [0, ε] then

‖x(t)− x(0)‖ ≤ Mf cu
√

γ1ε‖x(0)− ξ(0)‖ ≤ Mf cu
√
γ1ερ0

≤ Mf cu

√
γ1ερ1µς√µ

3
≤ Mf cu

√
γ1ερ1µς√µ

3
≤

ρ1µς√µ

3
,

‖x(t)− ξ(t)‖ ≤ ‖x(t)− x0‖+ ‖x0 − ξ0‖+ ‖ξ(t)− ξ0‖

≤ Mf cu

√
γ1ερ1µς√µ

3
+

ρ1µς√µ

3
+

νε
√
µ

≤ ρ1µ
ς√µ.

If, additionally, ‖ξ0 − ξ∗‖ ∈ Dξ then

‖x(t)− x∗‖ ≤ ‖x(t)− x0‖+ ‖x0 − ξ0‖+ ‖ξ0 − ξ∗‖

≤
2ρ1µς√µ

3
+ δξ ≤ dist(x∗, ∂D′).

This proves the following intermediate statement.
Statement 1. For any µ ∈ (0, µ0], γ1 ∈ (γ̄1,∞), ε ∈ (0, ε0(γ1, µ)],
x0 ∈ Dx, the πε-solutions of system (5) with the initial conditions
x(0) = x0, ξ(0) = ξ0 satisfy the following property:

‖x0 − ξ0‖≤
ρ1µς√µ

3
⇒‖x(t)− ξ(t)‖≤ρ1µ

ς√µ for t ∈ [0, ε].

Furthermore, if ξ0 ∈ Dξ ⊆ D′ then x(t) is well-defined in D′ for
t ∈ [0, µ].

Step 2. Our next goal is to ensure that the x-component
of the πε solution of system (5) is in a sufficiently small
neighborhood of the ξ-component.
For this, we apply Lemma A.1. Namely, assume that
x(t) ∈ Dx for t ∈ [0, ε], ξ(0) = ξ0 ∈ Bρ1

(x0). Then

‖ξ(t)− ξ(0)‖ ≤
νε
√
µ
, (B.7)

and the πε-solution x(t) of system (5) with controls (6)
can be represented my means of the Chen–Fliess series:

x(ε) = x0 − εγ1(x
0 − ξ0) +R1(ε) +R2(x

0, ξ0, ε), (B.8)

where R1(ε) is defined from Lemma A.1, and

R2(x
0,ξ0, ε) = ε3/2

∑
j1∈S1

m∑
j2=1

[fj1 , fj2 ](x
0)aj1 (x

0, ξ0)

×
∑

q:(q,j2)∈S2

√
|aqj2 (x0, ξ0)|

πKqj2

+
ε2

2

∑
j1,j2∈S1

Lfj2
fj1 (x

0)aj1 (x
0, ξ0)aj2 (x

0, ξ0).

Denote R(x0, ξ0, ε) = R1(ε) + R2(x
0, ξ0, ε). Using (B.1)

and notations from (B.2), we get ‖R1(ε)‖ ≤ M3fc
3
u

(
ε‖x0−

ξ0‖
)3/2

for all t ∈ [0, ε], and

‖R(x0, ξ0, ε)‖ ≤ ζ1
(
ε‖x0 − ξ0‖

)3/2
, (B.9)

ζ1 = M3f c
3
u +

M2f

2

√
νςα(γ1α)3/2 + 2(γ1α)3/2M2f

√
|S1|

×
∑m

j1=1

(∑
(j2,j1)∈S2

κ
−2/3
j2j1

)3/4

. Combining (B.9), (B.7),

and (B.8), we come to the following estimate:

‖x(ε)− ξ(ε)‖ ≤ (1− εγ1)‖x0 − ξ0‖+ ζ1
(
ε‖x0 − ξ0‖

)3/2
+

νε
√
µ
.

For any γ1 > γ̄1, let λ1 ∈ [γ̄1, γ1) and define

ε1(γ1, µ) = min

{
ε0(µ),

(
γ1 − λ1

ζ1
√
δx

)2}
. (B.10)

Recall that ελ1 < εγ1 < 1. Then, for any ε ∈
(0, ε1(γ1, µ1)),

‖x(ε)− ξ(ε)‖ < (1− εγ̄1)‖x0 − ξ0‖+
νε
√
µ
.

Recall that γ̄1 is given by (B.5), which implies νε√
µ =

γ1ρ1µ
ς√µ

3 . This together with Statement 1 gives us the next
intermediate result.
Statement 2. Assume that x(t) ∈ D′ for all t ∈ [0, ε0], x(0) ∈ Dx.
Then, for any µ ∈ (0, µ0], γ1 ∈ (γ̄1,∞), ε ∈ (0, ε1(γ1, µ)], the
following properties hold:

if ‖x0 − ξ0‖ ≤
ρ1µς√µ

3
then ‖x(ε)− ξ(ε)‖ ≤

ρ1µς√µ

3
,

and ‖x(t)− ξ(t)‖ ≤ ρ1µ
ς√µ for all t ∈ [0, 2ε].

Step 3. Now let us put x(0) = x0 = ξ0 = ξ(0), x0 ∈ Dx.

Then x(t) ≡ x0 ∈ Dx for all t ∈ [0, ε], and

‖ξ(t)− ξ0‖ ≤ ‖ξ(t)− ξ0‖+ ‖ξ0 − ξ∗‖ ≤ ν
√
µ+ δx = δξ,



5398	 Victoria Grushkovskaya  et al. / IFAC PapersOnLine 53-2 (2020) 5392–5398

i.e. ξ(t) ∈ Dξ ⊂ D′ for t ∈ [0, ε]. Besides, Statement 2

implies ‖x(ε)− ξ(ε)‖ <
ρ1µ

ς√µ

3 .
From Statements 1 and 2, the x-component of the πε-
solution of system (5) is also well-defined in D′ for t ∈
[ε, 2ε]. Again, it is easy to see that ‖ξ(t) − ξ0‖ ≤ ν

√
µ +

δx for t ∈ [0, 2ε], i.e. ξ(2ε) ∈ Dξ and ‖x(2ε) − ξ(2ε)‖ <
ρ1µ

ς√µ

3 . Without loss of generality, we may assume that
µ
ε = N1, with some N1 ∈ N. Repeating Steps 1–2 until
t = N ε, we come to the following statement.
Statement 3. For any µ ∈ (0, µ0], γ1 ∈ (γ̄1,∞), ε ∈ (0, ε1(γ1, µ)],
the πε-solutions (x(t), ξ(t)) of system (5) with the initial conditions
x(0) = ξ(0) ∈ Dx are well-defined in D′×D′ for all t ∈ [0, (N1+1)ε],

‖x(t)− ξ(t)‖ ≤ ρ1µς√µ for all t ∈ [0, µ], ‖x(µ)− ξ(µ)‖ ≤ ρ1µ
ς√µ

3
.

Thus, for any µ ∈ (0, µ0], we can take γ1(µ), ε(γ1(µ), µ),
such that x(t), ξ(t) ∈ D′ for t ∈ [0, µ]. In the next steps,
we will find sufficiently small µ independently on ε and γ1.
Step 4. The goal of this step is to ensure the decay of the
cost function J(x) along the trajectories of system (5) by
choosing sufficiently small µ.
For this purpose we apply again Lemma A.1. Since
x(t), ξ(t) ∈ D′ for t ∈ [0, µ], we may consider the Chen–
Fliess series expansion of the ξ-component of solution of
system (5) on the interval [0, µ]:

ξ(µ) = ξ0 − µγ2∇J(ξ0) +R3(µ), (B.11)

where

R3(µ) =

2n∑
j=1

∫ µ

0

(
gj ◦ J(x(s1))−gj ◦ J(ξ(s1))

)
ejv

µ
j (s1)ds1

+

2n∑
j1,j2=1

∫ µ

0

∫ s1

0

L
ej2

(
gj2◦J(x(s2))−gj2◦J(ξ(s2))

)

× gj1 ◦ J(ξ(s2))ej1v
µ
j2
(s2)v

µ
j1
(s1)ds2ds1

+

2n∑
j1,j2,j3=1

∫ µ

0

∫ s1

0

∫ s2

0

vµj3 (s3)v
µ
j3
(s2)v

µ
j1
(s1)

× Lej3gj3◦J(x(s3))Lej2gj2◦J(ξ(s3))gj1 ◦ J(ξ(s3))ej1ds3ds2ds1.

Under the assumptions of Theorem 1, we conclude that

‖R3(µ)‖ ≤ cw
√
µ(Lg +

√
µL2gcw) max

0≤t≤µ
‖x(t)− ξ(t)‖+ µ3/2M3g .

Thus, applying Statement 3 we get ‖R3(µ)‖ ≤ ζ2µ
1+ς̃ ,

where ς̃ = min{ς, 1/2}, ζ2 = cwµ
max{0,ς−1/2}ρ1(Lg +√

µL2gcw) + µmax{0,1/2−ς}M3g.
Using Taylor’s formula for the function J(ξ),

J(ξ(t)) = J(ξ0) +∇J(ξ0)(ξ(t)− ξ0)

+
1

2

2n∑
i,j=1

∂2J(x)

∂xi∂xj

∣∣∣
x=ξ0+θξ(t)

(ξi − ξ0i )(ξj − ξ0j ),

and exploiting (9), we obtain

J(ξ(µ)) ≤ J(ξ0)− µγ2σ21J(ξ
0) + µ1+ςζ2

√
σ22J(ξ0)

+ σ3

(
µ2γ2

2σ
2
22J(ξ

0) + ζ22µ
2+2ς

)

= J(ξ0)

(
1− µγ2

(
σ21 − µγ2σ3σ

2
22

))

+ µ1+ςζ2

(√
σ22J(ξ0) + σ3ζ2µ

1+ς
)
.

Let Lc = {x ∈ D : J(x) ≤ c}, cJ = σ11δ
2
x. Then

Bδ(x∗) ⊆ LcJ ⊆ Dx. (B.12)

For any ρ2 ∈ (0, cJ ], λ2 ∈ (0, γ2σ21), we define

µ1 = min{µ0, 1/λ2, µ̂1}, (B.13)

where µ̂1 is the smallest positive root of the equation

ρ2µγ2σ3σ
2
22 + µςζ2

(√
σ22ρ2 + σ3ζ2µ

1+ς
)

= ρ2(γ2σ21 − λ2).

Then, for any µ ∈ (0, µ1), the following two scenarios are
possible:
S1) If J(ξ0)≤ρ2 then J(ξ(µ))≤ρ2(1 − µλ2)<ρ2. In this
case, ξ(µ) ∈ Dx, Additionally, Statement 3 implies that

‖x(µ)− ξ(µ)‖ ≤ ρ1µ
ς√µ

3 . Repeating the above argumenta-
tion, we get ξ(Nµ) ∈ Dx for all natural numbers N .
S2) If J(ξ0) > ρ2 then J(ξ(µ)) < J(ξ0)(1− µλ2) < J(ξ0).

Consider S2). If ξ0 = x0 ∈ Bδ(x∗) then ξ(µ) ∈ LcJ ⊆ Dx.

Again, Statement 3 gives ‖x(µ) − ξ(µ)‖ ≤ ρ1µ
ς√µ

3 . Thus,
we may repeat all the steps for t ∈ [µ, 2µ].
Summarizing all the above, we arrive at the following
conclusion: there exists an N2 ∈ N ∪ {0} such that

J(ξ(t)) ≤ J(ξ0)e−λ2t for t = 0, µ, . . . , (N2 − 1)µ,

J(ξ(t)) ≤ ρ2 for t = N2µ, (N2 + 1)µ, . . . .

Consequently, ‖ξ(t) − x∗‖ ≤
√

σ12
σ11

‖x0 − x∗‖e−λ2t for t =

0, µ, . . . , (N2−1)µ, ‖ξ(N2µ)−x∗‖ ≤
√

ρ2
σ11

≤ δx for t = N2µ, (N2+

1)µ, . . . . For an arbitrary t ∈ [0,N2µ], we denote the integer

part of t
µ as

[
t
µ

]
and observe that 0 < t−

[
t
µ

]
µ < µ. Then

‖ξ(t)− x∗‖ ≤
∥∥∥ξ
([

t

µ

]
µ

)
− x∗

∥∥∥+

∥∥∥ξ(t)− ξ

[
t

µ

]∥∥∥

≤
√

σ12

σ11
‖x0 − x∗‖e

−λ2

[
t
µ

]
µ

+ ν
√
µ ≤ β‖x0 − x∗‖e−λ2t + ν

√
µ,

where β =
√

σ12

σ11
eλ2µ. This yields the following result.

Statement 4. For any µ ∈ (0, µ1], γ1 ∈ (γ̄1,∞), ε ∈ (0, ε0(γ1, µ)],
the πε-solutions (x(t), ξ(t)) of system (5) with the initial conditions
x(0) = ξ(0) ∈ Dx are well-defined in D′ ×D′ for all t ∈ [0,∞), and
the following estimates hold:

‖ξ(t)− x∗‖ ≤ β‖x0 − x∗‖e−λt + ν
√
µ for t ∈ [0,N2µ],

‖ξ(t)− x∗‖ ≤
√

ρ2

σ11
+ ν

√
µ for t ∈ [N2µ,∞).

Furthermore, ‖x(t)− ξ(t)‖ ≤ ρ1µς√µ for all t ∈ [0,∞).

Step 5. Finally, we estimate ‖x(t)−x∗‖ for t ∈ [0,∞). Ap-
plying the triangle inequality together with Statement 4,
we get the following:

‖x(t)− x∗‖ ≤ β‖x0 − x∗‖e−λt + ρ1µ
ς√µ+ ν

√
µ for t ∈ [0,N2µ],

‖x(t)− x∗‖ ≤ ρ1µ
ς√µ+

√
ρ2

σ11
+ ν

√
µ for t ∈ [N2µ,∞).

Since ρ1, ρ2 are arbitrary and µ can be chosen small
enough, the above inequalities imply the assertion of
Theorem 1. In particular, for an arbitrary ρ > 0, one can
take ρ1 > 0 and µ > 0 such that

ρ1µ
ς√µ+ ν

√
µ ≤ ρ

2
, (B.14)

and ρ2 ≤ 1
4ρ

2σ11. Then ‖x(t) − x∗‖ ≤ β‖x0 − x∗‖e−λt +
ρ for all t ∈ [0,∞). Note that the choice of µ does not
depend on ε, η, and the choice of γ1 does not depend
on ε. Namely, given δ, ρ, ρ1, ρ2, one can choose a µ̄ > 0
satisfying (B.4), (B.13) and (B.14), and take any µ̂ ∈
(0, µ̄]. The next step is to determine γ̄1(µ̂) satisfying (B.5),
and take any γ̂1 ∈ (γ̄1,∞). Finally, ε̄(γ̂1, µ̂) has to be
specified according to (B.6) and (B.10).


